Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
Add more filters

Publication year range
1.
Am J Med Genet A ; 185(10): 3118-3121, 2021 10.
Article in English | MEDLINE | ID: mdl-34159722

ABSTRACT

Congenital disorders of glycosylation are a group of rare monogenic inborn errors of metabolism caused by defective glycoprotein and glycolipid glycan synthesis and attachment. Here, we present a patient with galactose epimerase deficiency, also known as GALE deficiency, accompanied by pancytopenia and immune dysregulation. She was first identified by an abnormal newborn screen for galactosemia with subsequent genetic evaluation due to pancytopenia and immune dysregulation. The evaluation ultimately revealed that her known diagnosis of GALE deficiency was the cause of her hematologic and immune abnormalities. These findings further expand the clinical spectrum of disease of congenital disorders of glycosylation.


Subject(s)
Congenital Disorders of Glycosylation/genetics , Galactosemias/genetics , UDPglucose 4-Epimerase/genetics , Adult , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/pathology , Female , Galactosemias/diagnosis , Galactosemias/pathology , Glycolipids/biosynthesis , Glycolipids/genetics , Humans , Mutation/genetics , Phenotype , Polysaccharides/biosynthesis , Polysaccharides/genetics , UDPglucose 4-Epimerase/deficiency
2.
Mol Ther ; 28(1): 304-312, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31604675

ABSTRACT

Classic galactosemia (CG) is a potentially lethal inborn error of galactose metabolism that results from deleterious mutations in the human galactose-1 phosphate uridylyltransferase (GALT) gene. Previously, we constructed a GalT-/- (GalT-deficient) mouse model that exhibits galactose sensitivity in the newborn mutant pups, reduced fertility in adult females, impaired motor functions, and growth restriction in both sexes. In this study, we tested whether restoration of hepatic GALT activity alone could decrease galactose-1 phosphate (gal-1P) and plasma galactose in the mouse model. The administration of different doses of mouse GalT (mGalT) mRNA resulted in a dose-dependent increase in mGalT protein expression and enzyme activity in the liver of GalT-deficient mice. Single intravenous (i.v.) dose of human GALT (hGALT) mRNA decreased gal-1P in mutant mouse liver and red blood cells (RBCs) within 24 h with low levels maintained for over a week. Repeated i.v. injections increased hepatic GalT expression, nearly normalized gal-1P levels in liver, and decreased gal-1P levels in RBCs and peripheral tissues throughout all doses. Moreover, repeated dosing reduced plasma galactose by 60% or more throughout all four doses. Additionally, a single intraperitoneal dose of hGALT mRNA overcame the galactose sensitivity and promoted the growth in a GalT-/- newborn pup.


Subject(s)
Disease Models, Animal , Galactose/blood , Galactosemias/therapy , RNA, Messenger/administration & dosage , UTP-Hexose-1-Phosphate Uridylyltransferase/administration & dosage , Animals , Animals, Newborn , Cells, Cultured , Erythrocytes/drug effects , Erythrocytes/metabolism , Female , Fibroblasts/metabolism , Galactosemias/pathology , Galactosephosphates/metabolism , Humans , Injections, Intraperitoneal , Injections, Intravenous , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Knockout , Signal Transduction/drug effects , Transfection , Treatment Outcome , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics
3.
Molecules ; 26(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34641485

ABSTRACT

The third step of the catabolism of galactose in mammals is catalyzed by the enzyme galactose-1-phosphate uridylyltransferase (GALT), a homodimeric enzyme with two active sites located in the proximity of the intersubunit interface. Mutations of this enzyme are associated to the rare inborn error of metabolism known as classic galactosemia; in particular, the most common mutation, associated with the most severe phenotype, is the one that replaces Gln188 in the active site of the enzyme with Arg (p.Gln188Arg). In the past, and more recently, the structural effects of this mutation were deduced on the static structure of the wild-type human enzyme; however, we feel that a dynamic view of the proteins is necessary to deeply understand their behavior and obtain tips for possible therapeutic interventions. Thus, we performed molecular dynamics simulations of both wild-type and p.Gln188Arg GALT proteins in the absence or in the presence of the substrates in different conditions of temperature. Our results suggest the importance of the intersubunit interactions for a correct activity of this enzyme and can be used as a starting point for the search of drugs able to rescue the activity of this enzyme in galactosemic patients.


Subject(s)
Galactosemias/pathology , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation , UTP-Hexose-1-Phosphate Uridylyltransferase/chemistry , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism , Galactosemias/genetics , Humans , Models, Molecular , Molecular Dynamics Simulation , Mutant Proteins/genetics , Protein Conformation , Structure-Activity Relationship , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics
4.
Mol Genet Metab ; 131(4): 370-379, 2020 12.
Article in English | MEDLINE | ID: mdl-33199205

ABSTRACT

BACKGROUND: Classical Galactosemia (CG) is an inherited disorder of galactose metabolism caused by a deficiency of the galactose-1-phosphate uridylyltransferase (GALT) enzyme resulting in neurocognitive complications. As in many Inborn Errors of Metabolism, the metabolic pathway of CG is well-defined, but the pathophysiology and high variability in clinical outcome are poorly understood. The aim of this study was to investigate structural changes of the brain of CG patients on MRI and their association with clinical outcome. METHODS: In this prospective cohort study an MRI protocol was developed to evaluate gray matter (GM) and white matter (WM) volume of the cerebrum and cerebellum, WM hyperintensity volume, WM microstructure and myelin content with the use of conventional MRI techniques, diffusion tensor imaging (DTI) and quantitative T1 mapping. The association between several neuroimaging parameters and both neurological and intellectual outcome was investigated. RESULTS: Twenty-one patients with CG (median age 22 years, range 8-47) and 24 controls (median age 30, range 16-52) were included. Compared to controls, the WM of CG patients was lower in volume and the microstructure of WM was impaired both in the whole brain and corticospinal tract (CST) and the lower R1 values of WM, GM and the CST were indicative of less myelin. The volume of WM lesions were comparable between patients and controls. The 9/16 patients with a poor neurological outcome (defined as the presence of a tremor and/or dystonia), demonstrated a lower WM volume, an impaired WM microstructure and lower R1 values of the WM indicative of less myelin content compared to 7/16 patients without movement disorders. In 15/21 patients with a poor intellectual outcome (defined as an IQ < 85) both GM and WM were affected with a lower cerebral and cerebellar WM and GM volume compared to 6/21 patients with an IQ ≥ 85. Both the severity of the tremor (as indicated by the Tremor Rating Scale) and IQ (as continuous measure) were associated with several neuroimaging parameters such as GM volume, WM volume, CSF volume, WM microstructure parameters and R1 values of GM and WM. CONCLUSION: In this explorative study performed in patients with Classical Galactosemia, not only WM but also GM pathology was found, with more severe brain abnormalities on MRI in patients with a poor neurological and intellectual outcome. The finding that structural changes of the brain were associated with the severity of long-term complications indicates that quantitative MRI techniques could be of use to explain neurological and cognitive dysfunction as part of the disease spectrum. Based on the clinical outcome of patients, the absence of widespread WM lesions and the finding that both GM and WM are affected, CG could be primarily a GM disease with secondary damage to the WM as a result of neuronal degeneration. To investigate this further the course of GM and WM should be evaluated in longitudinal research, which could also clarify if CG is a neurodegenerative disease.


Subject(s)
Galactosemias/metabolism , Gray Matter/metabolism , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , White Matter/metabolism , Adolescent , Adult , Cerebellum/diagnostic imaging , Cerebellum/metabolism , Cerebellum/pathology , Cerebrum/diagnostic imaging , Cerebrum/metabolism , Cerebrum/pathology , Female , Galactosemias/diagnostic imaging , Galactosemias/genetics , Galactosemias/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Myelin Sheath/genetics , Myelin Sheath/metabolism , Nerve Degeneration/diagnostic imaging , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Neuroimaging/methods , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism , White Matter/diagnostic imaging , White Matter/pathology , Young Adult
5.
J Inherit Metab Dis ; 43(6): 1205-1218, 2020 11.
Article in English | MEDLINE | ID: mdl-32592186

ABSTRACT

Classic galactosemia (OMIM# 230400) is an autosomal recessive disorder due to galactose-1-phosphate uridyltransferase deficiency. Newborn screening and prompt treatment with a galactose-free diet prevent the severe consequences of galactosemia, but clinical outcomes remain suboptimal. Five men and five women with classic galactosemia (mean age = 27.2 ± 5.47 years) received comprehensive neurological and neuropsychological evaluations, electroencephalogram (EEG) and magnetic resonance imaging (MRI). MRI data from nine healthy controls (mean age = 30.22 ± 3.52 years) were used for comparison measures. Galactosemia subjects experienced impaired memory, language processing, visual-motor skills, and increased anxiety. Neurological examinations revealed tremor and dysarthria in six subjects. In addition, there was ataxia in three subjects and six subjects had abnormal gait. Mean full scale IQ was 80.4 ± 17.3. EEG evaluations revealed right-sided abnormalities in five subjects and bilateral abnormalities in one subject. Compared to age- and gender-matched controls, subjects with galactosemia had reduced volume in left cerebellum white matter, bilateral putamen, and left superior temporal sulcus. Galactosemia patients also had lower fractional anisotropy and higher radial diffusivity values in the dorsal and ventral language networks compared to the controls. Furthermore, there were significant correlations between neuropsychological test results and the T1 volume and diffusivity scalars. Our findings help to identify anatomic correlates to motor control, learning and memory, and language in subjects with galactosemia. The results from this preliminary assessment may provide insights into the pathophysiology of this inborn error of metabolism.


Subject(s)
Brain Mapping/methods , Diffusion Magnetic Resonance Imaging/methods , Galactosemias/pathology , Neurites/pathology , White Matter/pathology , Adult , Anisotropy , Case-Control Studies , Electroencephalography , Female , Galactosemias/physiopathology , Galactosemias/psychology , Humans , Language , Male , Motor Activity , Neuropsychological Tests , White Matter/physiopathology , Young Adult
6.
J Assist Reprod Genet ; 36(10): 2181-2189, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31422495

ABSTRACT

PURPOSE: Almost every female classic galactosemia patient develops primary ovarian insufficiency (POI). The unique pathophysiology of classic galactosemia, with a severely reduced follicle pool at an early age, requires a new therapeutic approach. This study evaluated the effect of dehydroepiandrosterone (DHEA) on ovarian tissue in a galactose-induced POI rat model. METHODS: Pregnant rats were fed with either a normal or a 35% galactose-containing diet from day 3 of conception continuing through weaning of the litters. Galactose-exposed female offspring were further divided into 5 groups on PND21. The first group received no application. Treatment groups were fed orally by gavage once daily with sesame oil (group 2), or DHEA at doses of 0.1 mg/kg (group 3), 1 mg/kg (group 4) or 10 mg/kg (group 5) until PND70. Fertility rates of mothers with galactosemia, body weights (BWs), and ovarian weights of the litters from PND21 to PND70 were recorded. Ovarian follicle count, immunohistochemistry for proliferation and apoptosis marker expressions and TUNEL for cell death assessment were performed in offspring ovaries. RESULTS: Decreased fertility, ovarian/body weights were observed under galactosemic conditions, together with decreased follicle number and increased atresia. Improved postnatal development, primordial follicle recruitment and follicular growth were observed after DHEA treatment. After DHEA treatment, the expression of Ki67 protein was found to be increased; elevated expression of cleaved-caspase-3 under galactosemia was found to be reduced. CONCLUSIONS: Our data suggests that DHEA treatment may be a potentially useful clinical therapy to improve ovarian ageing in women with POI-induced by galactosemia.


Subject(s)
Aging/drug effects , Dehydroepiandrosterone/pharmacology , Galactosemias/diet therapy , Primary Ovarian Insufficiency/diet therapy , Aging/genetics , Animals , Dietary Supplements , Disease Models, Animal , Female , Galactose/toxicity , Galactosemias/chemically induced , Galactosemias/complications , Galactosemias/pathology , Humans , Ovarian Follicle/drug effects , Ovarian Follicle/pathology , Pregnancy , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/pathology , Rats
7.
Int J Mol Sci ; 20(20)2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31652573

ABSTRACT

Classical galactosaemia (CG) (OMIM 230400) is a rare inborn error of galactose metabolism caused by the deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT, EC 2.7.7.12). Primary ovarian insufficiency (POI) is the most common long-term complication experienced by females with CG, presenting with hypergonadotrophic hypoestrogenic infertility affecting at least 80% of females despite new-born screening and lifelong galactose dietary restriction. In this review, we describe the hypothesized pathophysiology of POI from CG, implications of timing of the ovarian dysfunction, and the new horizons and future prospects for treatments and fertility preservation.


Subject(s)
Fertility Preservation/methods , Galactose/genetics , Galactosemias/etiology , Female , Galactose/metabolism , Galactosemias/pathology , Galactosemias/therapy , Humans
8.
Hum Mol Genet ; 25(17): 3699-3714, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27466186

ABSTRACT

The multiple galactosemia disease states manifest long-term neurological symptoms. Galactosemia I results from loss of galactose-1-phosphate uridyltransferase (GALT), which converts galactose-1-phosphate + UDP-glucose to glucose-1-phosphate + UDP-galactose. Galactosemia II results from loss of galactokinase (GALK), phosphorylating galactose to galactose-1-phosphate. Galactosemia III results from the loss of UDP-galactose 4'-epimerase (GALE), which interconverts UDP-galactose and UDP-glucose, as well as UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. UDP-glucose pyrophosphorylase (UGP) alternatively makes UDP-galactose from uridine triphosphate and galactose-1-phosphate. All four UDP-sugars are essential donors for glycoprotein biosynthesis with critical roles at the developing neuromuscular synapse. Drosophila galactosemia I (dGALT) and II (dGALK) disease models genetically interact; manifesting deficits in coordinated movement, neuromuscular junction (NMJ) development, synaptic glycosylation, and Wnt trans-synaptic signalling. Similarly, dGALE and dUGP mutants display striking locomotor and NMJ formation defects, including expanded synaptic arbours, glycosylation losses, and differential changes in Wnt trans-synaptic signalling. In combination with dGALT loss, both dGALE and dUGP mutants compromise the synaptomatrix glycan environment that regulates Wnt trans-synaptic signalling that drives 1) presynaptic Futsch/MAP1b microtubule dynamics and 2) postsynaptic Frizzled nuclear import (FNI). Taken together, these findings indicate UDP-sugar balance is a key modifier of neurological outcomes in all three interacting galactosemia disease models, suggest that Futsch homolog MAP1B and the Wnt Frizzled receptor may be disease-relevant targets in epimerase and transferase galactosemias, and identify UGP as promising new potential therapeutic target for galactosemia neuropathology.


Subject(s)
Galactokinase/genetics , Galactosemias/physiopathology , Neuromuscular Junction/pathology , Synapses/physiology , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , Animals , Disease Models, Animal , Drosophila , Drosophila Proteins/genetics , Galactosemias/metabolism , Galactosemias/pathology , Glycosylation , Humans , Neuromuscular Junction/metabolism , Synapses/metabolism , Wnt Signaling Pathway
9.
Hum Mol Genet ; 25(11): 2234-2244, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27005423

ABSTRACT

Classic galactosemia is a potentially lethal disease caused by the dysfunction of galactose 1-phosphate uridylyltransferase (GALT). Over 300 disease-associated GALT mutations have been reported, with the majority being missense changes, although a better understanding of their underlying molecular effects has been hindered by the lack of structural information for the human enzyme. Here, we present the 1.9 Å resolution crystal structure of human GALT (hGALT) ternary complex, revealing a homodimer arrangement that contains a covalent uridylylated intermediate and glucose-1-phosphate in the active site, as well as a structural zinc-binding site, per monomer. hGALT reveals significant structural differences from bacterial GALT homologues in metal ligation and dimer interactions, and therefore is a zbetter model for understanding the molecular consequences of disease mutations. Both uridylylation and zinc binding influence the stability and aggregation tendency of hGALT. This has implications for disease-associated variants where p.Gln188Arg, the most commonly detected, increases the rate of aggregation in the absence of zinc likely due to its reduced ability to form the uridylylated intermediate. As such our structure serves as a template in the future design of pharmacological chaperone therapies and opens new concepts about the roles of metal binding and activity in protein misfolding by disease-associated mutants.


Subject(s)
Galactosemias/genetics , Structure-Activity Relationship , Ternary Complex Factors/chemistry , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , Binding Sites/genetics , Catalytic Domain/genetics , Crystallography, X-Ray , Galactose/chemistry , Galactose/metabolism , Galactosemias/metabolism , Galactosemias/pathology , Humans , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Protein Conformation , Ternary Complex Factors/genetics , UTP-Hexose-1-Phosphate Uridylyltransferase/chemistry
10.
Mol Genet Metab ; 125(3): 258-265, 2018 11.
Article in English | MEDLINE | ID: mdl-30172461

ABSTRACT

Impaired activity of galactose-1-phosphate uridyltransferase (GALT) causes classic galactosemia (OMIM 230400), characterized by the accumulation of galactose-1-phosphate (GAL1P) in patients' red blood cells (RBCs). Our recent study demonstrated a correlation between RBC GAL1P and long-term outcomes in galactosemia patients. Here, we analyze biochemical and molecular results in 77 classic galactosemia patients to evaluate the association between GALT genotypes and GAL1P concentration in RBCs. Experimental data from model organisms were also included to assess the correlation between GAL1P and predicted residual activity of each genotype. Although all individuals in this study showed markedly reduced RBC GALT activity, we observed significant differences in RBC GAL1P concentrations among galactosemia genotypes. While levels of GAL1P on treatment did not correlate with RBC GALT activities (p = 0.166), there was a negative nonlinear correlation between mean GAL1P concentrations and predicted residual enzyme activity of genotype (p = 0.004). These studies suggest that GAL1P levels in RBCs on treatment likely reflect the overall functional impairment of GALT in patients with galactosemia.


Subject(s)
Erythrocytes/metabolism , Galactosemias/genetics , Galactosephosphates/blood , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , Adolescent , Adult , Child , Child, Preschool , Erythrocytes/pathology , Female , Galactosemias/blood , Galactosemias/pathology , Genotype , Humans , Infant , Infant, Newborn , Male , Young Adult
11.
Clin Genet ; 93(2): 206-215, 2018 02.
Article in English | MEDLINE | ID: mdl-28374897

ABSTRACT

Galactosemia type 1 is an autosomal recessive disorder of galactose metabolism, determined by a deficiency in the enzyme galactose-1-phosphate uridyltransferase (GALT). GALT deficiency is classified as severe or variant depending on biochemical phenotype, genotype and potential to develop acute and long-term complications. Neonatal symptoms usually resolve after galactose-restricted diet; however, some patients, despite the diet, can develop long-term complications, in particular when the GALT enzyme activity results absent or severely decreased. The mechanisms of acute and long-term complications are still discussed and several hypotheses are presented in the literature like enzymatic inhibition, osmotic stress, endoplasmic reticulum stress, oxidative stress, defects of glycosylation or epigenetic modification. This review summarizes the current knowledge of galactosemia, in particular the putative mechanisms of neonatal and long-term complications and the molecular genetics of GALT deficiency.


Subject(s)
Epigenesis, Genetic/genetics , Galactosemias/genetics , Oxidative Stress/genetics , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , Alleles , Galactosemias/pathology , Genotype , Glycosylation , Humans , Phenotype
12.
J Proteome Res ; 16(2): 516-527, 2017 02 03.
Article in English | MEDLINE | ID: mdl-28075131

ABSTRACT

Classical galactosemia, a hereditary metabolic disease caused by the deficiency of galactose-1-phosphate uridyltransferase (GALT; EC 2.7.712), results in an impaired galactose metabolism and serious long-term developmental affection of the CNS and ovaries, potentially related in part to endogenous galactose-induced protein dysglycosylation. In search for galactose-induced changes in membrane raft proteomes of GALT-deficient cells, we performed differential analyses of lipid rafts from patient-derived (Q) and sex- and age-matched control fibroblasts (H) in the presence or absence of the stressor. Label-based proteomics revealed of the total 454 (female) or 678 (male) proteins a proportion of ∼12% in at least one of four relevant ratios as fold-changed. GALT(-) cell-specific effects in the absence of stressor revealed cell-model-dependent affection of biological processes related to protein targeting to the plasma membrane (female) or to cellular migration (male). However, a series of common galactose-induced effects were observed, among them the strongly increased ER-stress marker GRP78 and calreticulin involved in N-glycoprotein quality control. The membrane-anchored N-glycoprotein receptor CD109 was concertedly decreased under galactose-stress together with cadherin-13, GLIPR1, glypican-1, and semaphorin-7A. A series of proteins showed opposite fold-changes in the two cell models, whereas others fluctuated in only one of the two models.


Subject(s)
Fibroblasts/drug effects , Galactose/pharmacology , Galactosemias/genetics , Gene Expression Regulation/drug effects , Membrane Microdomains/drug effects , Antigens, CD/genetics , Antigens, CD/metabolism , Cadherins/genetics , Cadherins/metabolism , Calreticulin/genetics , Calreticulin/metabolism , Case-Control Studies , Child, Preschool , Endoplasmic Reticulum Chaperone BiP , Female , Fibroblasts/metabolism , Fibroblasts/pathology , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Galactosemias/metabolism , Galactosemias/pathology , Gene Expression Profiling , Gene Ontology , Glypicans/genetics , Glypicans/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Infant , Male , Membrane Microdomains/chemistry , Membrane Microdomains/metabolism , Membrane Proteins , Molecular Sequence Annotation , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Primary Cell Culture , Semaphorins/genetics , Semaphorins/metabolism , Signal Transduction , Stress, Physiological , UTP-Hexose-1-Phosphate Uridylyltransferase
13.
Genet Med ; 19(1): 77-82, 2017 01.
Article in English | MEDLINE | ID: mdl-27308838

ABSTRACT

PURPOSE: As exome and genome sequencing using high-throughput sequencing technologies move rapidly into the diagnostic process, laboratories and clinicians need to develop a strategy for dealing with uncertain findings. A commitment must be made to minimize these findings, and all parties may need to make adjustments to their processes. The information required to reclassify these variants is often available but not communicated to all relevant parties. METHODS: To illustrate these issues, we focused on three well-characterized monogenic, metabolic disorders included in newborn screens: classic galactosemia, caused by GALT variants; phenylketonuria, caused by PAH variants; and medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, caused by ACADM variants. In 10 years of clinical molecular testing, we have observed 134 unique GALT variants, 46 of which were variants of uncertain significance (VUS). In PAH, we observed 132 variants, including 17 VUS, and for ACADM, we observed 64 unique variants, of which 33 were uncertain. CONCLUSION: After this review, 17 VUS (37%; 7 in ACADM, 9 in GALT, and 1 in PAH) were reclassified from uncertain (6 to benign or likely benign and 11 to pathogenic or likely pathogenic). We identified common types of missing information that would have helped make a definitive classification and categorized this information by ease and cost to obtain.Genet Med 19 1, 77-82.


Subject(s)
Acyl-CoA Dehydrogenase/deficiency , Acyl-CoA Dehydrogenase/genetics , Galactosemias/genetics , Lipid Metabolism, Inborn Errors/genetics , Phenylalanine Hydroxylase/genetics , Phenylketonurias/genetics , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , Galactosemias/diagnosis , Galactosemias/pathology , Genetic Variation , Genotype , Humans , Infant, Newborn , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/pathology , Mutation , Neonatal Screening , Phenylketonurias/diagnosis , Phenylketonurias/pathology
14.
Biochem Biophys Res Commun ; 470(1): 205-212, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26773505

ABSTRACT

The vital importance of the Leloir pathway of galactose metabolism has been repeatedly demonstrated by various uni-/multicellular model organisms, as well human patients who have inherited deficiencies of the key GAL enzymes. Yet, other than the obvious links to the glycolytic pathway and glycan biosynthetic pathways, little is known about how this metabolic pathway interacts with the rest of the metabolic and signaling networks. In this study, we compared the growth and the expression levels of the key components of the PI3K/Akt growth signaling pathway in primary fibroblasts derived from normal and galactose-1 phosphate uridylyltransferase (GalT)-deficient mice, the latter exhibited a subfertility phenotype in adult females and growth restriction in both sexes. The growth potential and the protein levels of the pAkt(Thr308), pAkt(Ser473), pan-Akt, pPdk1, and Hsp90 proteins were significantly reduced by 62.5%, 60.3%, 66%, 66%, and 50%, respectively in the GalT-deficient cells. Reduced expression of phosphorylated Akt proteins in the mutant cells led to diminished phosphorylation of Gsk-3ß (-74%). Protein expression of BiP and pPten were 276% and 176% higher respectively in cells with GalT-deficiency. Of the 24 genes interrogated using QIAGEN RT(2) Profiler PCR Custom Arrays, the mRNA abundance of Akt1, Pdpk1, Hsp90aa1 and Pi3kca genes were significantly reduced at least 2.03-, 1.37-, 2.45-, and 1.78-fold respectively in mutant fibroblasts. Both serum-fasted normal and GalT-deficient cells responded to Igf-1-induced activation of Akt phosphorylation at +15 min, but the mutant cells have lower phosphorylation levels. The steady-state protein abundance of Igf-1 receptor was also significantly reduced in mutant cells. Our results thus demonstrated that GalT deficiency can effect down-regulation of the PI3K/Akt growth signaling pathway in mouse fibroblasts through distinct mechanisms targeting both gene and protein expression levels.


Subject(s)
Fibroblasts/metabolism , Galactosemias/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism , Animals , Endoplasmic Reticulum Stress , Female , Galactosemias/pathology , Gene Expression Regulation, Enzymologic , Male , Mice
15.
BMC Med Genet ; 17(1): 39, 2016 05 12.
Article in English | MEDLINE | ID: mdl-27176039

ABSTRACT

BACKGROUND: Classical Galactosemia (CG) is an inborn error of galactose metabolism caused by the deficiency of the galactose-1-phosphate uridyltransferase enzyme. It is transmitted as an autosomal recessive disease and is typically characterized by neonatal galactose intolerance, with complications ranging from neonatal jaundice and liver failure to late complications, such as motor and reproductive dysfunctions. Galactosemia is also heterogeneous from a molecular standpoint, with hundreds of different mutations described in the GALT gene, some of them specific to certain populations, reflecting consequence of founder effect. METHODS: This study reviews the main clinical findings and depicts the spectrum of mutations identified in 19 patients with CG, six with Duarte Galactosemia and one with type 2 Galactosemia in Brazil. Some individuals were diagnosed through expanded newborn screening test, which is not available routinely to all newborns. RESULTS: The main classical Galactosemia mutations reported to date were identified in this study, as well as the Duarte variant and seven novel mutations - c.2 T > C (p.M1T), c.97C > A (p.R33S), c.217C > T (p.P73S), c.328 + 1G > A (IVS3 + 1G > A), c.377 + 4A > C (IVS4 + 4A > C), c.287_289delACA (p.N97del) and c.506A > C (p.Q169P). This was expected, given the high miscegenation of the Brazilian population. CONCLUSIONS: This study expands the mutation spectrum in GALT gene and reinforces the importance of early diagnosis and introduction of dietary treatment, what is possible with the introduction of Galactosemia in neonatal screening programs.


Subject(s)
Galactosemias/genetics , Galactosemias/pathology , Mutation , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , Alleles , Base Sequence , Brazil , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , Genotype , Humans , Infant , Infant, Newborn , Polymorphism, Genetic
16.
Metab Brain Dis ; 31(6): 1381-1390, 2016 12.
Article in English | MEDLINE | ID: mdl-27389247

ABSTRACT

Galactosemia is a disorder of galactose metabolism, leading to the accumulation of this carbohydrate. Galactosemic patients present brain and liver damage. For evaluated oxidative stress, 30-day-old males Wistar rats were divided into two groups: galactose group, that received a single injection of this carbohydrate (5 µmol/g), and control group, that received saline 0.9 % in the same conditions. One, twelve or twenty-four hours after the administration, animals were euthanized and cerebral cortex, cerebellum, and liver were isolated. After one hour, it was found a significant increase in TBA-RS levels, nitrate and nitrite and protein carbonyl contents in cerebral cortex, as well as protein carbonyl content in the cerebellum and in hepatic level of TBA-RS, and a significant decrease in nitrate and nitrite contents in cerebellum. TBA-RS levels were also found increased in all studied tissues, as well as nitrate and nitrite contents in cerebral cortex and cerebellum, that also present increased protein carbonyl content and impairments in the activity of antioxidant enzymes of rats euthanized at twelve hours. Finally, animals euthanized after twenty-four hours present an increase of TBA-RS levels in studied tissues, as well as the protein carbonyl content in cerebellum and liver. These animals also present an increased nitrate and nitrite content and impairment of antioxidant enzymes activities. Taken together, our data suggest that acute galactose administration impairs redox homeostasis in brain and liver of rats.


Subject(s)
Brain/metabolism , Galactosemias/metabolism , Liver/metabolism , Oxidative Stress/physiology , Animals , Animals, Newborn , Brain/pathology , Galactosemias/pathology , Liver/pathology , Male , Rats , Rats, Wistar
17.
J Inherit Metab Dis ; 38(2): 295-304, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25344151

ABSTRACT

White matter abnormalities have been observed in patients with classic galactosemia, an inborn error of galactose metabolism. However, magnetic resonance imaging (MRI) data collected in the past were generally qualitative in nature. Our objective was to investigate white matter microstructure pathology and examine correlations with outcome and behaviour in this disease, by using multi-shell diffusion weighted imaging. In addition to standard diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI) was used to estimate density and orientation dispersion of neurites in a group of eight patients (aged 16-21 years) and eight healthy controls (aged 15-20 years). Extensive white matter abnormalities were found: neurite density index (NDI) was lower in the patient group in bilateral anterior areas, and orientation dispersion index (ODI) was increased mainly in the left hemisphere. These specific regional profiles are in agreement with the cognitive profile observed in galactosemia, showing higher order cognitive impairments, and language and motor impairments, respectively. Less favourable white matter properties correlated positively with age and age at onset of diet, and negatively with behavioural outcome (e.g. visual working memory). To conclude, this study provides evidence of white matter pathology regarding density and dispersion of neurites in these patients. The results are discussed in light of suggested pathophysiological mechanisms.


Subject(s)
Brain Mapping/methods , Diffusion Magnetic Resonance Imaging/methods , Galactosemias/pathology , Neurites/pathology , White Matter/pathology , Adolescent , Age Factors , Case-Control Studies , Cognition , Diet, Carbohydrate-Restricted , Female , Galactosemias/diet therapy , Galactosemias/physiopathology , Galactosemias/psychology , Humans , Language , Male , Motor Activity , Predictive Value of Tests , Prognosis , White Matter/physiopathology , Young Adult
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167340, 2024 10.
Article in English | MEDLINE | ID: mdl-38986816

ABSTRACT

Classic galactosemia is an inborn error of metabolism caused by mutations in the GALT gene resulting in the diminished activity of the galactose-1-phosphate uridyltransferase enzyme. This reduced GALT activity leads to the buildup of the toxic intermediate galactose-1-phosphate and a decrease in ATP levels upon exposure to galactose. In this work, we focused our attention on mitochondrial oxidative phosphorylation in the context of this metabolic disorder. We observed that galactose-1-phosphate accumulation reduced respiratory rates in vivo and changed mitochondrial function and morphology in yeast models of galactosemia. These alterations are harmful to yeast cells since the mitochondrial retrograde response is activated as part of the cellular adaptation to galactose toxicity. In addition, we found that galactose-1-phosphate directly impairs cytochrome c oxidase activity of mitochondrial preparations derived from yeast, rat liver, and human cell lines. These results highlight the evolutionary conservation of this biochemical effect. Finally, we discovered that two compounds - oleic acid and dihydrolipoic acid - that can improve the growth of cell models of mitochondrial diseases, were also able to improve galactose tolerance in this model of galactosemia. These results reveal a new molecular mechanism relevant to the pathophysiology of classic galactosemia - galactose-1-phosphate-dependent mitochondrial dysfunction - and suggest that therapies designed to treat mitochondrial diseases may be repurposed to treat galactosemia.


Subject(s)
Electron Transport Complex IV , Galactosemias , Galactosephosphates , Mitochondria , Galactosemias/metabolism , Galactosemias/pathology , Galactosemias/genetics , Galactosephosphates/metabolism , Humans , Animals , Rats , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/drug effects , Electron Transport Complex IV/metabolism , Electron Transport Complex IV/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Oxidative Phosphorylation/drug effects , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , Galactose/metabolism
20.
AJNR Am J Neuroradiol ; 42(3): 590-596, 2021 03.
Article in English | MEDLINE | ID: mdl-33478945

ABSTRACT

Galactosemia is a rare genetic condition caused by mutation of enzymes involved in galactose and glucose metabolism. The varying clinical spectrum reflects the genetic complexity of this entity manifesting as acute neonatal toxicity syndrome, requiring prompt diagnosis and treatment, to more insidious clinical scenarios as observed in the subacute and chronic presentations. The current literature predominantly focuses on the long-standing sequelae of this disease. The purpose of this multicenter clinical report comprising 17 patients with galactosemia is to highlight the MR imaging patterns encompassing the whole spectrum of galactosemia, emphasizing the 3 main clinical subtypes: 1) acute neonatal presentation, with predominant white matter edema; 2) subacute clinical onset with a new finding called the "double cap sign"; and 3) a chronic phase of the disease with heterogeneous imaging findings. The knowledge of these different patterns together with MR spectroscopy and the clinical presentation may help in prioritizing galactosemia over other neonatal metabolic diseases and prevent possible complications.


Subject(s)
Brain/diagnostic imaging , Brain/pathology , Galactosemias/diagnostic imaging , Galactosemias/pathology , Adolescent , Child , Child, Preschool , Disease Progression , Female , Humans , Infant , Infant, Newborn , Male
SELECTION OF CITATIONS
SEARCH DETAIL