Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 967
Filter
Add more filters

Publication year range
1.
Cell ; 184(18): 4612-4625.e14, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34352227

ABSTRACT

The Middle East region is important to understand human evolution and migrations but is underrepresented in genomic studies. Here, we generated 137 high-coverage physically phased genome sequences from eight Middle Eastern populations using linked-read sequencing. We found no genetic traces of early expansions out-of-Africa in present-day populations but found Arabians have elevated Basal Eurasian ancestry that dilutes their Neanderthal ancestry. Population sizes within the region started diverging 15-20 kya, when Levantines expanded while Arabians maintained smaller populations that derived ancestry from local hunter-gatherers. Arabians suffered a population bottleneck around the aridification of Arabia 6 kya, while Levantines had a distinct bottleneck overlapping the 4.2 kya aridification event. We found an association between movement and admixture of populations in the region and the spread of Semitic languages. Finally, we identify variants that show evidence of selection, including polygenic selection. Our results provide detailed insights into the genomic and selective histories of the Middle East.


Subject(s)
Genetics, Population/history , Genome, Human , Animals , Chromosomes, Human, Y/genetics , Databases, Genetic , Gene Pool , Genetic Introgression , Geography , History, Ancient , Human Migration , Humans , Middle East , Models, Genetic , Neanderthals/genetics , Phylogeny , Population Density , Selection, Genetic , Sequence Analysis, DNA
2.
Cell ; 183(4): 890-904.e29, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33157037

ABSTRACT

The Eastern Eurasian Steppe was home to historic empires of nomadic pastoralists, including the Xiongnu and the Mongols. However, little is known about the region's population history. Here, we reveal its dynamic genetic history by analyzing new genome-wide data for 214 ancient individuals spanning 6,000 years. We identify a pastoralist expansion into Mongolia ca. 3000 BCE, and by the Late Bronze Age, Mongolian populations were biogeographically structured into three distinct groups, all practicing dairy pastoralism regardless of ancestry. The Xiongnu emerged from the mixing of these populations and those from surrounding regions. By comparison, the Mongols exhibit much higher eastern Eurasian ancestry, resembling present-day Mongolic-speaking populations. Our results illuminate the complex interplay between genetic, sociopolitical, and cultural changes on the Eastern Steppe.


Subject(s)
Genetics, Population , Grassland , Archaeology , Europe , Female , Gene Frequency/genetics , Gene Pool , Genetic Heterogeneity , Genome, Human , Geography , Haplotypes/genetics , History, Ancient , Humans , Male , Mongolia , Principal Component Analysis , Time Factors
3.
Nature ; 615(7950): 117-126, 2023 03.
Article in English | MEDLINE | ID: mdl-36859578

ABSTRACT

Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.


Subject(s)
Archaeology , Genome, Human , Genomics , Human Genetics , Hunting , Paleontology , Humans , Europe/ethnology , Gene Pool , History, Ancient , Genome, Human/genetics
4.
Nature ; 610(7930): 112-119, 2022 10.
Article in English | MEDLINE | ID: mdl-36131019

ABSTRACT

The history of the British Isles and Ireland is characterized by multiple periods of major cultural change, including the influential transformation after the end of Roman rule, which precipitated shifts in language, settlement patterns and material culture1. The extent to which migration from continental Europe mediated these transitions is a matter of long-standing debate2-4. Here we study genome-wide ancient DNA from 460 medieval northwestern Europeans-including 278 individuals from England-alongside archaeological data, to infer contemporary population dynamics. We identify a substantial increase of continental northern European ancestry in early medieval England, which is closely related to the early medieval and present-day inhabitants of Germany and Denmark, implying large-scale substantial migration across the North Sea into Britain during the Early Middle Ages. As a result, the individuals who we analysed from eastern England derived up to 76% of their ancestry from the continental North Sea zone, albeit with substantial regional variation and heterogeneity within sites. We show that women with immigrant ancestry were more often furnished with grave goods than women with local ancestry, whereas men with weapons were as likely not to be of immigrant ancestry. A comparison with present-day Britain indicates that subsequent demographic events reduced the fraction of continental northern European ancestry while introducing further ancestry components into the English gene pool, including substantial southwestern European ancestry most closely related to that seen in Iron Age France5,6.


Subject(s)
Gene Pool , Human Migration , Archaeology , DNA, Ancient/analysis , Denmark , England , Female , France , Genetics, Population , Genome, Human/genetics , Germany , History, Medieval , Human Migration/history , Humans , Language , Male , Population Dynamics , Weapons/history
5.
Nature ; 590(7846): 438-444, 2021 02.
Article in English | MEDLINE | ID: mdl-33505029

ABSTRACT

Long-term climate change and periodic environmental extremes threaten food and fuel security1 and global crop productivity2-4. Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience5, these approaches require sufficient knowledge of the genes that underlie productivity and adaptation6-knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate-gene-biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene-trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy.


Subject(s)
Acclimatization/genetics , Biofuels , Genome, Plant/genetics , Genomics , Global Warming , Panicum/genetics , Polyploidy , Biomass , Ecotype , Evolution, Molecular , Gene Flow , Gene Pool , Genetic Introgression , Molecular Sequence Annotation , Panicum/classification , Panicum/growth & development , United States
6.
Proc Natl Acad Sci U S A ; 120(5): e2206945119, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36693089

ABSTRACT

Quantifying SARS-like coronavirus (SL-CoV) evolution is critical to understanding the origins of SARS-CoV-2 and the molecular processes that could underlie future epidemic viruses. While genomic analyses suggest recombination was a factor in the emergence of SARS-CoV-2, few studies have quantified recombination rates among SL-CoVs. Here, we infer recombination rates of SL-CoVs from correlated substitutions in sequencing data using a coalescent model with recombination. Our computationally-efficient, non-phylogenetic method infers recombination parameters of both sampled sequences and the unsampled gene pools with which they recombine. We apply this approach to infer recombination parameters for a range of positive-sense RNA viruses. We then analyze a set of 191 SL-CoV sequences (including SARS-CoV-2) and find that ORF1ab and S genes frequently undergo recombination. We identify which SL-CoV sequence clusters have recombined with shared gene pools, and show that these pools have distinct structures and high recombination rates, with multiple recombination events occurring per synonymous substitution. We find that individual genes have recombined with different viral reservoirs. By decoupling contributions from mutation and recombination, we recover the phylogeny of non-recombined portions for many of these SL-CoVs, including the position of SARS-CoV-2 in this clonal phylogeny. Lastly, by analyzing >400,000 SARS-CoV-2 whole genome sequences, we show current diversity levels are insufficient to infer the within-population recombination rate of the virus since the pandemic began. Our work offers new methods for inferring recombination rates in RNA viruses with implications for understanding recombination in SARS-CoV-2 evolution and the structure of clonal relationships and gene pools shaping its origins.


Subject(s)
COVID-19 , Chiroptera , Animals , COVID-19/genetics , SARS-CoV-2/genetics , Gene Pool , Phylogeny , Genomics , Genome, Viral/genetics , Evolution, Molecular
7.
Plant J ; 118(1): 171-190, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38128038

ABSTRACT

Sugar beet and its wild relatives share a base chromosome number of nine and similar chromosome morphologies. Yet, interspecific breeding is impeded by chromosome and sequence divergence that is still not fully understood. Since repetitive DNAs are among the fastest evolving parts of the genome, we investigated, if repeatome innovations and losses are linked to chromosomal differentiation and speciation. We traced genome and chromosome-wide evolution across 13 beet species comprising all sections of the genera Beta and Patellifolia. For this, we combined short and long read sequencing, flow cytometry, and cytogenetics to build a comprehensive framework that spans the complete scale from DNA to chromosome to genome. Genome sizes and repeat profiles reflect the separation into three gene pools with contrasting evolutionary patterns. Among all repeats, satellite DNAs harbor most genomic variability, leading to fundamentally different centromere architectures, ranging from chromosomal uniformity in Beta and Patellifolia to the formation of patchwork chromosomes in Corollinae/Nanae. We show that repetitive DNAs are causal for the genome expansions and contractions across the beet genera, providing insights into the genomic underpinnings of beet speciation. Satellite DNAs in particular vary considerably between beet genomes, leading to the evolution of distinct chromosomal setups in the three gene pools, likely contributing to the barriers in beet breeding. Thus, with their isokaryotypic chromosome sets, beet genomes present an ideal system for studying the link between repeats, genomic variability, and chromosomal differentiation and provide a theoretical fundament for understanding barriers in any crop breeding effort.


Subject(s)
Beta vulgaris , Beta vulgaris/genetics , Base Sequence , DNA, Satellite , Gene Pool , Plant Breeding , Repetitive Sequences, Nucleic Acid/genetics , Vegetables/genetics , DNA , Centromere/genetics , Sugars
8.
Nature ; 570(7760): 182-188, 2019 06.
Article in English | MEDLINE | ID: mdl-31168093

ABSTRACT

Northeastern Siberia has been inhabited by humans for more than 40,000 years but its deep population history remains poorly understood. Here we investigate the late Pleistocene population history of northeastern Siberia through analyses of 34 newly recovered ancient genomes that date to between 31,000 and 600 years ago. We document complex population dynamics during this period, including at least three major migration events: an initial peopling by a previously unknown Palaeolithic population of 'Ancient North Siberians' who are distantly related to early West Eurasian hunter-gatherers; the arrival of East Asian-related peoples, which gave rise to 'Ancient Palaeo-Siberians' who are closely related to contemporary communities from far-northeastern Siberia (such as the Koryaks), as well as Native Americans; and a Holocene migration of other East Asian-related peoples, who we name 'Neo-Siberians', and from whom many contemporary Siberians are descended. Each of these population expansions largely replaced the earlier inhabitants, and ultimately generated the mosaic genetic make-up of contemporary peoples who inhabit a vast area across northern Eurasia and the Americas.


Subject(s)
Genome, Human/genetics , Human Migration/history , Asia/ethnology , DNA, Ancient/analysis , Europe/ethnology , Gene Pool , Haplotypes , History, 15th Century , History, Ancient , History, Medieval , Humans , Indians, North American , Male , Siberia/ethnology
9.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35131896

ABSTRACT

Orkney was a major cultural center during the Neolithic, 3800 to 2500 BC. Farming flourished, permanent stone settlements and chambered tombs were constructed, and long-range contacts were sustained. From ∼3200 BC, the number, density, and extravagance of settlements increased, and new ceremonial monuments and ceramic styles, possibly originating in Orkney, spread across Britain and Ireland. By ∼2800 BC, this phenomenon was waning, although Neolithic traditions persisted to at least 2500 BC. Unlike elsewhere in Britain, there is little material evidence to suggest a Beaker presence, suggesting that Orkney may have developed along an insular trajectory during the second millennium BC. We tested this by comparing new genomic evidence from 22 Bronze Age and 3 Iron Age burials in northwest Orkney with Neolithic burials from across the archipelago. We identified signals of inward migration on a scale unsuspected from the archaeological record: As elsewhere in Bronze Age Britain, much of the population displayed significant genome-wide ancestry deriving ultimately from the Pontic-Caspian Steppe. However, uniquely in northern and central Europe, most of the male lineages were inherited from the local Neolithic. This suggests that some male descendants of Neolithic Orkney may have remained distinct well into the Bronze Age, although there are signs that this had dwindled by the Iron Age. Furthermore, although the majority of mitochondrial DNA lineages evidently arrived afresh with the Bronze Age, we also find evidence for continuity in the female line of descent from Mesolithic Britain into the Bronze Age and even to the present day.


Subject(s)
DNA, Mitochondrial/genetics , Human Migration/history , Paternal Inheritance/genetics , Archaeology , DNA, Ancient/analysis , England , Europe , Female , Fossils , Gene Pool , Genome, Human/genetics , Genomics , Haplotypes , History, Ancient , History, Medieval , Humans , Ireland , Male , Scotland
10.
BMC Biol ; 22(1): 59, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38475771

ABSTRACT

BACKGROUND: Hmong-Mien (HM) speakers are linguistically related and live primarily in China, but little is known about their ancestral origins or the evolutionary mechanism shaping their genomic diversity. In particular, the lack of whole-genome sequencing data on the Yao population has prevented a full investigation of the origins and evolutionary history of HM speakers. As such, their origins are debatable. RESULTS: Here, we made a deep sequencing effort of 80 Yao genomes, and our analysis together with 28 East Asian populations and 968 ancient Asian genomes suggested that there is a strong genetic basis for the formation of the HM language family. We estimated that the most recent common ancestor dates to 5800 years ago, while the genetic divergence between the HM and Tai-Kadai speakers was estimated to be 8200 years ago. We proposed that HM speakers originated from the Yangtze River Basin and spread with agricultural civilization. We identified highly differentiated variants between HM and Han Chinese, in particular, a deafness-related missense variant (rs72474224) in the GJB2 gene is in a higher frequency in HM speakers than in others. CONCLUSIONS: Our results indicated complex gene flow and medically relevant variants involved in the HM speakers' evolution history.


Subject(s)
Connexin 26 , Gene Pool , Genetics, Population , Humans , Asian People , China , Genomics
11.
BMC Plant Biol ; 24(1): 673, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004709

ABSTRACT

BACKGROUND: This research explores the efficacy of mutagenesis, specifically using sodium azide (SA) and hydrazine hydrate (HZ) treatments, to introduce genetic diversity and enhance traits in three wheat (Triticum aestivum L.) genotypes. The experiment entails subjecting the seeds to different doses of SA and HZ and cultivating them in the field for two consecutive generations: M1 (first generation) and M2 (second generation). We then employed selective breeding techniques with Start Codon Targeted (SCoT) markers to select traits within the wheat gene pool. Also, the correlation between SCoT markers and specific agronomic traits provides insights into the genetic mechanisms underlying mutagenesis-induced changes in wheat. RESULTS: In the study, eleven genotypes were derived from parent varieties Sids1, Sids12, and Giza 168, and eight mutant genotypes were selected from the M1 generation and further cultivated to establish the M2 generation. The results revealed that various morphological and agronomical characteristics, such as plant height, spikes per plant, spike length, spikelet per spike, grains per spikelet, and 100-grain weight, showed increases in different genotypes from M1 to M2. SCoT markers were employed to assess genetic diversity among the eleven genotypes. The bioinformatics analysis identified a correlation between SCoT markers and the transcription factors ABSCISIC ACID INSENSITIVE3 (ABI3) and VIVIPAROUS1 (VP1), crucial for plant development, growth, and stress adaptation. A comprehensive examination of genetic distance and the function identification of gene-associated SCoT markers may provide valuable insights into the mechanisms by which SA and HZ act as mutagens, enhancing wheat agronomic qualities. CONCLUSIONS: This study demonstrates the effective use of SA and HZ treatments to induce gene diversity through mutagenesis in the wheat gene pool, resulting in the enhancement of agronomic traits, as revealed by SCoT markers. The significant improvements in morphological and agronomical characteristics highlight the potential of mutagenesis techniques for crop improvement. These findings offer valuable information for breeders to develop effective breeding programs to enhance wheat quality and resilience through increased genetic diversity.


Subject(s)
Genetic Variation , Mutagenesis , Triticum , Triticum/genetics , Triticum/growth & development , Genetic Markers , Gene Pool , Genotype , Plant Breeding/methods , Codon, Initiator/genetics , Phenotype , Genes, Plant
12.
Mol Phylogenet Evol ; 193: 108013, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38195012

ABSTRACT

The speciation continuum is the process by which genetic groups diverge until they reach reproductive isolation. It has become common in the literature to show that this process is gradual and flickering, with possibly many instances of secondary contact and introgression after divergence has started. The level of divergence might vary among genomic regions due to, among others, the different forces and roles of selection played by the shared regions. Through hybrid capture, we sequenced ca. 4,000 nuclear regions in populations of six species of wax palms, five of which form a monophyletic group (genus Ceroxylon, Arecaceae: Ceroxyloideae). We show that in this group, the different populations show varying degrees of introgressive hybridization, and two of them are backcrosses of the other three 'pure' species. This is particularly interesting because these three species are dioecious, have a shared main pollinator, and have slightly overlapping reproductive seasons but highly divergent morphologies. Our work supports shows wax palms diverge under positive and background selection in allopatry, and hybridize due to secondary contact and inefficient reproductive barriers, which sustain genetic diversity. Introgressed regions are generally not under positive selection. Peripheral populations are backcrosses of other species; thus, introgressive hybridization is likely modulated by demographic effects rather than selective pressures. In general, these species might function as an 'evolutionary syngameon' where expanding, peripheral, small, and isolated populations maintain diversity by crossing with available individuals of other wax palms. In the Andean context, species can benefit from gained variation from a second taxon or the enhancement of population sizes by recreating a common genetic pool.


Subject(s)
Arecaceae , Genetic Introgression , Humans , Phylogeny , Gene Pool , Biological Evolution , Reproductive Isolation , Arecaceae/genetics , Hybridization, Genetic , Gene Flow , Genetic Speciation
13.
J Exp Bot ; 75(7): 1872-1886, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38071644

ABSTRACT

Introgression of resistance genes from wild or related species is a common strategy to improve disease resistance of wheat cultivars. Pm17 is a gene that confers powdery mildew resistance in wheat. It encodes an NLR type of immune receptor and was introgressed from rye to wheat as part of the 1RS chromosome arm translocation several decades ago. So far it has not been possible to separate Pm17 from its co-introgressed rye genes due to suppressed recombination. Here we tested in the field transgenic Bobwhite wheat overexpressing Pm17 without any other rye genes. Four transgenic events showed high levels of PM17 protein accumulation, strong powdery mildew resistance, and no pleiotropic effects during three field seasons. We used a combined approach of transgene insertion and cross-breeding to generate lines co-expressing Pm17 and Pm3, or Pm17 and Pm8. Blumeria graminis f. sp. tritici infection tests confirmed additive, race-specific resistance of the two pyramided transgenes in lines Pm17+Pm3b and Pm17+Pm8. Furthermore, pyramided lines showed strong powdery mildew resistance during three field seasons. We conclude that the combination of overexpressed NLR genes from the extended gene pool broadens and diversifies wheat disease resistance.


Subject(s)
Ascomycota , Triticum , Triticum/genetics , Disease Resistance/genetics , Gene Pool , Ascomycota/genetics , Plant Breeding , Plant Diseases
14.
Nature ; 555(7695): 190-196, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29466337

ABSTRACT

From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain's gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries.


Subject(s)
Cultural Evolution/history , Genome, Human/genetics , Genomics , Human Migration/history , Chromosomes, Human, Y/genetics , DNA, Ancient , Europe , Gene Pool , Genetics, Population , Haplotypes , History, Ancient , Humans , Male , Spatio-Temporal Analysis
15.
Int J Mol Sci ; 25(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38612891

ABSTRACT

The domestication process of the common bean gave rise to six different races which come from the two ancestral genetic pools, the Mesoamerican (Durango, Jalisco, and Mesoamerica races) and the Andean (New Granada, Peru, and Chile races). In this study, a collection of 281 common bean landraces from Chile was analyzed using a 12K-SNP microarray. Additionally, 401 accessions representing the rest of the five common bean races were analyzed. A total of 2543 SNPs allowed us to differentiate a genetic group of 165 accessions that corresponds to the race Chile, 90 of which were classified as pure accessions, such as the bean types 'Tórtola', 'Sapito', 'Coscorrón', and 'Frutilla'. Our genetic analysis indicates that the race Chile has a close relationship with accessions from Argentina, suggesting that nomadic ancestral peoples introduced the bean seed to Chile. Previous archaeological and genetic studies support this hypothesis. Additionally, the low genetic diversity (π = 0.053; uHe = 0.53) and the negative value of Tajima' D (D = -1.371) indicate that the race Chile suffered a bottleneck and a selective sweep after its introduction, supporting the hypothesis that a small group of Argentine bean genotypes led to the race Chile. A total of 235 genes were identified within haplotype blocks detected exclusively in the race Chile, most of them involved in signal transduction, supporting the hypothesis that intracellular signaling pathways play a fundamental role in the adaptation of organisms to changes in the environment. To date, our findings are the most complete investigation associated with the origin of the race Chile of common bean.


Subject(s)
Phaseolus , Phaseolus/genetics , Chile , Argentina , Domestication , Gene Pool
16.
Mol Biol Evol ; 39(4)2022 04 10.
Article in English | MEDLINE | ID: mdl-35363317

ABSTRACT

Hybridization occupies a central role in many fundamental evolutionary processes, such as speciation or adaptation. Yet, despite its pivotal importance in evolution, little is known about the actual prevalence and distribution of current hybridization across the tree of life. Here we develop and implement a new statistical method enabling the detection of F1 hybrids from single-individual genome sequencing data. Using simulations and sequencing data from known hybrid systems, we first demonstrate the specificity of the method, and identify its statistical limits. Next, we showcase the method by applying it to available sequencing data from more than 1,500 species of Arthropods, including Hymenoptera, Hemiptera, Coleoptera, Diptera, and Archnida. Among these taxa, we find Hymenoptera, and especially ants, to display the highest number of candidate F1 hybrids, suggesting higher rates of recent hybridization between previously isolated gene pools in these groups. The prevalence of F1 hybrids was heterogeneously distributed across ants, with taxa including many candidates tending to harbor specific ecological and life-history traits. This work shows how large-scale genomic comparative studies of recent hybridization can be implemented, uncovering the determinants of first-generation hybridization across whole taxa.


Subject(s)
Ants , Animals , Ants/genetics , Gene Pool , Genome , Genomics , Hybridization, Genetic
17.
Hum Mol Genet ; 30(R1): R37-R41, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33864377

ABSTRACT

By virtue of their cultural, linguistic and genetic legacies, many populations from Sudan have deep histories in the region and retain high genetic diversities. Sudan's location in north east Africa, a unique spot believed to act as a climatic refuge during periods of climate extremes, might have dictated that fate. Among the marked consequences of this diversity is the potential to provide information on the origin and structure of human populations within and outside the continent, as well as migration patterns towards various parts of the African continent, and out of Africa. The diverse Sudanese gene pool further has the potential to inform on genetic adaptations driven by culture and the environment resulting in unique and interesting traits, some of which are yet to be investigated. In addition, these genomes could offer clues to complex issues of causation amidst the challenge of new paradigms in biology underpinned by the genomic revolution.


Subject(s)
Black People/genetics , Genetic Variation , Genetics, Population/methods , Cultural Diversity , Gene Pool , Genome, Human , Human Migration , Humans , Sudan
18.
Hum Mol Genet ; 30(R1): R29-R36, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33105478

ABSTRACT

The Sahel/Savannah belt of Africa is a contact zone between two subsistence systems (nomadic pastoralism and sedentary farming) and of two groups of populations, namely Eurasians penetrating from northern Africa southwards and sub-Saharan Africans migrating northwards. Because pastoralism is characterized by a high degree of mobility, it leaves few significant archaeological traces. Demographic history seen through the lens of population genetic studies complements our historical and archaeological knowledge in this African region. In this review, we highlight recent advances in our understanding of demographic history in the Sahel/Savannah belt as revealed by genetic studies. We show the impact of food-producing subsistence strategies on population structure and the somewhat different migration patterns in the western and eastern part of the region. Genomic studies show that the gene pool of various groups of Sahelians consists in a complex mosaic of several ancestries. We also touch upon various signals of genetic adaptations such as lactase persistence, taste sensitivity and malaria resistance, all of which have different distribution patterns among Sahelian populations. Overall, genetic studies contribute to gain a deeper understanding about the demographic and adaptive history of human populations in this specific African region and beyond.


Subject(s)
Black People/genetics , Genetics, Population/methods , Africa, Southern/ethnology , Agriculture , DNA, Mitochondrial/genetics , Gene Pool , Haplotypes , Human Migration , Humans
19.
BMC Microbiol ; 23(1): 235, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37626313

ABSTRACT

BACKGROUND: Staphylococcus aureus can infect and adapt to multiple host species. However, our understanding of the genetic and evolutionary drivers of its generalist lifestyle remains inadequate. This is particularly important when considering local populations of S. aureus, where close physical proximity between bacterial lineages and between host species may facilitate frequent and repeated interactions between them. Here, we aim to elucidate the genomic differences between human- and animal-derived S. aureus from 437 isolates sampled from disease cases in the northeast region of the United States. RESULTS: Multi-locus sequence typing revealed the existence of 75 previously recognized sequence types (ST). Our population genomic analyses revealed heterogeneity in the accessory genome content of three dominant S. aureus lineages (ST5, ST8, ST30). Genes related to antimicrobial resistance, virulence, and plasmid types were differentially distributed among isolates according to host (human versus non-human) and among the three major STs. Across the entire population, we identified a total of 1,912 recombination events that occurred in 765 genes. The frequency and impact of homologous recombination were comparable between human- and animal-derived isolates. Low-frequency STs were major donors of recombined DNA, regardless of the identity of their host. The most frequently recombined genes (clfB, aroA, sraP) function in host infection and virulence, which were also frequently shared between the rare lineages. CONCLUSIONS: Taken together, these results show that frequent but variable patterns of recombination among co-circulating S. aureus lineages, including the low-frequency lineages, that traverse host barriers shape the structure of local gene pool and the reservoir of host-associated genetic variants. Our study provides important insights to the genetic and evolutionary factors that contribute to the ability of S. aureus to colonize and cause disease in multiple host species. Our study highlights the importance of continuous surveillance of S. aureus circulating in different ecological host niches and the need to systematically sample from them. These findings will inform development of effective measures to control S. aureus colonization, infection, and transmission across the One Health continuum.


Subject(s)
Gene Pool , Staphylococcal Infections , Animals , Multilocus Sequence Typing , Staphylococcus aureus/genetics , Biological Evolution
20.
Mol Ecol ; 32(18): 5125-5139, 2023 09.
Article in English | MEDLINE | ID: mdl-35510734

ABSTRACT

The domestication process in long-lived plant perennials differs dramatically from that of annuals, with a huge amount of genetic exchange between crop and wild populations. Though apple is a major fruit crop grown worldwide, the contribution of wild apple species to the genetic makeup of the cultivated apple genome remains a topic of intense study. We used population genomics approaches to investigate the contributions of several wild apple species to European and Chinese rootstock and dessert genomes, with a focus on the extent of wild-crop gene flow. Population genetic structure inferences revealed that the East Asian wild apples, Malus baccata (L.) Borkh and M. hupehensis (Pamp.), form a single panmictic group, and that the European dessert and rootstock apples form a specific gene pool whereas the Chinese dessert and rootstock apples were a mixture of three wild gene pools, suggesting different evolutionary histories of European and Chinese apple varieties. Coalescent-based inferences and gene flow estimates indicated that M. baccata - M. hupehensis contributed to the genome of both European and Chinese cultivated apples through wild-to-crop introgressions, and not as an initial contributor as previously supposed. We also confirmed the contribution through wild-to-crop introgressions of Malus sylvestris Mill. to the cultivated apple genome. Apple tree domestication is therefore one example in woody perennials that involved gene flow from several wild species from multiple geographical areas. This study provides an example of a complex protracted process of domestication in long-lived plant perennials, and is a starting point for apple breeding programmes.


Subject(s)
Malus , Biological Evolution , Fruit/genetics , Malus/genetics , Plant Breeding , Gene Pool
SELECTION OF CITATIONS
SEARCH DETAIL