Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.898
Filter
Add more filters

Publication year range
1.
FEMS Yeast Res ; 242024 Jan 09.
Article in English | MEDLINE | ID: mdl-39038994

ABSTRACT

Ustilago maydis and Ustilago cynodontis are natural producers of a broad range of valuable molecules including itaconate, malate, glycolipids, and triacylglycerols. Both Ustilago species are insensitive toward medium impurities, and have previously been engineered for efficient itaconate production and stabilized yeast-like growth. Due to these features, these strains were already successfully used for the production of itaconate from different alternative feedstocks such as molasses, thick juice, and crude glycerol. Here, we analyzed the amylolytic capabilities of Ustilago species for metabolization of starch, a highly abundant and low-cost polymeric carbohydrate widely utilized as a substrate in several biotechnological processes. Ustilago cynodontis was found to utilize gelatinized potato starch for both growth and itaconate production, confirming the presence of extracellular amylolytic enzymes in Ustilago species. Starch was rapidly degraded by U. cynodontis, even though no α-amylase was detected. Further experiments indicate that starch hydrolysis is caused by the synergistic action of glucoamylase and α-glucosidase enzymes. The enzymes showed a maximum activity of around 0.5 U ml-1 at the fifth day after inoculation, and also released glucose from additional substrates, highlighting potential broader applications. In contrast to U. cynodontis, U. maydis showed no growth on starch accompanied with no detectable amylolytic activity.


Subject(s)
Starch , Succinates , Ustilago , Ustilago/metabolism , Ustilago/genetics , Ustilago/enzymology , Ustilago/growth & development , Starch/metabolism , Succinates/metabolism , Glucan 1,4-alpha-Glucosidase/metabolism , Hydrolysis
2.
Int J Mol Sci ; 25(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338940

ABSTRACT

Porous starch can be applied as an adsorbent and encapsulant for bioactive substances in the food and pharmaceutical industries. By using appropriate modification methods (chemical, physical, enzymatic, or mixed), it is possible to create pores on the surface of the starch granules without disturbing their integrity. This paper aimed to analyze the possibility of obtaining a porous structure for native corn, potato, and pea starches using a combination of ultrasound, enzymatic digestion, and freeze-drying methods. The starch suspensions (30%, w/w) were treated with ultrasound (20 kHz, 30 min, 20 °C), then dried and hydrolyzed with amyloglucosidase (1000 U/g starch, 50 °C, 24 h, 2% starch suspension). After enzyme digestion, the granules were freeze-dried for 72 h. The structure of the native and modified starches were examined using VIS spectroscopy, SEM, ATR-FTIR, and LTNA (low-temperature nitrogen adsorption). Based on the electrophoretic mobility measurements of the starch granules using a laser Doppler velocimeter, zeta potentials were calculated to determine the surface charge level. Additionally, the selected properties such as the water and oil holding capacities, least gelling concentration (LGC), and paste clarity were determined. The results showed that the corn starch was the most susceptible to the combined modification methods and was therefore best suited for the production of porous starch.


Subject(s)
Glucan 1,4-alpha-Glucosidase , Starch , Starch/chemistry , Adsorption , Porosity
3.
J Sci Food Agric ; 104(3): 1793-1803, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37867448

ABSTRACT

BACKGROUND: Baijiu brewing adopts the solid-state fermentation method, using starchy raw materials, Jiuqu as saccharifying fermenting agent, and distilled spirits made by digestion, saccharification, fermentation and distillation. In the late stages of solid-state fermentation of Baijiu, the reduced activity of glucoamylase leads to higher residual starch content in the Jiupei, which affects the liquor yield. The direct addition of exogenous glucoamylase leads to problems such as the temperature of the fermentation environment rising too quickly, seriously affecting the growth of microorganisms. RESULTS: To solve the problem of reduced activity of glucoamylase in the late stage of solid-state fermentation of Baijiu, microcapsule beads (M-B) based on microcapsule emulsion were prepared and the effect of M-B on solid-state fermentation of Baijiu was investigated. The results showed that the release of M-B before and after drying was 53.27% and 25.77% in the liquid state (120 h) and 29.84% and 22.62% in the solid state (15 days), respectively. Adding M-B improved the alcohol by 0.33 %vol and reducing sugar content by 0.51%, reduced the residual starch content by 1.21% of the Jiupei, and had an insignificant effect on the moisture and acidity of the Jiupei. CONCLUSION: M-B have excellent sustained-release properties. The addition of M-B in solid-state fermentation significantly increased the alcohol content, reduced the residual starch content of Jiupei, ultimately improving the starch utilization rate and liquor yield of Baijiu brewing. The preparation of M-B provides methods and approaches for applying other active substances and microorganisms in the brewing of Baijiu. © 2023 Society of Chemical Industry.


Subject(s)
Alcoholic Beverages , Glucan 1,4-alpha-Glucosidase , Fermentation , Capsules , Alcoholic Beverages/analysis , Starch/metabolism
4.
Environ Geochem Health ; 46(4): 142, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507144

ABSTRACT

Bimetallic nanoparticles (NPs) are considered superior in terms of stability and function with respect to its monometallic counterparts. Hence, in the present study Hibiscus rosa-sinensis flower extract was used to synthesis copper-iron bimetallic nanoparticles (HF-FCNPs). HF-FCNPs was characterized and its applications (biological and environmental) were determined. HF-FCNPs were spherical in shape with high percentage of copper inducted into the NPs. HF-FCNPs inhibited mammalian glucosidases [maltase (IC50: 548.71 ± 61.01 µg/mL), sucrase (IC50: 441.34 ± 36.03 µg/mL), isomaltase (IC50: 466.37 ± 27.09 µg/mL) and glucoamylase (IC50: 403.12 ± 14.03 µg/mL)], alpha-amylase (IC50: 16.27 ± 1.73 µg/mL) and acetylcholinesterase [AChE (IC50: 0.032 ± 0.004 µg/mL)] activities. HF-FCNPs showed competitive inhibition against AChE, maltase and sucrase activities; mixed inhibition against isomaltase and glucoamylase activities; whereas non-competitive inhibition against α-amylase activity. HF-FCNPs showed zone of inhibition of 16 ± 2 mm against S. mutans at 100 µg/mL concentration. HF-FCNPs inhibited biofilm formation of dental pathogen, S. mutans. SEM and confocal microscopy analysis revealed the disruption of network formation and bacterial cell death induced by HF-FCNPs treatment on tooth model of S. mutans biofilm. HF-FCNPs efficiently removed hexavalent chromium in pH-independent manner and followed first order kinetics. Through Langmuir isotherm fit the qmax (maximum adsorption capacity) was determined to be 62.5 mg/g. Further, HF-FCNPs removed both anionic and cationic dyes. Altogether, facile synthesis of HF-FCNPs was accomplished and its biological (enzyme inhibition and antibiofilm activity) and environmental (catalyst to remove pollutants) applications have been understood.


Subject(s)
Hibiscus , Nanoparticles , Animals , alpha-Glucosidases/metabolism , Glucan 1,4-alpha-Glucosidase , Coloring Agents , Copper , Hibiscus/metabolism , Iron , Acetylcholinesterase , Flowers/metabolism , Oligo-1,6-Glucosidase , Sucrase , Chromium , Biofilms , alpha-Amylases , Mammals/metabolism
5.
World J Microbiol Biotechnol ; 40(11): 338, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39358620

ABSTRACT

Starch, a crucial raw material, has been extensively investigated for biotechnological applications. However, its application in γ-polyglutamic acid (γ-PGA) production remains unexplored. Based on γ-PGA output of Bacillus subtilis SCP010-1, a novel asynchronous saccharification and fermentation process for γ-PGA synthesis was implemented. The results revealed that a starch concentration of 20%, α-amylase dosage of 75 U/g, liquefaction temperature of 72℃, and γ-PGA yield of 36.31 g/L was achieved. At a glucoamylase dosage of 100 U/g, saccharification 38 h at 60℃, the yield of γ-PGA increased to 48.88 g/L. The contents of total sugar, glucose, maltose and oligosaccharide in saccharified liquid were determined. Through batch fermentation of saccharified liquid in fermentor, the γ-PGA output was elevated to 116.08 g/L. This study can offer a potential cost reduction of 40%, which can be a promising advancement in industrial γ-PGA production. Moreover, our approach can be applied in other starch-based fermentation industries.


Subject(s)
Bacillus subtilis , Fermentation , Glucan 1,4-alpha-Glucosidase , Polyglutamic Acid , Starch , Zea mays , alpha-Amylases , Polyglutamic Acid/analogs & derivatives , Polyglutamic Acid/biosynthesis , Polyglutamic Acid/metabolism , Starch/metabolism , Bacillus subtilis/metabolism , alpha-Amylases/metabolism , Glucan 1,4-alpha-Glucosidase/metabolism , Zea mays/metabolism , Zea mays/chemistry , Temperature , Maltose/metabolism , Glucose/metabolism , Bioreactors/microbiology , Oligosaccharides/metabolism , Industrial Microbiology/methods
6.
Mol Genet Metab ; 140(1-2): 107633, 2023.
Article in English | MEDLINE | ID: mdl-37414610

ABSTRACT

BACKGROUND AND OBJECTIVES: Pompe disease (PD) results from a deficiency of lysosomal acid α-glucosidase that leads to glycogen accumulation in lysosomes in multiple tissues. There are two phenotypes: infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD). The objective was to evaluate the diagnostic and follow-up outcomes of children identified with PD through newborn screening (NBS) in the state of Minnesota over a 4-year period. METHODS: This study is a retrospective analysis of infants born in Minnesota between August 1, 2017, and July 31, 2021, by the Minnesota Department of Health NBS Program for Pompe disease. Newborn screening and clinical diagnostic data are summarized for all newborns with positive newborn screens for Pompe disease. RESULTS: Children with IOPD had abnormal biomarkers necessitating immediate initiation of treatment. Children with LOPD are asymptomatic to date (1.25-4.58 years) with normal biomarkers including creatine kinase, urine glucotetrasaccharides, liver function tests, and echocardiogram. The estimated birth prevalence of PD is 1:15,160. The positive predictive value for PD was 81% with a false positive rate of 1.9 per 10 positive screens. 32% of the children with LOPD were lost to follow up among which 66% were from minority ethnic groups. CONCLUSION: This emphasizes the disparity in access to health care among specific demographics, as well as the importance of a primary care provider's early involvement in educating these families. To accomplish this, and ensure equality in follow-up care, the Minnesota Pompe Disease Consortium has been formed.


Subject(s)
Glycogen Storage Disease Type II , Infant , Child , Infant, Newborn , Humans , Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/epidemiology , Glycogen Storage Disease Type II/therapy , Neonatal Screening , Retrospective Studies , alpha-Glucosidases , Glucan 1,4-alpha-Glucosidase , Biomarkers
7.
Microb Cell Fact ; 22(1): 150, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37568174

ABSTRACT

BACKGROUND: Glucoamylase is an important enzyme for starch saccharification in the food and biofuel industries and mainly produced from mesophilic fungi such as Aspergillus and Rhizopus species. Enzymes produced from thermophilic fungi can save the fermentation energy and reduce costs as compared to the fermentation system using mesophiles. Thermophilic fungus Myceliophthora thermophila is industrially deployed fungus to produce enzymes and biobased chemicals from biomass during optimal growth at 45 °C. This study aimed to construct the M. thermophila platform for glucoamylase hyper-production by broadening genomic targeting range of the AsCas12a variants, identifying key candidate genes and strain engineering. RESULTS: In this study, to increase the genome targeting range, we upgraded the CRISPR-Cas12a-mediated technique by engineering two AsCas12a variants carrying the mutations S542R/K607R and S542R/K548V/N552R. Using the engineered AsCas12a variants, we deleted identified key factors involved in the glucoamylase expression and secretion in M. thermophila, including Mtstk-12, Mtap3m, Mtdsc-1 and Mtsah-2. Deletion of four targets led to more than 1.87- and 1.85-fold higher levels of secretion and glucoamylases activity compared to wild-type strain MtWT. Transcript level of the major amylolytic genes showed significantly increased in deletion mutants. The glucoamylase hyper-production strain MtGM12 was generated from our previously strain MtYM6 via genetically engineering these targets Mtstk-12, Mtap3m, Mtdsc-1 and Mtsah-2 and overexpressing Mtamy1 and Mtpga3. Total secreted protein and activities of amylolytic enzymes in the MtGM12 were about 35.6-fold and 51.9‒55.5-fold higher than in MtWT. Transcriptional profiling analyses revealed that the amylolytic gene expression levels were significantly up-regulated in the MtGM12 than in MtWT. More interestingly, the MtGM12 showed predominantly short and highly bulging hyphae with proliferation of rough ER and abundant mitochondria, secretion vesicles and vacuoles when culturing on starch. CONCLUSIONS: Our results showed that these AsCas12a variants worked well for gene deletions in M. thermophila. We successfully constructed the glucoamylase hyper-production strain of M. thermophila by the rational redesigning and engineering the transcriptional regulatory and secretion pathway. This targeted engineering strategy will be very helpful to improve industrial fungal strains and promote the morphology engineering for enhanced enzyme production.


Subject(s)
Glucan 1,4-alpha-Glucosidase , Metabolic Engineering , Glucan 1,4-alpha-Glucosidase/genetics , Glucan 1,4-alpha-Glucosidase/metabolism , Fungi/metabolism , Starch/metabolism
8.
Chem Biodivers ; 20(8): e202300071, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37410997

ABSTRACT

Optimum conditions for glucose syrups production from white sorghum were studied through sequential liquefaction and saccharification processes. In the liquefaction process, a maximum dextrose equivalent (DE) of 10.98 % was achieved using 30 % (w/v) of starch and Termamyl ɑ-amylase from Bacillus licheniformis. Saccharification was performed by free and immobilized amyloglucosidase from Rhizopus mold at 1 % (w/v). DE values of 88.32 % and 79.95 % were obtained from 30 % (w/v) of starch with, respectively, free and immobilized enzyme. The immobilized Amyloglucosidase in calcium alginate beads showed reusable capacity for up to 6 cycles with 46 % of the original activity retained. The kinetic behaviour of immobilized and free enzyme gives Km value of 22.13 and 16.55 mg mL-1 and Vmax of 0.69 and 1.61 mg mL-1 min-1 , respectively. The hydrolysis yield using immobilized amyloglucosidase were lower than that of the free one. However, it is relevant to reuse enzyme without losing activity in order to trim down the overall costs of enzymatic bioprocesses as starch transformation into required products in industrial manufacturing. Hydrolysis of sorghum starch using immobilized amyloglucosidase represents a promising alternative towards the development of the glucose syrups production process and its utilization in various industries.


Subject(s)
Glucan 1,4-alpha-Glucosidase , Sorghum , Enzyme Stability , Glucan 1,4-alpha-Glucosidase/metabolism , Sorghum/metabolism , Starch , alpha-Amylases/metabolism , Hydrolysis , Glucose , Temperature , Hydrogen-Ion Concentration
9.
World J Microbiol Biotechnol ; 39(11): 293, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37653355

ABSTRACT

Glucoamylases (GAs) are one of the principal groups of enzymes involved in starch hydrolysis and belong to the glycosylhydrolase family. They are classified as exo-amylases due to their ability to hydrolyze α-1,4 glycosidic bonds from the non-reducing end of starch, maltooligosaccharides, and related substrates, releasing ß-D-glucose. Structurally, GAs possess a characteristic catalytic domain (CD) with an (α/α)6 fold and exhibit five conserved regions within this domain. The CD may or may not be linked to a non-catalytic domain with variable functions depending on its origin. GAs are versatile enzymes with diverse applications in food, biofuel, bioplastic and other chemical industries. Although fungal GAs are commonly employed for these purposes, they have limitations such as their low thermostability and an acidic pH requirement. Alternatively, GAs derived from prokaryotic organisms are a good option to save costs as they exhibit greater thermostability compared to fungal GAs. Moreover, a group of cold-adapted GAs from psychrophilic organisms demonstrates intriguing properties that make them suitable for application in various industries. This review provides a comprehensive overview of the structural and sequential properties as well as biotechnological applications of GAs in different industrial processes.


Subject(s)
Amylases , Glucan 1,4-alpha-Glucosidase , Biofuels , Biotechnology , Starch
10.
Ter Arkh ; 95(2): 140-144, 2023 Mar 30.
Article in Russian | MEDLINE | ID: mdl-37167129

ABSTRACT

AIM: To compare the effect of a diet low in fermentable oligo-, di-, monosaccharides and polyols (fermentable oligosaccharides, disaccharides, monosaccharides and polyols - FODMAP) and rebamipide on carbohydrate tolerance and disaccharidases activity in patients with maldigestive enteropathy (ENMP). MATERIALS AND METHODS: The study included 61 patients with ENMP with reduced small intestine carbohydrases. Their glucoamylase activity was 100 ng glucose/mg tissue × min (quartile 53, 72), maltase - 504 (quartile 258, 708), sucrase - 43 (quartile 25, 58), lactase - 8 (quartile 4, 20). Group 1 included 19 people on a low FODMAP diet. The 2nd group included 42 patients who were on a normal diet and received rebamipide 300 mg/day. Patients were monitored weekly for 8 weeks. RESULTS: In 16 patients of the 1st group, abdominal pain and stool disorders decreased, in 15 patients, swelling and rumbling in the abdomen stopped. Glucoamylase activity increased to 196 (quartile 133, 446, р<0.024) ng glucose/mg tissue × min, maltase activity increased to 889 (quartile 554, 1555, p<0.145), sucrase activity increased to 67 (quartile 43, 175, p<0.039), lactase activity increased to 13 (quartile 9, 21, p<0.02). After the diet was discontinued, intestinal symptoms in patients of group 1 resumed. In 27 patients of the 2nd group after 4 weeks dyspeptic manifestations decreased, in 34 patients the tolerability of products containing FODMAP improved. Continuation of treatment up to 8 weeks contributed to a further improvement in well-being. Glucoamylase activity increased after 4 and 8 weeks to 189 (quartile 107, 357, p<0.013) and 203 (quartile 160, 536, p<0.005), respectively; maltase - up to 812 (quartile 487, 915, p<0.005) and 966 (quartile 621, 2195, р<0.0012); sucrases - up to 60 (quartile 34, 105, p<0.013) and 75 (quartile 52, 245, р=0.003); lactase - up to 12 (quartile 8, 12, p<0.132) and 15 ng glucose/mg tissue × min (quartile 10, 20, р<0.092). CONCLUSION: The clinical symptoms of fermentable carbohydrate intolerance and increased membrane enzyme activity are reduced by a low FODMAP diet in patients with ENMT, but clinical symptoms of food intolerance reappear when switching to a normal diet. Treatment with rebamipide improves food tolerance and consistently increases the activity of TSOTS enzymes after 4 and 8 weeks.


Subject(s)
Intestinal Diseases , Irritable Bowel Syndrome , Humans , Disaccharidases , alpha-Glucosidases , Glucan 1,4-alpha-Glucosidase , Diet , Sucrase , Monosaccharides/therapeutic use , Glucose , Lactase , Digestion
11.
J Am Chem Soc ; 144(32): 14819-14827, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35917590

ABSTRACT

α-Glucosidase inhibitors are potential therapeutics for the treatment of diabetes, viral infections, and Pompe disease. Herein, we report a 1,6-epi-cyclophellitol cyclosulfamidate as a new class of reversible α-glucosidase inhibitors that displays enzyme inhibitory activity by virtue of its conformational mimicry of the substrate when bound in the Michaelis complex. The α-d-glc-configured cyclophellitol cyclosulfamidate 4 binds in a competitive manner the human lysosomal acid α-glucosidase (GAA), ER α-glucosidases, and, at higher concentrations, intestinal α-glucosidases, displaying an excellent selectivity over the human ß-glucosidases GBA and GBA2 and glucosylceramide synthase (GCS). Cyclosulfamidate 4 stabilizes recombinant human GAA (rhGAA, alglucosidase alfa, Myozyme) in cell medium and plasma and facilitates enzyme trafficking to lysosomes. It stabilizes rhGAA more effectively than existing small-molecule chaperones and does so in vitro, in cellulo, and in vivo in zebrafish, thus representing a promising therapeutic alternative to Miglustat for Pompe disease.


Subject(s)
Glycogen Storage Disease Type II , Animals , Cyclohexanols , Glucan 1,4-alpha-Glucosidase/metabolism , Glycogen/metabolism , Glycogen/therapeutic use , Glycogen Storage Disease Type II/drug therapy , Glycogen Storage Disease Type II/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Zebrafish/metabolism , alpha-Glucosidases/metabolism
12.
Microb Cell Fact ; 21(1): 95, 2022 May 28.
Article in English | MEDLINE | ID: mdl-35643500

ABSTRACT

BACKGROUND: Glucoamylase is an important industrial enzyme for the saccharification of starch during sugar production, but the production cost of glucoamylase is a major limiting factor for the growth of the starch-based sugar market. Therefore, seeking strategies for high-level expression of glucoamylase in heterologous hosts are considered as the main way to reduce the enzyme cost. RESULTS: ReGa15A from Rasamsonia emersonii and TlGa15B-GA2 from Talaromyces leycettanus have similar properties. However, the secretion level of ReGa15A was significantly higher than TlGa15B-GA2 in Pichia pastoris. To explore the underlying mechanisms affecting the differential expression levels of glucoamylase in P. pastoris, the amino acid sequences and three-dimensional structures of them were compared and analyzed. First, the CBM region was identified by fragment replacement as the key region affecting the expression levels of ReGa15A and TlGa15B-GA2. Then, through the substitution and site-directed mutation of the motifs in the CBM region, three mutants with significantly increased expression levels were obtained. The eight-point mutant TlGA-M4 (S589D/Q599A/G600Y/V603Q/T607I/V608L/N609D/R613Q), the three-point mutant TlGA-M6 (Q599A/G600Y/V603Q) and the five-point mutant TlGA-M7 (S589D/T607I/V608L/N609D/R613Q) have the same specific activity with the wild-type, and the enzyme activity and secretion level have increased by 4-5 times, respectively. At the same time, the expression levels were 5.8-, 2.0- and 2.4-fold higher than that of wild type, respectively. Meanwhile, the expression of genes related to the unfolded protein responses (UPR) in the endoplasmic reticulum (ER) did not differ significantly between the mutants and wild type. In addition, the most highly expressed mutant, TlGA-M7 exhibits rapidly and effectively hydrolyze raw corn starch. CONCLUSIONS: Our results constitute the first demonstration of improved expression and secretion of a glucoamylase in P. pastoris by introducing mutations within the non-catalytic CBM. This provides a novel and effective strategy for improving the expression of recombinant proteins in heterologous host expression systems.


Subject(s)
Glucan 1,4-alpha-Glucosidase , Pichia , Cloning, Molecular , Glucan 1,4-alpha-Glucosidase/metabolism , Pichia/genetics , Pichia/metabolism , Saccharomycetales , Starch/metabolism , Sugars/metabolism
13.
Microb Cell Fact ; 21(1): 251, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36443865

ABSTRACT

The starch in waste bread (WB) from industrial sandwich production was directly converted to ethanol by an amylolytic, ethanologenic thermophile (Parageobacillus thermoglucosidasius strain TM333) under 5 different simultaneous saccharification and fermentation (SSF) regimes. Crude α-amylase from TM333 was used alone or in the presence of amyloglucosidase (AMG), a starch monomerizing enzyme used in industry, with/without prior gelatinisation/liquefaction treatments and P. thermoglucosidasius TM333 fermentation compared with Saccharomyces cerevisiae as a control. Results suggest that TM333 can ferment WB using SSF with yields of 94-100% of theoretical (based on all sugars in WB) in 48 h without the need for AMG addition or any form of heat pre-treatment. This indicates that TM333 can transport and ferment all of the malto-oligosaccharides generated by its α-amylase. In the yeast control experiments, addition of AMG together with the crude α-amylase was necessary for full fermentation over the same time period. This suggests that industrial fermentation of WB starch to bio-ethanol or other products using an enhanced amylolytic P. thermoglucosidasius strain could offer significant cost savings compared to alternatives requiring enzyme supplementation.


Subject(s)
Bread , Glucan 1,4-alpha-Glucosidase , Fermentation , Amylases , alpha-Amylases , Starch , Ethanol , Saccharomyces cerevisiae
14.
Microb Cell Fact ; 21(1): 238, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36376878

ABSTRACT

BACKGROUND: Our recent multi-omics analyses of glucoamylase biosynthesis in Aspergillus niger (A. niger) suggested that lipid catabolism was significantly up-regulated during high-yield period under oxygen limitation. Since the catabolism of fatty acids can provide energy compounds such as ATP and important precursors such as acetyl-CoA, we speculated that enhancement of this pathway might be beneficial to glucoamylase overproduction. RESULTS: Based on previous transcriptome data, we selected and individually overexpressed five candidate genes involved in fatty acid degradation under the control of the Tet-on gene switch in A. niger. Overexpression of the fadE, fadA and cyp genes increased the final specific enzyme activity and total secreted protein on shake flask by 21.3 ~ 31.3% and 16.0 ~ 24.2%, respectively. And a better inducible effect by doxycycline was obtained from early logarithmic growth phase (18 h) than stationary phase (42 h). Similar with flask-level results, the glucoamylase content and total extracellular protein in engineered strains OE-fadE (overexpressing fadE) and OE-fadA (overexpressing fadA) on maltose-limited chemostat cultivation were improved by 31.2 ~ 34.1% and 35.1 ~ 38.8% compared to parental strain B36. Meanwhile, intracellular free fatty acids were correspondingly decreased by 41.6 ~ 44.6%. The metabolomic analysis demonstrated intracellular amino acids pools increased 24.86% and 18.49% in two engineered strains OE-fadE and OE-fadA compared to B36. Flux simulation revealed that increased ATP, acetyl-CoA and NADH was supplied into TCA cycle to improve amino acids synthesis for glucoamylase overproduction. CONCLUSION: This study suggested for the first time that glucoamylase production was significantly improved in A. niger by overexpression of genes fadE and fadA involved in fatty acids degradation pathway. Harnessing the intracellular fatty acids could be a strategy to improve enzyme production in Aspergillus niger cell factory.


Subject(s)
Aspergillus niger , Glucan 1,4-alpha-Glucosidase , Glucan 1,4-alpha-Glucosidase/metabolism , Aspergillus niger/metabolism , Acetyl Coenzyme A/metabolism , Amino Acids/metabolism , Fatty Acids/metabolism , Adenosine Triphosphate/metabolism
15.
J Org Chem ; 87(11): 7291-7307, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35584209

ABSTRACT

C-7-fluorinated derivatives of two important polyhydroxylated pyrrolizidines, casuarine and australine, were synthesized with organocatalytic stereoselective α-fluorination of aldehydes as the key step. The strategy is extensively applicable to some synthetically challenging fluorinated iminosugars and carbohydrates. The docking studies indicated that the potent inhibitions of trehalase and amyloglucosidase by the fluorinated polyhydroxylated pyrrolizidines are due to the interaction modes dominated by fluorine atoms in these iminosugars with the amino acids' residues of the corresponding enzymes. Steady interactions were established between the C-7 fluoride and a hydrophobic pocket in amyloglucosidase by untypical anion-π interactions. These unexpected docking modes and related structure-activity relationship studies emphasize the value of fluorination in the design of polyhydroxylated pyrrolizidine glycosidase inhibitors.


Subject(s)
Glucan 1,4-alpha-Glucosidase , Glycoside Hydrolases , Alkaloids , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyrroles , Pyrrolizidine Alkaloids
16.
Appl Microbiol Biotechnol ; 106(12): 4655-4667, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35713658

ABSTRACT

Basidiomycetous yeasts remain an almost unexplored source of enzymes with great potential in several industries. Tausonia pullulans (Tremellomycetes) is a psychrotolerant yeast with several extracellular enzymatic activities reported, although the responsible genes are not known. We performed the genomic sequencing, assembly and annotation of T. pullulans strain CRUB 1754 (Perito Moreno glacier, Argentina), a gene survey of carbohydrate-active enzymes (CAZymes), and analyzed its secretome by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) after growth in glucose (GLU) or starch (STA) as main carbon sources. T. pullulans has 7210 predicted genes, 3.6% being CAZymes. When compared to other Tremellomycetes, it contains a high number of CAZy domains, and in particular higher quantities of glucoamylases (GH15), pectinolytic enzymes (GH28) and lignocellulose decay enzymes (GH7). When the secretome of T. pullulans was analyzed experimentally after growth in starch or glucose, 98 proteins were identified. The 60% of total spectral counts belonged to GHs, oxidoreductases and to other CAZymes. A 65 kDa glucoamylase of family GH15 (TpGA1) showed the highest fold change (tenfold increase in starch). This enzyme contains a conserved active site and showed extensive N-glycosylation. This study increases the knowledge on the extracellular hydrolytic enzymes of basidiomycetous yeasts and, in particular, establishes T. pullulans as a potential source of carbohydrate-active enzymes. KEY POINTS: • Tausonia pullulans genome harbors a high number of genes coding for CAZymes. • Among CAZy domains/families, the glycoside hydrolases are the most abundant. • Secretome analysis in glucose or starch as main C sources identified 98 proteins. • A 65 kDa GH15 glucoamylase showed the highest fold increase upon culture in starch.


Subject(s)
Glucan 1,4-alpha-Glucosidase , Proteomics , Basidiomycota , Chromatography, Liquid , Glucan 1,4-alpha-Glucosidase/genetics , Glucan 1,4-alpha-Glucosidase/metabolism , Glucose , Hydrolysis , Starch , Tandem Mass Spectrometry
17.
Appl Microbiol Biotechnol ; 106(2): 713-727, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34921331

ABSTRACT

Recent technical advances regarding filamentous fungi have accelerated the engineering of fungal-based production and benefited basic science. However, challenges still remain and limit the speed of fungal applications. For example, high-throughput technologies tailored to filamentous fungi are not yet commonly available for genetic modification. The currently used fungal genetic manipulations are time-consuming and laborious. Here, we developed a flow cytometry-based plating-free system to directly screen and isolate the transformed protoplasts in industrial fungi Myceliophthora thermophila and Aspergillus niger. This system combines genetic engineering via the 2A peptide and the CRISPR-Cas9 system, strain screening by flow cytometry, and direct sorting of colonies for deep-well-plate incubation and phenotypic analysis while avoiding culturing transformed protoplasts in plates, colony picking, conidiation, and cultivation. As a proof of concept, we successfully applied this system to generate the glucoamylase-hyperproducing strains MtYM6 and AnLM3 in M. thermophila and A. niger, respectively. Notably, the protein secretion level and enzyme activities in MtYM6 were 17.3- and 25.1-fold higher than in the host strain. Overall, these findings suggest that the flow cytometry-based plating-free system can be a convenient and efficient tool for strain engineering in fungal biotechnology. We expect this system to facilitate improvements of filamentous fungal strains for industrial applications. KEY POINTS: • Development of a flow cytometry-based plating-free (FCPF) system is presented. • Application of FCPF system in M. thermophila and A. niger for glucoamylase platform. • Hyper-produced strains MtYM6 and AnLM3 for glucoamylase production are generated.


Subject(s)
Gene Editing , Glucan 1,4-alpha-Glucosidase , Aspergillus niger/genetics , Flow Cytometry , Genetic Engineering , Glucan 1,4-alpha-Glucosidase/genetics
18.
Biotechnol Lett ; 44(10): 1201-1216, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35997915

ABSTRACT

PURPOSE: We identified a new glucoamylase (TeGA) from Thermoanaerobacter ethanolicus, a thermophilic anaerobic bacterium. Structural studies suggest that TeGA belongs to the family 15 of glycosylhydrolases (GH15). METHODS: The expression of this enzyme was optimized in E. coli (BL21) cells in order to have the highest amount of soluble protein (around 3 mg/l of culture medium). RESULTS: TeGA showed a high optimum temperature of 75 °C. It also showed one of the highest specific activities reported for a bacterial glucoamylase (75.3 U/mg) and was also stable in a wide pH range (3.0-10.0). Although the enzyme was preferentially active with maltose, it was also able to hydrolyze different soluble starches such as those from potato, corn or rice. TeGA showed a high thermostability up to around 70 °C, which was increased in the presence of PEG8000, and also showed to be stable in the presence of moderate concentrations of ethanol. CONCLUSION: We propose that TeGA could be suitable for use in different industrial processes such as biofuel production and food processing.


Subject(s)
Escherichia coli , Glucan 1,4-alpha-Glucosidase , Base Composition , Biofuels , Escherichia coli/genetics , Escherichia coli/metabolism , Ethanol/metabolism , Glucan 1,4-alpha-Glucosidase/metabolism , Maltose/metabolism , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Thermoanaerobacter
19.
J Ind Microbiol Biotechnol ; 49(4)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35665816

ABSTRACT

Glucoamylase has a wide range of applications in the production of glucose, antibiotics, amino acids, and other fermentation industries. Fungal glucoamylase, in particular, has attracted much attention because of its wide application in different industries, among which Aspergillus niger is the most popular strain producing glucoamylase. The low availability of NADPH was found to be one of the limiting factors for the overproduction of glucoamylase. In this study, 3 NADH kinases (AN03, AN14, and AN17) and malic enzyme (maeA) were overexpressed in aconidial A. niger by CRISPR/Cas9 technology, significantly increasing the size of the NADPH pool, resulting in the activity of glucoamylase was improved by about 70%, 50%, 90%, and 70%, respectively; the total secreted protein was increased by about 25%, 22%, 52%, and 26%, respectively. Furthermore, the combination of the mitochondrial NADH kinase (AN17) and the malic enzyme (maeA) increased glucoamylase activity by a further 19%. This study provided an effective strategy for enhancing glucoamylase production of A. niger.


Subject(s)
Aspergillus niger , Glucan 1,4-alpha-Glucosidase , Fermentation , Glucan 1,4-alpha-Glucosidase/genetics , NAD/metabolism , NADP/metabolism
20.
J Sci Food Agric ; 102(15): 7301-7312, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35757866

ABSTRACT

BACKGROUND: Mechanized Huangjiu is a stable product, is not subject to seasonal production restrictions, and markedly reduces labor intensity compared to traditional manual Huangjiu. However, the bitterness of mechanized Huangjiu impedes its further development. RESULTS: Based on process optimization, when the fermentation temperature was 45 °C and the fermentation time was 122 h, the inoculation amount of Saccharopolyspora was 5%, the amount of added water was 26%, and the glucoamylase and amylase activities of wheat Qu increased by 27% and 40% respectively, compared with those before optimization. Huangjiu fermented by raw wheat Qu inoculated with Saccharopolyspora rosea F2014 showed a significant (P < 0.05) decrease in bitter amino acid content (1.24 vs. 2.86 g L-1 , a decrease of 56%), which attenuated its bitterness. CONCLUSION: An innovative fermentation process of inoculating Saccharopolyspora into raw wheat Qu was developed for the first time. Such a process could be used to control bitterness based on raw wheat Qu inoculated with Saccharopolyspora rosea F2014, instead of traditional wheat Qu in Huangjiu fermentation. © 2022 Society of Chemical Industry.


Subject(s)
Saccharopolyspora , Saccharopolyspora/metabolism , Fermentation , Glucan 1,4-alpha-Glucosidase/metabolism , Taste
SELECTION OF CITATIONS
SEARCH DETAIL