Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.030
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 85: 599-630, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27145845

ABSTRACT

Glycoscience research has been significantly impeded by the complex compositions of the glycans present in biological molecules and the lack of convenient tools suitable for studying the glycosylation process and its function. Polysaccharides and glycoconjugates are not encoded directly by genes; instead, their biosynthesis relies on the differential expression of carbohydrate enzymes, resulting in heterogeneous mixtures of glycoforms, each with a distinct physiological activity. Access to well-defined structures is required for functional study, and this has been provided by chemical and enzymatic synthesis and by the engineering of glycosylation pathways. This review covers general methods for preparing glycans commonly found in mammalian systems and applying them to the synthesis of therapeutically significant glycoconjugates (glycosaminoglycans, glycoproteins, glycolipids, glycosylphosphatidylinositol-anchored proteins) and the development of carbohydrate-based vaccines.


Subject(s)
Glycoconjugates/chemical synthesis , Glycoproteins/chemical synthesis , Glycosaminoglycans/chemical synthesis , Haemophilus Infections/prevention & control , Haemophilus Vaccines/administration & dosage , Polysaccharides/chemical synthesis , Amino Acid Sequence , Carbohydrate Conformation , Carbohydrate Sequence , Glycoconjugates/immunology , Glycolipids/chemical synthesis , Glycolipids/immunology , Glycoproteins/immunology , Glycosaminoglycans/immunology , Glycosylation , Glycosylphosphatidylinositols/chemical synthesis , Glycosylphosphatidylinositols/immunology , Haemophilus Infections/immunology , Haemophilus Infections/microbiology , Haemophilus Vaccines/chemical synthesis , Haemophilus influenzae type b/drug effects , Haemophilus influenzae type b/growth & development , Haemophilus influenzae type b/pathogenicity , Humans , Polysaccharides/immunology
2.
Trends Biochem Sci ; 47(6): 492-505, 2022 06.
Article in English | MEDLINE | ID: mdl-35305898

ABSTRACT

Post-translational modifications (PTMs) immensely expand the diversity of the proteome. Glycosylation, among the most ubiquitous PTMs, is a dynamic and multifarious modification of proteins and lipids that generates an omnipresent foliage on the cell surface. The resulting protein glycoconjugates can serve important functions in biology. However, their vast complexity complicates the study of their structures, interactions, and functions. There is now a growing appreciation of the need to study glycans and proteins together as complete entities, as the sum of these two components can exhibit unique functions. In this review, we discuss the growing forestry toolbox to characterize the structure, interactions, and biological functions of protein glycoconjugates, as well as the potential payouts of understanding and controlling these enigmatic biomolecules.


Subject(s)
Proteome , Proteomics , Glycoconjugates , Glycosylation , Protein Processing, Post-Translational , Proteomics/methods
3.
Acc Chem Res ; 57(2): 234-246, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38127793

ABSTRACT

Sialic acids are fascinating negatively charged nine-carbon monosaccharides. Sialic acid-containing glycans and glycoconjugates are structurally diverse, functionally important, and synthetically challenging molecules. We have developed highly efficient chemoenzymatic strategies that combine the power of chemical synthesis and enzyme catalysis to make sialic acids, sialyl glycans, sialyl glycoconjugates, and their derivatives more accessible, enabling the efforts to explore their functions and applications. The Account starts with a brief description of the structural diversity and the functional importance of naturally occurring sialic acids and sialosides. The development of one-pot multienzyme (OPME) chemoenzymatic sialylation strategies is then introduced, highlighting its advantages in synthesizing structurally diverse sialosides with a sialyltransferase donor substrate engineering tactic. With the strategy, systematic access to sialosides containing different sialic acid forms with modifications at C3/4/5/7/8/9, various internal glycans, and diverse sialyl linkages is now possible. Also briefly described is the combination of the OPME sialylation strategy with bacterial sialidases for synthesizing sialidase inhibitors. With the goal of simplifying the product purification process for enzymatic glycosylation reactions, glycosphingolipids that contain a naturally existing hydrophobic tag are attractive targets for chemoenzymatic total synthesis. A user-friendly highly efficient chemoenzymatic strategy is developed which involves three main processes, including chemical synthesis of lactosyl sphingosine as a water-soluble hydrophobic tag-containing intermediate, OPME enzymatic extension of its glycan component with a single C18-cartridge purification of the product, followed by a facile chemical acylation reaction. The strategy allows the introduction of different sialic acid forms and diverse fatty acyl chains into the products. Gram-scale synthesis has been demonstrated. OPME sialylation has also been demonstrated for the chemoenzymatic synthesis of sialyl glycopeptides and in vitro enzymatic N-glycan processing for the formation of glycoproteins with disialylated biantennary complex-type N-glycans. For synthesizing human milk oligosaccharides (HMOs) which are glycans with a free reducing end, acceptor substrate engineering and process engineering strategies are developed, which involve the design of a hydrophobic tag that can be easily installed into the acceptor substrate to allow facile purification of the product from enzymatic reactions and can be conveniently removed in the final step to produce target molecules. The process engineering involves heat-inactivation of enzymes in the intermediate steps in multistep OPME reactions for the production of long-chain sialoside targets in a single reaction pot and with a single C18-cartridge purification process. In addition, a chemoenzymatic synthon strategy has been developed. It involves the design of a derivative of the sialyltransferase donor substrate precursor, which is tolerated by enzymes in OPME reactions, introduced to enzymatic products, and then chemically converted to the desired target structures in the final step. The chemoenzymatic synthon approach has been used together with the acceptor substrate engineering method in the synthesis of complex bacterial glycans containing sialic acids, legionaminic acids, and derivatives. The biocatalysts characterized and their engineered mutants developed by the Chen group are described, with highlights on synthetically useful enzymes. We anticipate further development of chemoenzymatic strategies and biocatalysts to enable exploration of the sialic acid space.


Subject(s)
N-Acetylneuraminic Acid , Sialic Acids , Humans , Sialic Acids/chemistry , Sialyltransferases , Oligosaccharides , Glycoconjugates
4.
J Biol Chem ; 299(12): 105437, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944617

ABSTRACT

The zwitterions phosphorylcholine (PC) and phosphoethanolamine (PE) are often found esterified to certain sugars in polysaccharides and glycoconjugates in a wide range of biological species. One such modification involves PC attachment to the 6-carbon of N-acetylglucosamine (GlcNAc-6-PC) in N-glycans and glycosphingolipids (GSLs) of parasitic nematodes, a modification that helps the parasite evade host immunity. Knowledge of enzymes involved in the synthesis and degradation of PC and PE modifications is limited. More detailed studies on such enzymes would contribute to a better understanding of the function of PC modifications and have potential application in the structural analysis of zwitterion-modified glycans. In this study, we used functional metagenomic screening to identify phosphodiesterases encoded in a human fecal DNA fosmid library that remove PC from GlcNAc-6-PC. A novel bacterial phosphodiesterase was identified and biochemically characterized. This enzyme (termed GlcNAc-PDase) shows remarkable substrate preference for GlcNAc-6-PC and GlcNAc-6-PE, with little or no activity on other zwitterion-modified hexoses. The identified GlcNAc-PDase protein sequence is a member of the large endonuclease/exonuclease/phosphatase superfamily where it defines a distinct subfamily of related sequences of previously unknown function, mostly from Clostridium bacteria species. Finally, we demonstrate use of GlcNAc-PDase to confirm the presence of GlcNAc-6-PC in N-glycans and GSLs of the parasitic nematode Brugia malayi in a glycoanalytical workflow.


Subject(s)
Phosphoric Diester Hydrolases , Sugars , Humans , Phosphoric Diester Hydrolases/genetics , Carbohydrates , Glycoconjugates/chemistry , Polysaccharides/metabolism , Acetylglucosamine/metabolism
5.
J Am Chem Soc ; 146(5): 3220-3229, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38271668

ABSTRACT

Complex bacterial glycoconjugates drive interactions between pathogens, symbionts, and their human hosts. Glycoconjugate biosynthesis is initiated at the membrane interface by phosphoglycosyl transferases (PGTs), which catalyze the transfer of a phosphosugar from a soluble uridine diphosphosugar (UDP-sugar) substrate to a membrane-bound polyprenol-phosphate (Pren-P). The two distinct superfamilies of PGT enzymes (polytopic and monotopic) show striking differences in their structure and mechanism. We designed and synthesized a series of uridine bisphosphonates (UBPs), wherein the diphosphate of the UDP and UDP-sugar is replaced by a substituted methylene bisphosphonate (CXY-BPs; X/Y = F/F, Cl/Cl, (S)-H/F, (R)-H/F, H/H, CH3/CH3). UBPs and UBPs incorporating an N-acetylglucosamine (GlcNAc) substituent at the ß-phosphonate were evaluated as inhibitors of a polytopic PGT (WecA from Thermotoga maritima) and a monotopic PGT (PglC from Campylobacter jejuni). Although CHF-BP most closely mimics diphosphate with respect to its acid/base properties, the less basic CF2-BP conjugate more strongly inhibited PglC, whereas the more basic CH2-BP analogue was the strongest inhibitor of WecA. These surprising differences indicate different modes of ligand binding for the different PGT superfamilies, implicating a modified P-O- interaction with the structural Mg2+. For the monoPGT enzyme, the two diastereomeric CHF-BP conjugates, which feature a chiral center at the Pα-CHF-Pß carbon, also exhibited strikingly different binding affinities and the inclusion of GlcNAc with the native α-anomer configuration significantly improved binding affinity. UBP-sugars are thus revealed as informative new mechanistic probes of PGTs that may aid development of novel antibiotic agents for the exclusively prokaryotic monoPGT superfamily.


Subject(s)
Diphosphates , Transferases , Humans , Transferases/chemistry , Uridine , Glycoconjugates/chemistry , Diphosphonates , Sugars , Uridine Diphosphate
6.
Anal Chem ; 96(12): 5056-5064, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38497564

ABSTRACT

Aptamer-based detection targeting glycoconjugates has attracted significant attention for its remarkable potential in identifying structural changes in saccharides in different stages of various diseases. However, the challenges in screening aptamers for small carbohydrates or glycoconjugates, which contain highly flexible and diverse glycosidic bonds, have hindered their application and commercialization. In this study, we investigated the binding conformations between three glycosidic bond-containing small molecules (GlySMs; glucose, N-acetylneuraminic acid, and neomycin) and their corresponding aptamers in silico, and analyzed factors contributing to their binding affinities. Based on the findings, a novel binding mechanism was proposed, highlighting the central role of the stem structure of the aptamer in binding and recognizing GlySMs and the auxiliary role of the mismatched bases in the adjacent loop. Guided by this binding mechanism, an aptamer with a higher 6'-sialyllactose binding affinity was designed, achieving a KD value of 4.54 ± 0.64 µM in vitro through a single shear and one mutation. The binding mechanism offers crucial guidance for designing high-affinity aptamers, enhancing the virtual screening efficiency for GlySMs. This streamlined workflow filters out ineffective binding sites, accelerating aptamer development and providing novel insights into glycan-nucleic acid interactions.


Subject(s)
Aptamers, Nucleotide , Glycosides , Aptamers, Nucleotide/chemistry , DNA, Single-Stranded , Binding Sites , Glycoconjugates , SELEX Aptamer Technique
7.
J Virol ; 97(11): e0090623, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37843369

ABSTRACT

IMPORTANCE: It is well known that influenza A viruses (IAV) initiate host cell infection by binding to sialic acid, a sugar molecule present at the ends of various sugar chains called glycoconjugates. These sugar chains can vary in chain length, structure, and composition. However, it remains unknown if IAV strains preferentially bind to sialic acid on specific glycoconjugate type(s) for host cell infection. Here, we utilized CRISPR gene editing to abolish sialic acid on different glycoconjugate types in human lung cells, and evaluated human versus avian IAV infections. Our studies show that both human and avian IAV strains can infect human lung cells by utilizing any of the three major sialic acid-containing glycoconjugate types, specifically N-glycans, O-glycans, and glycolipids. Interestingly, simultaneous elimination of sialic acid on all three major glycoconjugate types in human lung cells dramatically decreased human IAV infection, yet had little effect on avian IAV infection. These studies show that avian IAV strains effectively utilize other less prevalent glycoconjugates for infection, whereas human IAV strains rely on a limited repertoire of glycoconjugate types. The remarkable ability of avian IAV strains to utilize diverse glycoconjugate types may allow for easy transmission into new host species.


Subject(s)
Influenza A virus , Influenza, Human , Lung , Receptors, Cell Surface , Animals , Humans , Carrier Proteins/metabolism , Glycoconjugates/metabolism , Influenza A virus/metabolism , Lung/virology , N-Acetylneuraminic Acid/metabolism , Polysaccharides/metabolism , Sugars/metabolism , Influenza in Birds/metabolism , Receptors, Cell Surface/metabolism , Receptors, Virus/metabolism
8.
Mass Spectrom Rev ; 42(1): 227-431, 2023 01.
Article in English | MEDLINE | ID: mdl-34719822

ABSTRACT

This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.


Subject(s)
Carbohydrates , Glycoconjugates , Glycoconjugates/chemistry , Carbohydrates/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Glycolipids/chemistry , Glycoproteins/chemistry , Lasers
9.
Chemistry ; 30(47): e202401695, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-38889267

ABSTRACT

Glycoconjugate vaccines are based on chemical conjugation of pathogen-associated carbohydrates with immunogenic carrier proteins and are considered a very cost-effective way to prevent infections. Most of the licensed glycoconjugate vaccines are composed of saccharide antigens extracted from bacterial sources. However, synthetic oligosaccharide antigens have become a promising alternative to natural polysaccharides with the advantage of being well-defined structures providing homogeneous conjugates. Haemophilus influenzae (Hi) is responsible for a number of severe diseases. In recent years, an increasing rate of invasive infections caused by Hi serotype a (Hia) raised some concern, because no vaccine targeting Hia is currently available. The capsular polysaccharide (CPS) of Hia is constituted by phosphodiester-linked 4-ß-d-glucose-(1→4)-d-ribitol-5-(PO4→) repeating units and is the antigen for protein-conjugated polysaccharide vaccines. To investigate the antigenic potential of the CPS from Hia, we synthesized related saccharide fragments containing up to five repeating units. Following the synthetic optimization of the needed disaccharide building blocks, they were assembled using the phosphoramidite approach for the installation of the phosphodiester linkages. The resulting CPS-based Hia oligomers were conjugated to CRM197 carrier protein and evaluated in vivo for their immunogenic potential, showing that all glycoconjugates were capable of raising antibodies recognizing Hia synthetic fragments.


Subject(s)
Glycoconjugates , Haemophilus influenzae , Glycoconjugates/chemistry , Glycoconjugates/immunology , Glycoconjugates/chemical synthesis , Haemophilus influenzae/immunology , Haemophilus influenzae/chemistry , Animals , Vaccines, Conjugate/chemistry , Vaccines, Conjugate/immunology , Mice , Haemophilus Vaccines/immunology , Haemophilus Vaccines/chemistry , Bacterial Proteins/immunology , Bacterial Proteins/chemistry , Haemophilus Infections/prevention & control , Haemophilus Infections/immunology
10.
Chemistry ; 30(38): e202400941, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38700909

ABSTRACT

Anthracene carboximides (ACIs) conjugated with gluco-, galacto- and mannopyranosides are synthesized, by glycosylation of N-hydroxyethylanthracene carboximide acceptor with glycosyl donors. Glycoconjugation of anthracene carboximide increases the aq. solubility by more than 3-fold. The glycoconjugates display red-shifted absorption and emission, as compared to anthracene. Large Stokes shift (λabs/λem=445/525 nm) and high fluorescence quantum yields (Φ) of 0.86 and 0.5 occur in THF and water, respectively. The ACI-glycosides undergo facile photodimerization in aqueous solutions, leading to the formation of the head-to-tail dimer, as a mixture of syn and anti-isomers. Solution phase and solid-state characterizations by dynamic light scattering (DLS), microscopic imaging by atomic force (AFM) and transmission electron (TEM) microscopies reveal self-assembled vesicle structures of ACI glycosides. These self-assembled structures act as multivalent glycoclusters for ligand-specific lectin binding, as evidenced by the binding of Man-ACI to Con A, by fluorescence and turbidity assays. The conjugates do not show cellular cytotoxicity (IC50) till concentrations of 50 µM with HeLa and HepG2 cell lines and are cell-permeable, showing strong fluorescence inside the cells. These properties enable the glycoconjugates to be used in cell imaging. The non-selective cellular uptake of the glycoconjugates suggests a passive diffusion through the membrane.


Subject(s)
Anthracenes , Glycoconjugates , Anthracenes/chemistry , Humans , Ligands , Hep G2 Cells , HeLa Cells , Glycoconjugates/chemistry , Carbohydrates/chemistry , Glycosylation , Glycosides/chemistry , Imides/chemistry
11.
Cell Commun Signal ; 22(1): 175, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38468333

ABSTRACT

Galectins constitute a class of lectins that specifically interact with ß-galactoside sugars in glycoconjugates and are implicated in diverse cellular processes, including transport, autophagy or signaling. Since most of the activity of galectins depends on their ability to bind sugar chains, galectins exert their functions mainly in the extracellular space or at the cell surface, which are microenvironments highly enriched in glycoconjugates. Galectins are also abundant inside cells, but their specific intracellular functions are largely unknown. Here we report that galectin-1, -3, -7 and -8 directly interact with the proteinaceous core of fibroblast growth factor 12 (FGF12) in the cytosol and in nucleus. We demonstrate that binding of galectin-1 to FGF12 in the cytosol blocks FGF12 secretion. Furthermore, we show that intracellular galectin-1 affects the assembly of FGF12-containing nuclear/nucleolar ribosome biogenesis complexes consisting of NOLC1 and TCOF1. Our data provide a new link between galectins and FGF proteins, revealing an unexpected glycosylation-independent intracellular interplay between these groups of proteins.


Subject(s)
Galectin 1 , Galectins , Galectins/metabolism , Fibroblast Growth Factors , Glycoconjugates , Ribosomes/metabolism
12.
Cells Tissues Organs ; 213(2): 147-160, 2024.
Article in English | MEDLINE | ID: mdl-36599327

ABSTRACT

The vomeronasal organ (VNO) is a tubular pheromone-sensing organ in which the lumen is covered with sensory and non-sensory epithelia. This study used immunohistochemistry and lectin histochemistry techniques to evaluate developmental changes, specifically of the glycoconjugate profile, in the horse VNO epithelium. Immunostaining analysis revealed PGP9.5 expression in some vomeronasal non-sensory epithelium (VNSE) cells and in the vomeronasal receptor cells of the vomeronasal sensory epithelium (VSE) in fetuses, young foals, and adult horses. Olfactory marker protein expression was exclusively localized in receptor cells of the VSE in fetuses, young foals, and adult horses and absent in VNSE. To identify the glycoconjugate type, lectin histochemistry was performed using 21 lectins. Semi-quantitative analysis revealed that the intensities of glycoconjugates labeled with WGA, DSL, LEL, and RCA120 were significantly higher in adult horse VSE than those in foal VSE, whereas the intensities of glycoconjugates labeled with LCA and PSA were significantly lower in adult horse VSE. The intensities of glycoconjugates labeled with s-WGA, WGA, BSL-II, DSL, LEL, STL, ConA, LCA, PSA, DBA, SBA, SJA, RCA120, jacalin, and ECL were significantly higher in adult horse VNSE than those in foal VNSE, whereas the intensity of glycoconjugates labeled with UEA-I was lower in adult horse VNSE. Histochemical analysis of each lectin revealed that various glycoconjugates in the VSE were present in the receptor, supporting, and basal cells of foals and adult horses. A similar pattern of lectin histochemistry was also observed in the VNSE of foals and adult horses. In conclusion, these results suggest that there is an increase in the level of N-acetylglucosamine (labeled by WGA, DSL, LEL) and galactose (labeled by RCA120) in horse VSE during postnatal development, implying that they may influence the function of VNO in adult horses.


Subject(s)
Vomeronasal Organ , Male , Humans , Horses , Animals , Vomeronasal Organ/metabolism , Prostate-Specific Antigen/metabolism , Epithelium/metabolism , Lectins/metabolism , Glycoconjugates/analysis , Glycoconjugates/metabolism
13.
J Org Chem ; 89(9): 6364-6370, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38650458

ABSTRACT

Introducing glycans represents an efficient chemical approach to improve the pharmacological properties of therapeutic biomolecules. Herein, we report an efficient synthesis of glycoconjugates through chlorooxime-thiol conjugation. The reactive glycosyl chlorooximes, derived from pyranoses or furanoses, readily couple to a wide range of thiol-containing substrates, including peptides, sugars, and thiophenols. This method features mild reaction conditions and fast kinetics. Capability for aqueous media and gram-scale synthesis demonstrates the potential of this method in the bioconjugation of saccharides with biologically active molecules.


Subject(s)
Glycoconjugates , Oximes , Sulfhydryl Compounds , Oximes/chemistry , Glycoconjugates/chemistry , Glycoconjugates/chemical synthesis , Sulfhydryl Compounds/chemistry , Molecular Structure
14.
Org Biomol Chem ; 22(27): 5470-5510, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38904076

ABSTRACT

Carbohydrate-based self-assembling systems are essential for the formation of advanced biocompatible materials via a bottom-up approach. The self-assembling of sugar-based small molecules has applications encompassing many research fields and has been studied extensively. In this focused review, we will discuss the synthetic approaches for carbohydrate-based self-assembling (SA) systems, the mechanisms of the assembly, as well as the main properties and applications. This review will mainly cover recent publications in the last four years from January 2020 to December 2023. We will essentially focus on small molecule self-assembly, excluding polymer-based systems, which include various derivatives of monosaccharides, disaccharides, and oligosaccharides. Glycolipids, glycopeptides, and some glycoconjugate-based systems are discussed. Typically, in each category of systems, the system that can function as low molecular weight gelators (LMWGs) will be discussed first, followed by self-assembling systems that produce micelles and aggregates. The last section of the review discusses stimulus-responsive self-assembling systems, especially those forming gels, including dynamic covalent assemblies, chemical-triggered systems, and photoresponsive systems. The review will be organized based on the sugar structures, and in each category, the synthesis of representative molecular systems will be discussed next, followed by the properties of the resulting molecular assemblies.


Subject(s)
Carbohydrates , Carbohydrates/chemistry , Carbohydrates/chemical synthesis , Glycoconjugates/chemical synthesis , Glycoconjugates/chemistry , Glycolipids/chemistry , Glycolipids/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis
15.
Chem Rev ; 122(20): 15672-15716, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-35608633

ABSTRACT

Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Glycoconjugates/pharmacology , Polysaccharides , Carbohydrates , Vaccines, Synthetic
16.
Chem Rev ; 122(20): 15603-15671, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36174107

ABSTRACT

Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.


Subject(s)
Diphosphates , Vaccines , Animals , Humans , Glycerol , Glycoconjugates/chemistry , Glycoproteins/chemistry , Carbohydrates/chemistry , Polysaccharides/chemistry , Glycolipids , Proteoglycans , Sphingolipids , Amino Acids , Fatty Acids , Esters , Mammals/metabolism
17.
Bioorg Chem ; 150: 107610, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38991488

ABSTRACT

Tuberculosis (TB) continues to pose a grave threat to global health, despite relentless eradication efforts. In 1882, Robert Koch discovered that Mycobacterium tuberculosis (Mtb) is the bacterium responsible for causing tuberculosis. It is a fact that tuberculosis has claimed the lives of more than one billion people in the last few decades. It is imperative that we must take immediate and effective action to increase resources for TB research and treatment. Effective TB treatments demand an extensive investment of both time and finances, often requiring 6-9 months of rigorous antibiotic therapy. The most efficient way to control tuberculosis is by receiving a childhood Bacillus Calmette-Guérin (BCG) vaccination. Despite years of research on vaccine development, we still do not have any new approved vaccine for tuberculosis, except BCG, which is partially effective in young children. This review discusses briefly the available treatment for tuberculosis and remarkable advancements in glycoconjugate-based TB vaccine developments in recent years (2013-2024) and offers valuable direction for future research priorities.


Subject(s)
Antitubercular Agents , Glycoconjugates , Mycobacterium tuberculosis , Tuberculosis , Humans , Tuberculosis/prevention & control , Tuberculosis/drug therapy , Glycoconjugates/chemistry , Glycoconjugates/chemical synthesis , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Tuberculosis Vaccines/therapeutic use , Vaccine Development , Molecular Structure , Animals
18.
Appl Microbiol Biotechnol ; 108(1): 144, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231410

ABSTRACT

Anionic polymers, such as heparin, have been widely applied in the chemical and medical fields, particularly for binding proteins (e.g., fibroblast growth factor 2 (FGF-2) and histones). However, the current animal-based production of heparin brings great risks, including resource shortages and product contamination. Recently, anionic compounds, nonulosonic acids (NulOs), and sulfated glycoconjugates were discovered in the extracellular polymeric substances (EPS) of aerobic granular sludge (AGS). Given the prevalence of anionic polymers, in marine biofilms, it was hypothesized that the EPS from AGS grown under seawater condition could serve as a raw material for producing the alternatives to heparin. This study aimed to isolate and enrich the anionic fractions of EPS and evaluate their potential application in the chemical and medical fields. The AGS was grown in a lab-scale reactor fed with acetate, under the seawater condition (35 g/L sea salt). The EPS was extracted with an alkaline solution at 80 °C and fractionated by size exclusion chromatography. Its protein binding capacity was evaluated by native gel electrophoresis. It was found that the two highest molecular weight fractions (438- > 14,320 kDa) were enriched with NulO and sulfate-containing glycoconjugates. The enriched fractions can strongly bind the two histones involved in sepsis and a model protein used for purification by heparin-column. These findings demonstrated possibilities for the application of the extracted EPS and open up a novel strategy for resource recovery. KEY POINTS: • High MW EPS from seawater-adapted AGS are dominant with sulfated groups and NulOs • Fifty-eight percent of the EPS is high MW of 68-14,320 kDa • EPS and its fractions can bind histones and fibroblast growth factor 2.


Subject(s)
Extracellular Polymeric Substance Matrix , Fibroblast Growth Factor 2 , Animals , Histones , Sewage , Heparin , Polymers , Seawater , Sulfates , Glycoconjugates
19.
Cell Mol Biol Lett ; 29(1): 46, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561669

ABSTRACT

BACKGROUND: Small extracellular vesicles (sEV) are closely associated with the development and metastasis of many types of mammalian cancer. Glycoconjugates are highly expressed on sEV and play important roles in sEV biogenesis and their interaction with other cells. However, the study on vesicular glycoconjugates are far behind proteins and nucleic acids. Especially, the functions of sialic acids which are the terminal components of glycoconjugates, are poorly understood in sEV. METHODS: Sialic acid levels on sEV from plasma and bladder cancer cells were determined by ELISA and lectin blotting. Effects of sialylation on sEV uptake were determined by flow cytometry. Vesicular glycoproteins bearing sialic acids responsible for sEV uptake was identified by proteomics and density gradient centrifugation, and their site-specific sialylation functions were assayed by N-glycosylation site mutation. Effects of integrin ß1 bearing sialic acids on the pro-metastatic function of sEV in vivo were explored using Balb/c nu/nu mice. RESULTS: (1) Increased sialic acid levels were observed in sEV from malignant bladder cancer cells. (2) Elimination of sialic acids on sEV impaired sEV uptake by recipient cells. (3) Vesicular integrin ß1 bearing sialic acids was identified to play a key role in sEV uptake. (4) Desialylation of the hybrid domain of vesicular integrin ß1 inhibited its binding to matrix fibronectin, and reduced sEV entry into recipient cells. (5) Sialylation on integrin ß1 affected pro-metastatic function of sEV in Balb/c nu/nu mice. CONCLUSIONS: Taken together, our findings indicate important functional roles of sialic acids in sEV uptake and reprogramming plasticity of surrounding normal epithelial cells.


Subject(s)
Extracellular Vesicles , Urinary Bladder Neoplasms , Animals , Mice , Extracellular Vesicles/metabolism , Glycoconjugates , Integrin beta1/metabolism , Mammals , N-Acetylneuraminic Acid/metabolism , Sialic Acids/metabolism
20.
Exp Parasitol ; 259: 108707, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336095

ABSTRACT

Natural honey contains glycoconjugates as minor components. We characterized acacia honey glycoconjugates with molecular masses in the range of 2-5 kDa. The glycoconjugates were separated by RP-HPLC into three peaks (termed RP-2-5 k-I, RP-2-5 k-II, and RP-2-5 k-III) which demonstrated paralyzing effects on the model nematode C. elegans (ED50 of 50 ng glycoconjugates/µL). To examine molecular mechanisms underlying the nematicidal effects of honey glycoconjugates, expressional analyses of genes that are essential for the growth, development, reproduction, and movement of C. elegans were carried out. Quantitative PCR-based assays showed that these molecules moderately regulate the expression of genes involved in the citric acid cycle (mdh-1 and idhg-1) and cytoskeleton (act-1 and act-2). MALDI-ToF-MS/MS analysis of RP-HPLC peaks revealed the presence of paucimannose-like N-glycans which are known to play important roles in invertebrates e.g., worms and flies. These findings provided novel information regarding the structure and nematicidal function of honey glycoconjugates.


Subject(s)
Acacia , Honey , Animals , Bees , Honey/analysis , Caenorhabditis elegans , Tandem Mass Spectrometry , Antinematodal Agents/pharmacology , Glycoconjugates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL