Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 798
Filter
Add more filters

Publication year range
1.
Cell ; 182(3): 641-654.e20, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32615085

ABSTRACT

Targeting glycolysis has been considered therapeutically intractable owing to its essential housekeeping role. However, the context-dependent requirement for individual glycolytic steps has not been fully explored. We show that CRISPR-mediated targeting of glycolysis in T cells in mice results in global loss of Th17 cells, whereas deficiency of the glycolytic enzyme glucose phosphate isomerase (Gpi1) selectively eliminates inflammatory encephalitogenic and colitogenic Th17 cells, without substantially affecting homeostatic microbiota-specific Th17 cells. In homeostatic Th17 cells, partial blockade of glycolysis upon Gpi1 inactivation was compensated by pentose phosphate pathway flux and increased mitochondrial respiration. In contrast, inflammatory Th17 cells experience a hypoxic microenvironment known to limit mitochondrial respiration, which is incompatible with loss of Gpi1. Our study suggests that inhibiting glycolysis by targeting Gpi1 could be an effective therapeutic strategy with minimum toxicity for Th17-mediated autoimmune diseases, and, more generally, that metabolic redundancies can be exploited for selective targeting of disease processes.


Subject(s)
Cell Differentiation/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Glucose-6-Phosphate Isomerase/metabolism , Glycolysis/genetics , Oxidative Phosphorylation , Pentose Phosphate Pathway/physiology , Th17 Cells/metabolism , Animals , Cell Hypoxia/genetics , Cell Hypoxia/immunology , Chimera/genetics , Chromatography, Gas , Chromatography, Liquid , Clostridium Infections/immunology , Cytokines/deficiency , Cytokines/genetics , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Glucose-6-Phosphate Isomerase/genetics , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/genetics , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Glycolysis/immunology , Homeostasis/genetics , Homeostasis/immunology , Inflammation/genetics , Inflammation/immunology , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mucous Membrane/immunology , Mucous Membrane/metabolism , Mucous Membrane/microbiology , Pentose Phosphate Pathway/genetics , Pentose Phosphate Pathway/immunology , RNA-Seq , Single-Cell Analysis , Th17 Cells/immunology , Th17 Cells/pathology
2.
Plant Physiol ; 191(1): 177-198, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36271861

ABSTRACT

Phosphoglucose isomerase (PGI) catalyzes the interconversion of fructose-6-phosphate and glucose-6-phosphate, which impacts cell carbon metabolic flow. Arabidopsis (Arabidopsis thaliana) contains two nuclear PGI genes respectively encoding plastidial PGI1 and cytosolic PGI (cPGI). The loss of PGI1 impairs the conversion of F6P of the Calvin-Benson cycle to G6P for the synthesis of transitory starch in leaf chloroplasts. Since cpgi knockout mutants have not yet been obtained, they are thought to be lethal. The cpgi lethality can be rescued by expressing CaMV 35S promoter (p35S)-driven cPGI; however, the complemented line is completely sterile due to pollen degeneration. Here, we generated a cpgi mutant expressing p35S::cPGI-YFP in which YFP fluorescence in developing anthers was undetectable specifically in the tapetum and in pollen, which could be associated with male sterility. We also generated RNAi-cPGI knockdown lines with strong cPGI repression in floral buds that exhibited reduced male fertility due to the degeneration of most pollen. Histological analyses indicated that the synthesis of intersporal callose walls was impaired, causing microsporocytes to fail to separate haploid daughter nuclei to form tetrads, which might be responsible for subsequent pollen degeneration. We successfully isolated cpgi knockout mutants in the progeny of a heterozygous cpgi mutant floral-dipped with sugar solutions. The rescued cpgi mutants exhibited diminished young vegetative growth, reduced female fertility, and impaired intersporal callose wall formation in a meiocyte, and, thus, male sterility. Collectively, our data suggest that cPGI plays a vital role in carbohydrate partitioning, which is indispensable for microsporogenesis and early embryogenesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Glucose-6-Phosphate Isomerase , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gametogenesis, Plant , Glucose-6-Phosphate Isomerase/genetics , Glucose-6-Phosphate Isomerase/metabolism , Plant Infertility
3.
Biotechnol Lett ; 46(1): 69-83, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064042

ABSTRACT

D-Glucaric acid is a potential biobased platform chemical. Previously mainly Escherichia coli, but also the yeast Saccharomyces cerevisiae, and Pichia pastoris, have been engineered for conversion of D-glucose to D-glucaric acid via myo-inositol. One reason for low yields from the yeast strains is the strong flux towards glycolysis. Thus, to decrease the flux of D-glucose to biomass, and to increase D-glucaric acid yield, the four step D-glucaric acid pathway was introduced into a phosphoglucose isomerase deficient (Pgi1p-deficient) Saccharomyces cerevisiae strain. High D-glucose concentrations are toxic to the Pgi1p-deficient strains, so various feeding strategies and use of polymeric substrates were studied. Uniformly labelled 13C-glucose confirmed conversion of D-glucose to D-glucaric acid. In batch bioreactor cultures with pulsed D-fructose and ethanol provision 1.3 g D-glucaric acid L-1 was produced. The D-glucaric acid titer (0.71 g D-glucaric acid L-1) was lower in nitrogen limited conditions, but the yield, 0.23 g D-glucaric acid [g D-glucose consumed]-1, was among the highest that has so far been reported from yeast. Accumulation of myo-inositol indicated that myo-inositol oxygenase activity was limiting, and that there would be potential to even higher yield. The Pgi1p-deficiency in S. cerevisiae provides an approach that in combination with other reported modifications and bioprocess strategies would promote the development of high yield D-glucaric acid yeast strains.


Subject(s)
Glucose-6-Phosphate Isomerase , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Glucose-6-Phosphate Isomerase/genetics , Glucose-6-Phosphate Isomerase/metabolism , Glucaric Acid/metabolism , Escherichia coli/metabolism , Inositol/metabolism , Glucose/metabolism
4.
Pharmacol Res ; 198: 106995, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979663

ABSTRACT

Melanoma is a dangerous form of skin cancer, making it important to investigate new mechanisms and approaches to enhance the effectiveness of treatment. Here, we establish a positive correlation between the human rhomboid family-1 (RHBDF1) protein and melanoma malignancy. We demonstrate that the melanoma RHBDF1 decrease dramatically inhibits tumor growth and the development of lung metastases, which may be related to the impaired glycolysis. We show that RHBDF1 function is essential to the maintenance of high levels of glycolytic enzymes, especially glucose-6-phosphate isomerase (GPI). Additionally, we discover that the E3 ubiquitin ligase tripartite motif-containing 32 (TRIM32) mediates the K27/K63-linked ubiquitination of GPI and the ensuing lysosomal degradation process. We prove that the multi-transmembrane domain of RHBDF1 is in competition with GPI, preventing the latter from interacting with NCL1-HT2A-LIN41 (NHL) domain of TRIM32. We also note that the mouse RHBDF1's R747 and Y799 are crucial for competitive binding and GPI protection. Artificially silencing the Rhbdf1 gene in a mouse melanoma model results in declined lactic acid levels, elevated cytotoxic lymphocyte infiltration, and improved tumor responsiveness to immunotherapy. These results provide credence to the hypothesis that RHBDF1 plays a significant role in melanoma regulation and suggest that blocking RHBDF1 may be an efficient technique for reestablishing the tumor immune microenvironment (TIME) in melanoma and halting its progression.


Subject(s)
Glucose-6-Phosphate Isomerase , Melanoma , Humans , Animals , Mice , Glucose-6-Phosphate Isomerase/genetics , Glucose-6-Phosphate Isomerase/metabolism , Membrane Proteins/metabolism , Ubiquitination , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Melanoma/genetics , Melanoma/therapy , Immunotherapy , Tumor Microenvironment , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Transcription Factors/metabolism
5.
J Pediatr Hematol Oncol ; 45(1): 41-43, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36161881

ABSTRACT

Hereditary hemolytic anemias are a heterogenous group of disorders that include membranopathies, enzymopathies, and hemoglobinopathies. Genetic testing is helpful in the diagnostic workup when the clinical and laboratory workup is not conclusive. Here, we present a case of a 21-month-old female who was initially diagnosed with hereditary spherocytosis based on the presence of a variant of unknown significance in the SPTB gene. Further genetic workup revealed a homozygous glucose 6 phosphate isomerase mutation and the patient was ultimately diagnosed with glucose 6 phosphate isomerase deficiency.


Subject(s)
Anemia, Hemolytic, Congenital , Anemia, Hemolytic , Metabolism, Inborn Errors , Spherocytosis, Hereditary , Female , Humans , Infant , Glucose-6-Phosphate Isomerase/genetics , Anemia, Hemolytic, Congenital/diagnosis , Anemia, Hemolytic, Congenital/genetics , Anemia, Hemolytic/diagnosis , Anemia, Hemolytic/genetics , Spherocytosis, Hereditary/diagnosis , Spherocytosis, Hereditary/genetics , Diagnostic Errors
6.
Microb Cell Fact ; 21(1): 253, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36456947

ABSTRACT

BACKGROUND: Despite decades of engineering efforts, recombinant Saccharomyces cerevisiae are still less efficient at converting D-xylose sugar to ethanol compared to the preferred sugar D-glucose. Using GFP-based biosensors reporting for the three main sugar sensing routes, we recently demonstrated that the sensing response to high concentrations of D-xylose is similar to the response seen on low concentrations of D-glucose. The formation of glycolytic intermediates was hypothesized to be a potential cause of this sensing response. In order to investigate this, glycolysis was disrupted via the deletion of the phosphoglucose isomerase gene (PGI1) while intracellular sugar phosphate levels were monitored using a targeted metabolomic approach. Furthermore, the sugar sensing of the PGI1 deletants was compared to the PGI1-wildtype strains in the presence of various types and combinations of sugars. RESULTS: Metabolomic analysis revealed systemic changes in intracellular sugar phosphate levels after deletion of PGI1, with the expected accumulation of intermediates upstream of the Pgi1p reaction on D-glucose and downstream intermediates on D-xylose. Moreover, the analysis revealed a preferential formation of D-fructose-6-phosphate from D-xylose, as opposed to the accumulation of D-fructose-1,6-bisphosphate that is normally observed when PGI1 deletants are incubated on D-fructose. This may indicate a role of PFK27 in D-xylose sensing and utilization. Overall, the sensing response was different for the PGI1 deletants, and responses to sugars that enter the glycolysis upstream of Pgi1p (D-glucose and D-galactose) were more affected than the response to those entering downstream of the reaction (D-fructose and D-xylose). Furthermore, the simultaneous exposure to sugars that entered upstream and downstream of Pgi1p (D-glucose with D-fructose, or D-glucose with D-xylose) resulted in apparent synergetic activation and deactivation of the Snf3p/Rgt2p and cAMP/PKA pathways, respectively. CONCLUSIONS: Overall, the sensing assays indicated that the previously observed D-xylose response stems from the formation of downstream metabolic intermediates. Furthermore, our results indicate that the metabolic node around Pgi1p and the level of D-fructose-6-phosphate could represent attractive engineering targets for improved D-xylose utilization.


Subject(s)
Sugar Phosphates , Xylose , Glucose , Glucose-6-Phosphate Isomerase/genetics , Saccharomyces cerevisiae/genetics , Fructose
7.
BMC Pediatr ; 22(1): 461, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35915427

ABSTRACT

BACKGROUND: Glucose phosphate isomerase (GPI) deficiency is a rare autosomal recessive disorder that causes hereditary nonspherocytic hemolytic anemia (HNSHA). Homozygous or compound heterozygous mutation of the GPI gene on chromosome 19q13 is the cause of GPI deficiency. Fifty-seven GPI mutations have been reported at the molecular level. CASE PRESENTATION: A 5-month-old boy was presented with repeated episodes of jaundice after birth. He suffered from moderate hemolytic anemia (hemoglobin levels ranging from 62 to 91 g/L) associated with macrocytosis, reticulocytosis, neutropenia, and hyperbilirubinemia. Whole-exome sequencing showed that he has a missense mutation c.301G > A (p.Val101Met) in exon 4 and a frameshift mutation c.812delG (p.Gly271Glufs*131) in exon 10. Mutation p.Gly271Glufs*131 is a novel frameshift null mutation in GPI deficiency. CONCLUSION: In a patient with recurrent jaundice since birth, mutations in the GPI gene associated with HNSHA should be evaluated. The c.812delG (p.Gly271Glufs*131) variant may be a novel mutation of the GPI gene. Compound heterozygous mutations c.301G > A (p.Val101Met) and c.812delG (p.Gly271Glufs*131) are not relevant to neurological impairment.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic , Anemia, Hemolytic , Metabolism, Inborn Errors , Anemia, Hemolytic/genetics , Anemia, Hemolytic, Congenital Nonspherocytic/complications , Anemia, Hemolytic, Congenital Nonspherocytic/diagnosis , Anemia, Hemolytic, Congenital Nonspherocytic/genetics , China , Glucose-6-Phosphate Isomerase/genetics , Homozygote , Humans , Infant , Male
8.
Acta Biochim Biophys Sin (Shanghai) ; 54(5): 625-636, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35593470

ABSTRACT

Cartilage and subchondral bone communicate with each other through material and signal exchanges. However, direct evidence provided by experimental studies on their interactions is insufficient. In the present study, we establish a noncontact co-culture model with a transwell chamber to explore the energetic perturbations in chondrocytes influenced by osteoblasts. Our results indicate that osteoblasts induce more ATP generation in chondrocytes through an energetic shift characterized by enhanced glycolysis and impaired mitochondrial tricarboxylic acid cycle. Enhanced glycolysis is shown by an increase of secreted lactate and the upregulation of glycolytic enzymes, including glucose-6-phosphate isomerase (Gpi), liver type ATP-dependent 6-phosphofructokinase (Pfkl), fructose-bisphosphate aldolase C (Aldoc), glyceraldehyde-3-phosphate dehydrogenase (Gapdh), triosephosphate isomerase (Tpi1), and phosphoglycerate kinase 1 (Pgk1). Impaired mitochondrial tricarboxylic acid cycle is characterized by the downregulation of cytoplasmic aspartate aminotransferase (Got1) and mitochondrial citrate synthase (Cs). Osteoblasts induce the activation of Akt and P38 signaling to mediate ATP perturbations in chondrocytes. This study may deepen our understanding of the maintenance of metabolic homeostasis in the bone-cartilage unit.


Subject(s)
Fructose-Bisphosphate Aldolase , Glucose-6-Phosphate Isomerase , Glucose-6-Phosphate Isomerase/genetics , Glucose-6-Phosphate Isomerase/metabolism , Fructose-Bisphosphate Aldolase/metabolism , Triose-Phosphate Isomerase/metabolism , Chondrocytes/metabolism , Glucose/metabolism , Aspartate Aminotransferase, Cytoplasmic/metabolism , Phosphoglycerate Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Citrate (si)-Synthase/metabolism , Glycolysis , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Phosphofructokinase-1/metabolism , Osteoblasts/metabolism , Communication , Lactates , Adenosine Triphosphate/metabolism
9.
J Basic Microbiol ; 62(6): 740-749, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35199357

ABSTRACT

Phosphoglucose isomerase (PGI) is a key enzyme that participates in polysaccharide synthesis, which is responsible for the interconversion of glucose-6-phosphate (G-6-P) and fructose-6-phosphate (F-6-P), but there is little research focusing on its role in fungi, especially in higher basidiomycetes. The pgi gene was cloned from Lentinula edodes and named lepgi. Then, the lepgi-silenced strains were constructed by RNA interference. In this study, we found that lepgi-silenced strains had significantly less biomass than the wild-type (WT) strain. Furthermore, the extracellular polysaccharide (EPS) and intracellular polysaccharide (IPS) levels increased 1.5- to 3-fold and 1.5-fold, respectively, in lepgi-silenced strains. Moreover, the cell wall integrity in the silenced strains was also altered, which might be due to changes in the compounds and structure of the cell wall. The results showed that compared to WT, silencing lepgi led to a significant decrease of approximately 40% in the ß-1,3-glucan content, and there was a significant increase of 2-3-fold in the chitin content. These findings provide support for studying the biological functions of lepgi in L. edodes.


Subject(s)
Shiitake Mushrooms , Cell Wall , Cloning, Molecular , Glucose-6-Phosphate Isomerase/genetics , Polysaccharides , Shiitake Mushrooms/genetics
10.
Biochem Biophys Res Commun ; 558: 22-28, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33894674

ABSTRACT

Autocrine motility factor (AMF) stimulates the motility of cancer cells via an autocrine route and has been implicated in tumor progression and metastasis. Overexpression of AMF is correlated with the aggressive nature of breast cancer and is negatively associated with clinical outcomes. In contrast, AMF also has the ability to suppress cancer cells. In this study, AMFs from different cancer cells were demonstrated to have suppressive activity against MCF-7 and MDA-MB-231 breast cancer cells. In a growth and colony formation assay, AMF from AsPC-1 pancreatic cancer cells (ASPC-1:AMF) was determined to be more suppressive compared to other AMFs. It was also demonstrated that AsPC-1:AMF could arrest breast cancer cells at the G0/G1 cell cycle phase. Quantified by Western blot analysis, AsPC-1:AMF lowered levels of the AMF receptor (AMFR) and G-protein-coupled estrogen receptor (GPER), concomitantly regulating the activation of the AKT and ERK signaling pathways. JAK/STAT activation was also decreased. These results were found in estrogen receptor (ER)-positive MCF-7 cells but not in triple-negative MDA-MB-231 cells, suggesting that AsPC-1:AMF could work through multiple pathways led to apoptosis. More importantly, AsPC-1:AMF and methyl jasmonate (MJ) cooperatively and synergistically acted against breast cancer cells. Thus, AMF alone or along with MJ may be a promising breast cancer treatment option.


Subject(s)
Acetates/administration & dosage , Breast Neoplasms/drug therapy , Cyclopentanes/administration & dosage , Glucose-6-Phosphate Isomerase/administration & dosage , Oxylipins/administration & dosage , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Combined Chemotherapy Protocols , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cloning, Molecular , Cytokines/administration & dosage , Cytokines/genetics , Down-Regulation/drug effects , Drug Synergism , Female , Glucose-6-Phosphate Isomerase/genetics , Humans , MCF-7 Cells , Molecular Targeted Therapy , Receptors, Autocrine Motility Factor/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Signal Transduction/drug effects , Tumor Stem Cell Assay
11.
New Phytol ; 231(1): 315-325, 2021 07.
Article in English | MEDLINE | ID: mdl-33774822

ABSTRACT

Starch is the most abundant carbohydrate synthesized in plant chloroplast as the product of photosynthetic carbon assimilation, serving a crucial role in the carbon budget as storage energy. Phosphoglucose isomerase (PGI) catalyzes the interconversion between glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P), which are important metabolic molecules in starch synthesis within chloroplasts and sucrose synthesis in cytosol. Here, we found that the specific activity of recombinantly purified PGI localized in cytosolic PGI (PGIc) was much higher than its plastidic isoenzyme counterpart (PGIp) originated from wheat, rice and Arabidopsis, with wheat PGIc having by far the highest activity. Crystal structures of wheat TaPGIc and TaPGIp proteins were solved and the functional units were homodimers. The active sites of PGIc and PGIp, constituted by the same amino acids, formed different binding pockets. Moreover, PGIc showed slightly lower affinity to the substrate F6P but with much faster turnover rates. Engineering of TaPGIc into chloroplasts of a pgip mutant of Arabidopsis thaliana (atpgip) resulted in starch overaccumulation, increased CO2 assimilation, up to 19% more plant biomass and 27% seed yield productivity. These results show that manipulating starch metabolic pathways in chloroplasts can improve plant biomass and yield productivity.


Subject(s)
Chloroplasts , Glucose-6-Phosphate Isomerase , Biomass , Chloroplasts/metabolism , Cytosol/metabolism , Glucose-6-Phosphate Isomerase/genetics , Glucose-6-Phosphate Isomerase/metabolism , Photosynthesis , Plant Leaves/metabolism , Starch/metabolism
12.
Plant Cell ; 30(9): 2082-2098, 2018 09.
Article in English | MEDLINE | ID: mdl-30099384

ABSTRACT

The plastid-localized phosphoglucose isomerase isoform PGI1 is an important determinant of growth in Arabidopsis thaliana, likely due to its involvement in the biosynthesis of plastidial isoprenoid-derived hormones. Here, we investigated whether PGI1 also influences seed yields. PGI1 is strongly expressed in maturing seed embryos and vascular tissues. PGI1-null pgi1-2 plants had ∼60% lower seed yields than wild-type plants, with reduced numbers of inflorescences and thus fewer siliques and seeds per plant. These traits were associated with low bioactive gibberellin (GA) contents. Accordingly, wild-type phenotypes were restored by exogenous GA application. pgi1-2 seeds were lighter and accumulated ∼50% less fatty acids (FAs) and ∼35% less protein than wild-type seeds. Seeds of cytokinin-deficient plants overexpressing CYTOKININ OXIDASE/DEHYDROGENASE1 (35S:AtCKX1) and GA-deficient ga20ox1 ga20ox2 mutants did not accumulate low levels of FAs, and exogenous application of the cytokinin 6-benzylaminopurine and GAs did not rescue the reduced weight and FA content of pgi1-2 seeds. Seeds from reciprocal crosses between pgi1-2 and wild-type plants accumulated wild-type levels of FAs and proteins. Therefore, PGI1 is an important determinant of Arabidopsis seed yield due to its involvement in two processes: GA-mediated reproductive development and the metabolic conversion of plastidial glucose-6-phosphate to storage reserves in the embryo.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gibberellins/metabolism , Glucose-6-Phosphate Isomerase/metabolism , Plastids/metabolism , Seeds/metabolism , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Glucose-6-Phosphate/metabolism , Glucose-6-Phosphate Isomerase/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Seeds/enzymology
13.
Phytopathology ; 111(3): 531-540, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33544003

ABSTRACT

Glucose-6-phosphate isomerase (GPI) is ubiquitous in most organisms, catalyzing the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. In this study, we investigated biological and genetic functions of FgGPI in the phytopathogen Fusarium graminearum. We found that hyphal growth, conidial germination, and septa formation were significantly inhibited in FgGPI deletion mutant ∆FgGPI. FgGPI was also positively associated with glucose metabolism, ATP biosynthesis, and carbon source utilization. In addition, pyruvate production, deoxynivalenol (DON) biosynthesis, and virulence were reduced in ∆FgGPI. A coimmunoprecipitation assay demonstrated that FgGPI interacts with Fgß2. More importantly, the coimmunoprecipitation assay showed that carbendazim-resistant substitutions in ß2 tubulin could reduce the interaction intensity between FgGPI and Fgß2, thereby increasing FgGPI expression and accelerating DON biosynthesis in carbendazim-resistant strains. Taken together, our work revealed the indispensable role of FgGPI in fungal developmental processes, DON biosynthesis, and pathogenicity in F. graminearum.


Subject(s)
Fusarium , Fungal Proteins/genetics , Glucose-6-Phosphate Isomerase/genetics , Plant Diseases , Trichothecenes , Tubulin/genetics
14.
Proc Natl Acad Sci U S A ; 115(1): 222-227, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29255023

ABSTRACT

Unraveling the mechanisms of microbial adaptive evolution following genetic or environmental challenges is of fundamental interest in biological science and engineering. When the challenge is the loss of a metabolic enzyme, adaptive responses can also shed significant insight into metabolic robustness, regulation, and areas of kinetic limitation. In this study, whole-genome sequencing and high-resolution 13C-metabolic flux analysis were performed on 10 adaptively evolved pgi knockouts of Escherichia coliPgi catalyzes the first reaction in glycolysis, and its loss results in major physiological and carbon catabolism pathway changes, including an 80% reduction in growth rate. Following adaptive laboratory evolution (ALE), the knockouts increase their growth rate by up to 3.6-fold. Through combined genomic-fluxomic analysis, we characterized the mutations and resulting metabolic fluxes that enabled this fitness recovery. Large increases in pyridine cofactor transhydrogenase flux, correcting imbalanced production of NADPH and NADH, were enabled by direct mutations to the transhydrogenase genes sthA and pntAB The phosphotransferase system component crr was also found to be frequently mutated, which corresponded to elevated flux from pyruvate to phosphoenolpyruvate. The overall energy metabolism was found to be strikingly robust, and what have been previously described as latently activated Entner-Doudoroff and glyoxylate shunt pathways are shown here to represent no real increases in absolute flux relative to the wild type. These results indicate that the dominant mechanism of adaptation was to relieve the rate-limiting steps in cofactor metabolism and substrate uptake and to modulate global transcriptional regulation from stress response to catabolism.


Subject(s)
Adaptation, Physiological , Directed Molecular Evolution , Energy Metabolism , Escherichia coli Proteins/genetics , Escherichia coli/metabolism , Gene Knockdown Techniques , Glucose-6-Phosphate Isomerase/genetics , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , NADP Transhydrogenase, B-Specific/genetics , NADP Transhydrogenase, B-Specific/metabolism , NADP Transhydrogenases/genetics , NADP Transhydrogenases/metabolism
15.
Biochem Biophys Res Commun ; 532(2): 185-189, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32859379

ABSTRACT

We previously reported that Escherichia coli strains carrying a firefly luciferase reporter gene (luc+) showed a posttranslationally-generated bioluminescence burst upon entry into the stationary phase. In this paper, we studied the mechanism underpinning this burst by using a series of "Keio" gene deletion strains. When luc+ driven by the lac gene promoter (lacp::luc+) was introduced into a group of Keio strains, the resulting reporter strains showed significantly altered timing and/or sizes of the burst. Remarkably, a reporter strain that lacked phosphoglucose isomerase (PGI), which catalyzes the second step of glycolysis, showed no burst, while the onset of the stationary phase of this strain was the same as that of the wild-type (WT) reporter strain. Consistently, the WT reporter strain showed no burst, when grown on arabinose or xylose instead of glucose as the carbon source. These results suggest that a process in carbohydrate metabolism is involved in the mechanism of generation of the burst. We measured temporal changes in intracellular NADPH concentrations but could not detect a significant increase or decrease relative to the occurrence of the burst. Functional implications and possible applications of the burst are discussed.


Subject(s)
Carbohydrate Metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Benzothiazoles/pharmacology , Carbohydrate Metabolism/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Deletion , Genes, Reporter , Glucose-6-Phosphate Isomerase/genetics , Glucose-6-Phosphate Isomerase/metabolism , Glycolysis/physiology , Luciferases/genetics , Luciferases/metabolism , Luminescent Measurements , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , NADP/metabolism
16.
Metab Eng ; 60: 45-55, 2020 07.
Article in English | MEDLINE | ID: mdl-32179162

ABSTRACT

Synthetic methylotrophy aims to engineer methane and methanol utilization pathways in platform hosts like Escherichia coli for industrial bioprocessing of natural gas and biogas. While recent attempts to engineer synthetic methanol auxotrophs have proved successful, these studies focused on scarce and expensive co-substrates. Here, we engineered E. coli for methanol-dependent growth on glucose, an abundant and inexpensive co-substrate, via deletion of glucose 6-phosphate isomerase (pgi), phosphogluconate dehydratase (edd), and ribose 5-phosphate isomerases (rpiAB). Since the parental strain did not exhibit methanol-dependent growth on glucose in minimal medium, we first achieved methanol-dependent growth via amino acid supplementation and used this medium to evolve the strain for methanol-dependent growth in glucose minimal medium. The evolved strain exhibited a maximum growth rate of 0.15 h-1 in glucose minimal medium with methanol, which is comparable to that of other synthetic methanol auxotrophs. Whole genome sequencing and 13C-metabolic flux analysis revealed the causative mutations in the evolved strain. A mutation in the phosphotransferase system enzyme I gene (ptsI) resulted in a reduced glucose uptake rate to maintain a one-to-one molar ratio of substrate utilization. Deletion of the e14 prophage DNA region resulted in two non-synonymous mutations in the isocitrate dehydrogenase (icd) gene, which reduced TCA cycle carbon flux to maintain the internal redox state. In high cell density glucose fed-batch fermentation, methanol-dependent acetone production resulted in 22% average carbon labeling of acetone from 13C-methanol, which far surpasses that of the previous best (2.4%) found with methylotrophic E. coli Δpgi. This study addresses the need to identify appropriate co-substrates for engineering synthetic methanol auxotrophs and provides a basis for the next steps toward industrial one-carbon bioprocessing.


Subject(s)
Escherichia coli/growth & development , Escherichia coli/metabolism , Glucose/metabolism , Metabolic Engineering/methods , Methanol/metabolism , Biomass , Citric Acid Cycle , Escherichia coli Proteins/genetics , Gene Deletion , Glucose-6-Phosphate Isomerase/genetics , Glucose-6-Phosphate Isomerase/metabolism , Isocitrate Dehydrogenase/metabolism , Prophages/genetics
17.
Oncology ; 98(7): 468-477, 2020.
Article in English | MEDLINE | ID: mdl-32252059

ABSTRACT

OBJECTIVE: This study was conducted to investigate whether polymorphisms in glycolysis-related genes are associated with clinical outcomes of patients with advanced-stage non-small cell lung cancer (NSCLC) undergoing chemotherapy. METHODS: A total of 377 patients with NSCLC were enrolled. Sixty-five single-nucleotide polymorphisms in 26 genes involved in the glycolytic pathway were evaluated. The associations of the variants with the chemotherapy response and overall survival (OS) were analyzed. RESULTS: Among the 65 variants investigated, PFKL rs2073436C>G and GPI rs7248411C>G significantly correlated with clinical outcomes after chemotherapy in multivariate analyses. PFKL rs2073436C>G was significantly associated with both a worse response to chemotherapy (adjusted odds ratio [aOR] = 0.64, 95% CI = 0.45-0.90, p = 0.01) and a worse OS (adjusted hazard ratio [aHR] = 1.35, 95% CI = 1.14-1.61, p = 0.001). GPI rs7248411C>G was significantly associated with both a better chemotherapy response (aOR = 1.58, 95% CI = 1.07-2.23, p = 0.02) and a better OS (aHR = 0.80, 95% CI = 0.66-0.98, p = 0.03). When stratified by tumor histology, PFKL rs2073436C>G was significantly associated with OS only in squamous cell carcinoma, whereas GPI rs7248411C>G exhibited a significant association with the chemotherapy response and OS only in adenocarcinoma. CONCLUSION: This result suggests that the PFKL rs2073436C>G and GPI rs7248411C>G are useful for predicting the clinical outcome of first-line paclitaxel-cisplatin chemotherapy in NSCLC.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Squamous Cell/drug therapy , Glycolysis/genetics , Lung Neoplasms/drug therapy , Polymorphism, Single Nucleotide , Adenocarcinoma/mortality , Aged , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Squamous Cell/mortality , Cisplatin/therapeutic use , Cytokines/genetics , Female , Glucose-6-Phosphate Isomerase/genetics , Humans , Lung Neoplasms/mortality , Male , Middle Aged , Paclitaxel/therapeutic use , Phosphofructokinase-1, Liver Type/genetics , Prognosis , Survival Rate , Treatment Outcome
18.
Microb Cell Fact ; 19(1): 153, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32723338

ABSTRACT

BACKGROUND: Furfural and 5-hydroxymethyl furfural (5-HMF) are key furan inhibitors that are generated due to breakdown of lignocellulosic sugars at high temperature and acidic treatment conditions. Both furfural and 5-HMF act in a synergistic manner to inhibit microbial metabolism and resistance to both is a desirable characteristic for efficient conversion of lignocellulosic carbon to ethanol. Genetic manipulations targeted toward increasing cellular NADPH pools have successfully imparted tolerance against furfural and 5-HMF. In present study, deletion of pgi gene as a strategy to augment carbon flow through pentose phosphate pathway (PPP) was studied in ethanologenic Escherichia coli strain SSK101 to impart tolerance towards either furfural or 5-HMFor both inhibitors together. RESULTS: A key gene of EMP pathway, pgi, was deleted in an ethanologenic E. coli strain SSK42 to yield strain SSK101. In presence of 1 g/L furfural in minimal AM1 media, the rate of biomass formation for strain SSK101 was up to 1.9-fold higher as compared to parent SSK42 strain, and it was able to clear furfural in half the time. Tolerance to inhibitor was associated with glucose as carbon source and not xylose, and the tolerance advantage of SSK101 was neutralized in LB media. Bioreactor studies were performed under binary stress of furfural and 5-HMF (1 g/L each) and different glucose concentrations in a glucose-xylose mixture with final sugar concentration of 5.5%, mimicking major components of dilute acid treated biomass hydrolysate. In the mixture having 6 g/L and 12 g/L glucose, SSK101 strain produced ~ 18 g/L and 20 g/L ethanol, respectively. Interestingly, the maximum ethanol productivity was better at lower glucose load with 0.46 g/(L.h) between 96 and 120 h, as compared to higher glucose load where it was 0.33 g/(L.h) between 144 and 168 h. Importantly, parent strain SSK42 did not exhibit significant metabolic activity under similar conditions of inhibitor load and sugar concentration. CONCLUSIONS: E. coli strain SSK101 with pgi deletion had enhanced tolerance against both furfural and 5-HMF, which was associated with presence of glucose in media. Strain SSK101 also had improved fermentation characteristics under both hyperosmotic as well as binary stress of furfural and 5-HMF in media containing glucose-xylose mixture.


Subject(s)
Disaccharides/metabolism , Escherichia coli Proteins/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Furaldehyde/analogs & derivatives , Gene Deletion , Glucose-6-Phosphate Isomerase/genetics , Batch Cell Culture Techniques , Culture Media/chemistry , Escherichia coli/metabolism , Ethanol/metabolism , Furaldehyde/pharmacology , Glucose/metabolism , Pentose Phosphate Pathway , Xylose/metabolism
19.
J Pediatr Hematol Oncol ; 42(7): e696-e697, 2020 10.
Article in English | MEDLINE | ID: mdl-31415279

ABSTRACT

Glucose phosphate isomerase (GPI) deficiency is the second most common red blood cell enzymopathy involving the glycolysis pathway. It is an autosomal recessive disorder. Chronic hemolytic anemia is a common manifestation. The most severe one can present as hydrops fetalis. It can also be associated with neurologic dysfunction. We report a girl with severe hemolytic anemia at birth because of GPI deficiency. Enzyme activity assays were inconclusive because of previous blood transfusions. She was found to be compound heterozygous for 2 novel missense mutations, c.490C>A p.(Pro164Thr) and c.817C>T p.(Arg273Cys), in the GPI gene. Other than the chronic hemolytic anemia, she also has mild fine motor, gross motor delay, and developed cerebella ataxia since 5 years old.


Subject(s)
Anemia, Hemolytic, Congenital/etiology , Anemia, Hemolytic, Congenital/pathology , Glucose-6-Phosphate Isomerase/genetics , Mutation, Missense , Cytokines/genetics , Female , Humans , Infant, Newborn , Prognosis
20.
Biosci Biotechnol Biochem ; 84(5): 1062-1068, 2020 May.
Article in English | MEDLINE | ID: mdl-31942827

ABSTRACT

We constructed a reversed methylotrophic pathway that produces methanol, a promising feedstock for production of useful compounds, from fructose 6-phosphate (F6P), which can be supplied by catabolism of biomass-derived sugars including glucose, by a synthetic biology approach. Using Escherichia coli as an expression host, we heterologously expressed genes encoding methanol utilization enzymes from methylotrophic bacteria, i.e. the NAD+-dependent methanol dehydrogenase (MDH) from Bacillus methanolicus S1 and an artificial fusion enzyme of 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase from Mycobacterium gastri MB19 (HPS-PHI). We confirmed that these enzymes can catalyze reverse reactions of methanol oxidation and formaldehyde fixation. The engineered E. coli strain co-expressing MDH and HPS-PHI genes produced methanol in resting cell reactions not only from F6P but also from glucose. We successfully conferred reversed methylotrophy to E. coli and our results provide a proof-of-concept for biological methanol production from biomass-derived sugar compounds.


Subject(s)
Alcohol Oxidoreductases/metabolism , Aldehyde-Lyases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Glucose-6-Phosphate Isomerase/metabolism , Metabolic Engineering/methods , Methanol/metabolism , Alcohol Oxidoreductases/genetics , Aldehyde-Lyases/genetics , Bacillus/enzymology , Formaldehyde/metabolism , Fructosephosphates/metabolism , Glucose/metabolism , Glucose-6-Phosphate Isomerase/genetics , Mycobacterium/enzymology , Oxidation-Reduction , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL