Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.736
Filter
Add more filters

Publication year range
1.
Cell ; 184(11): 3022-3040.e28, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33961781

ABSTRACT

Thousands of interactions assemble proteins into modules that impart spatial and functional organization to the cellular proteome. Through affinity-purification mass spectrometry, we have created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results from affinity purification of 10,128 human proteins-half the proteome-in 293T cells and includes 118,162 interactions among 14,586 proteins. The second results from 5,522 immunoprecipitations in HCT116 cells. These networks model the interactome whose structure encodes protein function, localization, and complex membership. Comparison across cell lines validates thousands of interactions and reveals extensive customization. Whereas shared interactions reside in core complexes and involve essential proteins, cell-specific interactions link these complexes, "rewiring" subnetworks within each cell's interactome. Interactions covary among proteins of shared function as the proteome remodels to produce each cell's phenotype. Viewable interactively online through BioPlexExplorer, these networks define principles of proteome organization and enable unknown protein characterization.


Subject(s)
Protein Interaction Mapping/methods , Protein Interaction Maps/genetics , Proteome/genetics , Computational Biology/methods , HCT116 Cells/metabolism , HEK293 Cells/metabolism , Humans , Mass Spectrometry/methods , Protein Interaction Maps/physiology , Proteome/metabolism , Proteomics/methods
2.
Cell ; 180(6): 1228-1244.e24, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32142649

ABSTRACT

Transcription-coupled nucleotide excision repair (TC-NER) is initiated by the stalling of elongating RNA polymerase II (RNAPIIo) at DNA lesions. The ubiquitination of RNAPIIo in response to DNA damage is an evolutionarily conserved event, but its function in mammals is unknown. Here, we identified a single DNA damage-induced ubiquitination site in RNAPII at RPB1-K1268, which regulates transcription recovery and DNA damage resistance. Mechanistically, RPB1-K1268 ubiquitination stimulates the association of the core-TFIIH complex with stalled RNAPIIo through a transfer mechanism that also involves UVSSA-K414 ubiquitination. We developed a strand-specific ChIP-seq method, which revealed RPB1-K1268 ubiquitination is important for repair and the resolution of transcriptional bottlenecks at DNA lesions. Finally, RPB1-K1268R knockin mice displayed a short life-span, premature aging, and neurodegeneration. Our results reveal RNAPII ubiquitination provides a two-tier protection mechanism by activating TC-NER and, in parallel, the processing of DNA damage-stalled RNAPIIo, which together prevent prolonged transcription arrest and protect against neurodegeneration.


Subject(s)
DNA Repair/physiology , RNA Polymerase II/metabolism , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , DNA/metabolism , DNA Damage/physiology , DNA Helicases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Female , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA Polymerase II/genetics , Ubiquitination
3.
Cell ; 182(6): 1474-1489.e23, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32841603

ABSTRACT

Widespread changes to DNA methylation and chromatin are well documented in cancer, but the fate of higher-order chromosomal structure remains obscure. Here we integrated topological maps for colon tumors and normal colons with epigenetic, transcriptional, and imaging data to characterize alterations to chromatin loops, topologically associated domains, and large-scale compartments. We found that spatial partitioning of the open and closed genome compartments is profoundly compromised in tumors. This reorganization is accompanied by compartment-specific hypomethylation and chromatin changes. Additionally, we identify a compartment at the interface between the canonical A and B compartments that is reorganized in tumors. Remarkably, similar shifts were evident in non-malignant cells that have accumulated excess divisions. Our analyses suggest that these topological changes repress stemness and invasion programs while inducing anti-tumor immunity genes and may therefore restrain malignant progression. Our findings call into question the conventional view that tumor-associated epigenomic alterations are primarily oncogenic.


Subject(s)
Chromatin/metabolism , Chromosomes/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic/genetics , Cell Division , Cellular Senescence/genetics , Chromatin Immunoprecipitation Sequencing , Chromosomes/genetics , Cohort Studies , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Computational Biology , DNA Methylation/genetics , Epigenomics , HCT116 Cells , Humans , In Situ Hybridization, Fluorescence , Microscopy, Electron, Transmission , Molecular Dynamics Simulation , RNA-Seq , Spatial Analysis , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
4.
Cell ; 180(6): 1160-1177.e20, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32160526

ABSTRACT

Selective autophagy of organelles is critical for cellular differentiation, homeostasis, and organismal health. Autophagy of the ER (ER-phagy) is implicated in human neuropathy but is poorly understood beyond a few autophagosomal receptors and remodelers. By using an ER-phagy reporter and genome-wide CRISPRi screening, we identified 200 high-confidence human ER-phagy factors. Two pathways were unexpectedly required for ER-phagy. First, reduced mitochondrial metabolism represses ER-phagy, which is opposite of general autophagy and is independent of AMPK. Second, ER-localized UFMylation is required for ER-phagy to repress the unfolded protein response via IRE1α. The UFL1 ligase is brought to the ER surface by DDRGK1 to UFMylate RPN1 and RPL26 and preferentially targets ER sheets for degradation, analogous to PINK1-Parkin regulation during mitophagy. Our data provide insight into the cellular logic of ER-phagy, reveal parallels between organelle autophagies, and provide an entry point to the relatively unexplored process of degrading the ER network.


Subject(s)
Autophagy/physiology , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Autophagy/genetics , Endoplasmic Reticulum Stress/physiology , Endoribonucleases/metabolism , Genome-Wide Association Study/methods , HCT116 Cells , HEK293 Cells , HeLa Cells , Homeostasis , Humans , Membrane Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Protein Serine-Threonine Kinases/metabolism , Proteins/metabolism , Ribosomal Proteins/metabolism , Unfolded Protein Response/physiology
5.
Cell ; 176(3): 564-580.e19, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30580964

ABSTRACT

There are still gaps in our understanding of the complex processes by which p53 suppresses tumorigenesis. Here we describe a novel role for p53 in suppressing the mevalonate pathway, which is responsible for biosynthesis of cholesterol and nonsterol isoprenoids. p53 blocks activation of SREBP-2, the master transcriptional regulator of this pathway, by transcriptionally inducing the ABCA1 cholesterol transporter gene. A mouse model of liver cancer reveals that downregulation of mevalonate pathway gene expression by p53 occurs in premalignant hepatocytes, when p53 is needed to actively suppress tumorigenesis. Furthermore, pharmacological or RNAi inhibition of the mevalonate pathway restricts the development of murine hepatocellular carcinomas driven by p53 loss. Like p53 loss, ablation of ABCA1 promotes murine liver tumorigenesis and is associated with increased SREBP-2 maturation. Our findings demonstrate that repression of the mevalonate pathway is a crucial component of p53-mediated liver tumor suppression and outline the mechanism by which this occurs.


Subject(s)
Mevalonic Acid/metabolism , Tumor Suppressor Protein p53/metabolism , ATP Binding Cassette Transporter 1/metabolism , Animals , Cell Line , Cholesterol/metabolism , Female , Genes, Tumor Suppressor , HCT116 Cells , Hepatocytes/metabolism , Humans , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Neoplasms/genetics , Promoter Regions, Genetic , Sterol Regulatory Element Binding Protein 2/metabolism , Terpenes/metabolism
6.
Nat Immunol ; 22(3): 358-369, 2021 03.
Article in English | MEDLINE | ID: mdl-33432230

ABSTRACT

CD8+ T cell exhaustion dampens antitumor immunity. Although several transcription factors have been identified that regulate T cell exhaustion, the molecular mechanisms by which CD8+ T cells are triggered to enter an exhausted state remain unclear. Here, we show that interleukin-2 (IL-2) acts as an environmental cue to induce CD8+ T cell exhaustion within tumor microenvironments. We find that a continuously high level of IL-2 leads to the persistent activation of STAT5 in CD8+ T cells, which in turn induces strong expression of tryptophan hydroxylase 1, thus catalyzing the conversion to tryptophan to 5-hydroxytryptophan (5-HTP). 5-HTP subsequently activates AhR nuclear translocation, causing a coordinated upregulation of inhibitory receptors and downregulation of cytokine and effector-molecule production, thereby rendering T cells dysfunctional in the tumor microenvironment. This molecular pathway is not only present in mouse tumor models but is also observed in people with cancer, identifying IL-2 as a novel inducer of T cell exhaustion.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/drug effects , Interleukin-2/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , Neoplasms/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Tumor Microenvironment , 5-Hydroxytryptophan/metabolism , Animals , Antibodies, Neutralizing/pharmacology , Antineoplastic Agents/pharmacology , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Gene Expression Regulation, Neoplastic , HCT116 Cells , HEK293 Cells , Humans , Interleukin-2/antagonists & inhibitors , Interleukin-2/genetics , Jurkat Cells , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , MCF-7 Cells , Melanoma, Experimental/drug therapy , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , NIH 3T3 Cells , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Receptors, Aryl Hydrocarbon/deficiency , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction , Tryptophan Hydroxylase/metabolism , Xenograft Model Antitumor Assays
7.
Cell ; 174(4): 897-907.e14, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30078705

ABSTRACT

Akt is a critical protein kinase that drives cancer proliferation, modulates metabolism, and is activated by C-terminal phosphorylation. The current structural model for Akt activation by C-terminal phosphorylation has centered on intramolecular interactions between the C-terminal tail and the N lobe of the kinase domain. Here, we employ expressed protein ligation to produce site-specifically phosphorylated forms of purified Akt1 that are well suited for mechanistic analysis. Using biochemical, crystallographic, and cellular approaches, we determine that pSer473-Akt activation is driven by an intramolecular interaction between the C-tail and the pleckstrin homology (PH)-kinase domain linker that relieves PH domain-mediated Akt1 autoinhibition. Moreover, dual phosphorylation at Ser477/Thr479 activates Akt1 through a different allosteric mechanism via an apparent activation loop interaction that reduces autoinhibition by the PH domain and weakens PIP3 affinity. These results provide a new framework for understanding how Akt is controlled in cell signaling and suggest distinct functions for differentially modified Akt forms.


Subject(s)
Protein Biosynthesis , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/metabolism , Serine/metabolism , Threonine/metabolism , Crystallography, X-Ray , Enzyme Activation , HCT116 Cells , Humans , Phosphorylation , Pleckstrin Homology Domains , Protein Binding , Protein Conformation , Proto-Oncogene Proteins c-akt/chemistry , Serine/chemistry , Signal Transduction , Threonine/chemistry
8.
Cell ; 175(6): 1546-1560.e17, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30500537

ABSTRACT

Mammalian folate metabolism is comprised of cytosolic and mitochondrial pathways with nearly identical core reactions, yet the functional advantages of such an organization are not well understood. Using genome-editing and biochemical approaches, we find that ablating folate metabolism in the mitochondria of mammalian cell lines results in folate degradation in the cytosol. Mechanistically, we show that QDPR, an enzyme in tetrahydrobiopterin metabolism, moonlights to repair oxidative damage to tetrahydrofolate (THF). This repair capacity is overwhelmed when cytosolic THF hyperaccumulates in the absence of mitochondrially produced formate, leading to THF degradation. Unexpectedly, we also find that the classic antifolate methotrexate, by inhibiting its well-known target DHFR, causes even more extensive folate degradation in nearly all tested cancer cell lines. These findings shed light on design features of folate metabolism, provide a biochemical basis for clinically observed folate deficiency in QDPR-deficient patients, and reveal a hitherto unknown and unexplored cellular effect of methotrexate.


Subject(s)
Carbon/metabolism , Cytosol/metabolism , Formates/metabolism , Mitochondria/metabolism , Neoplasms/metabolism , Tetrahydrofolates/metabolism , Cytosol/pathology , HCT116 Cells , HeLa Cells , Humans , MCF-7 Cells , Methotrexate/pharmacokinetics , Methotrexate/pharmacology , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Neoplasm Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Tetrahydrofolate Dehydrogenase/metabolism
9.
Cell ; 175(3): 766-779.e17, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30340042

ABSTRACT

The super elongation complex (SEC) is required for robust and productive transcription through release of RNA polymerase II (Pol II) with its P-TEFb module and promoting transcriptional processivity with its ELL2 subunit. Malfunction of SEC contributes to multiple human diseases including cancer. Here, we identify peptidomimetic lead compounds, KL-1 and its structural homolog KL-2, which disrupt the interaction between the SEC scaffolding protein AFF4 and P-TEFb, resulting in impaired release of Pol II from promoter-proximal pause sites and a reduced average rate of processive transcription elongation. SEC is required for induction of heat-shock genes and treating cells with KL-1 and KL-2 attenuates the heat-shock response from Drosophila to human. SEC inhibition downregulates MYC and MYC-dependent transcriptional programs in mammalian cells and delays tumor progression in a mouse xenograft model of MYC-driven cancer, indicating that small-molecule disruptors of SEC could be used for targeted therapy of MYC-induced cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms, Experimental/drug therapy , Positive Transcriptional Elongation Factor B/metabolism , Repressor Proteins/metabolism , Transcription Elongation, Genetic/drug effects , Transcriptional Elongation Factors/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Drosophila , Female , HCT116 Cells , HEK293 Cells , Heat-Shock Response , Humans , Male , Mice , Mice, Inbred BALB C , Protein Binding/drug effects , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA Polymerase II/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
10.
Cell ; 172(3): 578-589.e17, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29373830

ABSTRACT

KRASG12C was recently identified to be potentially druggable by allele-specific covalent targeting of Cys-12 in vicinity to an inducible allosteric switch II pocket (S-IIP). Success of this approach requires active cycling of KRASG12C between its active-GTP and inactive-GDP conformations as accessibility of the S-IIP is restricted only to the GDP-bound state. This strategy proved feasible for inhibiting mutant KRAS in vitro; however, it is uncertain whether this approach would translate to in vivo. Here, we describe structure-based design and identification of ARS-1620, a covalent compound with high potency and selectivity for KRASG12C. ARS-1620 achieves rapid and sustained in vivo target occupancy to induce tumor regression. We use ARS-1620 to dissect oncogenic KRAS dependency and demonstrate that monolayer culture formats significantly underestimate KRAS dependency in vivo. This study provides in vivo evidence that mutant KRAS can be selectively targeted and reveals ARS-1620 as representing a new generation of KRASG12C-specific inhibitors with promising therapeutic potential.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms, Experimental/drug therapy , Piperazines/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Quinazolines/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Cells, Cultured , Female , HCT116 Cells , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Mutation , Piperazines/chemistry , Piperazines/therapeutic use , Protein Binding , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Quinazolines/chemistry , Quinazolines/therapeutic use
11.
Cell ; 174(1): 187-201.e12, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29779946

ABSTRACT

Widespread mRNA decay, an unappreciated feature of apoptosis, enhances cell death and depends on mitochondrial outer membrane permeabilization (MOMP), TUTases, and DIS3L2. Which RNAs are decayed and the decay-initiating event are unknown. Here, we show extensive decay of mRNAs and poly(A) noncoding (nc)RNAs at the 3' end, triggered by the mitochondrial intermembrane space 3'-to-5' exoribonuclease PNPT1, released during MOMP. PNPT1 knockdown inhibits apoptotic RNA decay and reduces apoptosis, while ectopic expression of PNPT1, but not an RNase-deficient mutant, increases RNA decay and cell death. The 3' end of PNPT1 substrates thread through a narrow channel. Many non-poly(A) ncRNAs contain 3'-secondary structures or bind proteins that may block PNPT1 activity. Indeed, mutations that disrupt the 3'-stem-loop of a decay-resistant ncRNA render the transcript susceptible, while adding a 3'-stem-loop to an mRNA prevents its decay. Thus, PNPT1 release from mitochondria during MOMP initiates apoptotic decay of RNAs lacking 3'-structures.


Subject(s)
Apoptosis , Exoribonucleases/metabolism , Mitochondria/metabolism , RNA, Messenger/metabolism , 3' Untranslated Regions , Apoptosis/drug effects , Caspase 3/metabolism , Cytochromes c/metabolism , Exoribonucleases/antagonists & inhibitors , Exoribonucleases/genetics , HCT116 Cells , Humans , Mitochondrial Membranes/metabolism , Nucleic Acid Conformation , Permeability , Poly(A)-Binding Protein I/chemistry , Poly(A)-Binding Protein I/metabolism , Protein Binding , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA Interference , RNA Stability/drug effects , RNA, Messenger/chemistry , RNA, Small Interfering/metabolism , RNA, Untranslated/chemistry , RNA, Untranslated/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology
12.
Mol Cell ; 84(17): 3192-3208.e11, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39173639

ABSTRACT

Topoisomerase I (TOP1) is an essential enzyme that relaxes DNA to prevent and dissipate torsional stress during transcription. However, the mechanisms underlying the regulation of TOP1 activity remain elusive. Using enhanced cross-linking and immunoprecipitation (eCLIP) and ultraviolet-cross-linked RNA immunoprecipitation followed by total RNA sequencing (UV-RIP-seq) in human colon cancer cells along with RNA electrophoretic mobility shift assays (EMSAs), biolayer interferometry (BLI), and in vitro RNA-binding assays, we identify TOP1 as an RNA-binding protein (RBP). We show that TOP1 directly binds RNA in vitro and in cells and that most RNAs bound by TOP1 are mRNAs. Using a TOP1 RNA-binding mutant and topoisomerase cleavage complex sequencing (TOP1cc-seq) to map TOP1 catalytic activity, we reveal that RNA opposes TOP1 activity as RNA polymerase II (RNAPII) commences transcription of active genes. We further demonstrate the inhibitory role of RNA in regulating TOP1 activity by employing DNA supercoiling assays and magnetic tweezers. These findings provide insight into the coordinated actions of RNA and TOP1 in regulating DNA topological stress intrinsic to RNAPII-dependent transcription.


Subject(s)
DNA Topoisomerases, Type I , RNA Polymerase II , RNA-Binding Proteins , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type I/genetics , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Protein Binding , DNA/metabolism , DNA/genetics , Transcription, Genetic , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA/metabolism , RNA/genetics , Cell Line, Tumor , DNA, Superhelical/metabolism , DNA, Superhelical/genetics , HCT116 Cells , Nucleic Acid Conformation
13.
Cell ; 164(1-2): 69-80, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26724866

ABSTRACT

Long noncoding RNAs (lncRNAs) have emerged as regulators of diverse biological processes. Here, we describe the initial functional analysis of a poorly characterized human lncRNA (LINC00657) that is induced after DNA damage, which we termed "noncoding RNA activated by DNA damage", or NORAD. NORAD is highly conserved and abundant, with expression levels of approximately 500-1,000 copies per cell. Remarkably, inactivation of NORAD triggers dramatic aneuploidy in previously karyotypically stable cell lines. NORAD maintains genomic stability by sequestering PUMILIO proteins, which repress the stability and translation of mRNAs to which they bind. In the absence of NORAD, PUMILIO proteins drive chromosomal instability by hyperactively repressing mitotic, DNA repair, and DNA replication factors. These findings introduce a mechanism that regulates the activity of a deeply conserved and highly dosage-sensitive family of RNA binding proteins and reveal unanticipated roles for a lncRNA and PUMILIO proteins in the maintenance of genomic stability.


Subject(s)
Genomic Instability , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , Animals , Base Sequence , Chromosomal Instability , HCT116 Cells , Humans , Mice , Ploidies , RNA, Long Noncoding/chemistry , RNA, Long Noncoding/genetics
14.
Mol Cell ; 82(4): 785-802.e10, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35104452

ABSTRACT

p53, master transcriptional regulator of the genotoxic stress response, controls cell-cycle arrest and apoptosis following DNA damage. Here, we identify a p53-induced lncRNA suicidal PARP-1 cleavage enhancer (SPARCLE) adjacent to miR-34b/c required for p53-mediated apoptosis. SPARCLE is a ∼770-nt, nuclear lncRNA induced 1 day after DNA damage. Despite low expression (<16 copies/cell), SPARCLE deletion increases DNA repair and reduces DNA-damage-induced apoptosis as much as p53 deficiency, while its overexpression restores apoptosis in p53-deficient cells. SPARCLE does not alter gene expression. SPARCLE binds to PARP-1 with nanomolar affinity and causes apoptosis by acting as a caspase-3 cofactor for PARP-1 cleavage, which separates PARP-1's N-terminal (NT) DNA-binding domain from its catalytic domains. NT-PARP-1 inhibits DNA repair. Expressing NT-PARP-1 in SPARCLE-deficient cells increases unrepaired DNA damage and restores apoptosis after DNA damage. Thus, SPARCLE enhances p53-induced apoptosis by promoting PARP-1 cleavage, which interferes with DNA-damage repair.


Subject(s)
Apoptosis , Caspase 3/metabolism , Colorectal Neoplasms/enzymology , DNA Breaks, Double-Stranded , DNA Breaks, Single-Stranded , Poly (ADP-Ribose) Polymerase-1/metabolism , RNA, Long Noncoding/metabolism , Tumor Suppressor Protein p53/metabolism , A549 Cells , Animals , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , DNA Repair , Gene Expression Regulation, Neoplastic , HCT116 Cells , HEK293 Cells , Hep G2 Cells , Humans , Male , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , RNA, Long Noncoding/genetics , Signal Transduction , Tumor Suppressor Protein p53/genetics
15.
Mol Cell ; 82(4): 770-784.e9, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35114100

ABSTRACT

The mTOR complex 1 (mTORC1) is an essential metabolic hub that coordinates cellular metabolism with the availability of nutrients, including amino acids. Sestrin2 has been identified as a cytosolic leucine sensor that transmits leucine status signals to mTORC1. In this study, we identify an E3 ubiquitin ligase RING finger protein 167 (RNF167) and a deubiquitinase STAMBPL1 that function in concert to control the polyubiquitination level of Sestrin2 in response to leucine availability. Ubiquitination of Sestrin2 promotes its interaction with GATOR2 and inhibits mTORC1 signaling. Bioinformatic analysis reveals decreased RNF167 expression and increased STAMBPL1 expression in gastric and colorectal tumors. Knockout of STAMBPL1 or correction of the heterozygous STAMBPL1 mutation in a human colon cancer cell line suppresses xenograft tumor growth. Lastly, a cell-permeable peptide that blocks the STAMBPL1-Sestrin2 interaction inhibits mTORC1 and provides a potential option for cancer therapy.


Subject(s)
Colorectal Neoplasms/enzymology , Peptide Hydrolases/metabolism , Stomach Neoplasms/enzymology , TOR Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Caco-2 Cells , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Disease Progression , Gene Expression Regulation, Neoplastic , HCT116 Cells , HEK293 Cells , Humans , Leucine/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Inbred BALB C , Mice, Nude , Mutation , Nuclear Proteins/metabolism , Peptide Hydrolases/genetics , Signal Transduction , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Tumor Burden , Ubiquitin-Protein Ligases/genetics , Ubiquitination
16.
Mol Cell ; 82(1): 140-158.e12, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34890565

ABSTRACT

High-intensity transcription and replication supercoil DNA to levels that can impede or halt these processes. As a potent transcription amplifier and replication accelerator, the proto-oncogene MYC must manage this interfering torsional stress. By comparing gene expression with the recruitment of topoisomerases and MYC to promoters, we surmised a direct association of MYC with topoisomerase 1 (TOP1) and TOP2 that was confirmed in vitro and in cells. Beyond recruiting topoisomerases, MYC directly stimulates their activities. We identify a MYC-nucleated "topoisome" complex that unites TOP1 and TOP2 and increases their levels and activities at promoters, gene bodies, and enhancers. Whether TOP2A or TOP2B is included in the topoisome is dictated by the presence of MYC versus MYCN, respectively. Thus, in vitro and in cells, MYC assembles tools that simplify DNA topology and promote genome function under high output conditions.


Subject(s)
DNA Topoisomerases, Type II/metabolism , Neoplasms/enzymology , Poly-ADP-Ribose Binding Proteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Transcription, Genetic , Animals , DNA Replication , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type II/genetics , DNA, Neoplasm/biosynthesis , DNA, Neoplasm/genetics , DNA, Superhelical/biosynthesis , DNA, Superhelical/genetics , Enzyme Activation , Gene Expression Regulation, Neoplastic , HCT116 Cells , Humans , K562 Cells , Multienzyme Complexes , Neoplasms/genetics , Neoplasms/pathology , Poly-ADP-Ribose Binding Proteins/genetics , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins c-myc/genetics , Rats
17.
Mol Cell ; 82(2): 404-419.e9, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34798057

ABSTRACT

The epitranscriptome has emerged as a new fundamental layer of control of gene expression. Nevertheless, the determination of the transcriptome-wide occupancy and function of RNA modifications remains challenging. Here we have developed Rho-seq, an integrated pipeline detecting a range of modifications through differential modification-dependent rhodamine labeling. Using Rho-seq, we confirm that the reduction of uridine to dihydrouridine (D) by the Dus reductase enzymes targets tRNAs in E. coli and fission yeast. We find that the D modification is also present on fission yeast mRNAs, particularly those encoding cytoskeleton-related proteins, which is supported by large-scale proteome analyses and ribosome profiling. We show that the α-tubulin encoding mRNA nda2 undergoes Dus3-dependent dihydrouridylation, which affects its translation. The absence of the modification on nda2 mRNA strongly impacts meiotic chromosome segregation, resulting in low gamete viability. Applying Rho-seq to human cells revealed that tubulin mRNA dihydrouridylation is evolutionarily conserved.


Subject(s)
Chromosome Segregation , Escherichia coli/genetics , Meiosis , RNA Processing, Post-Transcriptional , RNA, Bacterial/genetics , RNA, Fungal/genetics , RNA, Messenger/genetics , Schizosaccharomyces/genetics , Uridine/metabolism , Chromosomes, Bacterial , Chromosomes, Fungal , Chromosomes, Human , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Evolution, Molecular , HCT116 Cells , Humans , Oxidation-Reduction , RNA, Bacterial/metabolism , RNA, Fungal/metabolism , RNA, Messenger/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Schizosaccharomyces/metabolism , Sequence Analysis, RNA , Tubulin/genetics , Tubulin/metabolism
18.
Mol Cell ; 82(1): 123-139.e7, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34910943

ABSTRACT

Mediator kinases (CDK8/19) are transcriptional regulators broadly implicated in cancer. Despite their central role in fine-tuning gene-expression programs, we find complete loss of CDK8/19 is tolerated in colorectal cancer (CRC) cells. Using orthogonal functional genomic and pharmacological screens, we identify BET protein inhibition as a distinct vulnerability in CDK8/19-depleted cells. Combined CDK8/19 and BET inhibition led to synergistic growth retardation in human and mouse models of CRC. Strikingly, depletion of CDK8/19 in these cells led to global repression of RNA polymerase II (Pol II) promoter occupancy and transcription. Concurrently, loss of Mediator kinase led to a profound increase in MED12 and BRD4 co-occupancy at enhancer elements and increased dependence on BET proteins for the transcriptional output of cell-essential genes. In total, this work demonstrates a synthetic lethal interaction between Mediator kinase and BET proteins and exposes a therapeutic vulnerability that can be targeted using combination therapies.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Proliferation , Colorectal Neoplasms/enzymology , Cyclin-Dependent Kinase 8/metabolism , Cyclin-Dependent Kinases/metabolism , Mediator Complex/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Adult , Aged , Aged, 80 and over , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Binding Sites , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinases/genetics , Enhancer Elements, Genetic , Female , Gene Expression Regulation, Neoplastic , HCT116 Cells , Humans , Male , Mediator Complex/antagonists & inhibitors , Mediator Complex/genetics , Mice, Inbred BALB C , Mice, Knockout , Mice, Nude , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Protein Kinase Inhibitors/pharmacology , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Signal Transduction , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription, Genetic , Tumor Burden , Xenograft Model Antitumor Assays
19.
Cell ; 156(5): 1017-31, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24581499

ABSTRACT

The spindle assembly checkpoint (SAC) delays anaphase until all chromosomes are bioriented on the mitotic spindle. Under current models, unattached kinetochores transduce the SAC by catalyzing the intramitotic production of a diffusible inhibitor of APC/C(Cdc20) (the anaphase-promoting complex/cyclosome and its coactivator Cdc20, a large ubiquitin ligase). Here we show that nuclear pore complexes (NPCs) in interphase cells also function as scaffolds for anaphase-inhibitory signaling. This role is mediated by Mad1-Mad2 complexes tethered to the nuclear basket, which activate soluble Mad2 as a binding partner and inhibitor of Cdc20 in the cytoplasm. Displacing Mad1-Mad2 from nuclear pores accelerated anaphase onset, prevented effective correction of merotelic errors, and increased the threshold of kinetochore-dependent signaling needed to halt mitosis in response to spindle poisons. A heterologous Mad1-NPC tether restored Cdc20 inhibitor production and normal M phase control. We conclude that nuclear pores and kinetochores both emit "wait anaphase" signals that preserve genome integrity.


Subject(s)
Anaphase , Cell Cycle Proteins/metabolism , M Phase Cell Cycle Checkpoints , Mad2 Proteins/metabolism , Nuclear Pore/metabolism , Nuclear Proteins/metabolism , Active Transport, Cell Nucleus , Cell Cycle Proteins/genetics , Dimerization , HCT116 Cells , HeLa Cells , Humans , Interphase , Kinetochores/metabolism , Mitosis , Nuclear Proteins/genetics
20.
Cell ; 158(1): 171-84, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24954536

ABSTRACT

Cancer cells that express oncogenic alleles of RAS typically require sustained expression of the mutant allele for survival, but the molecular basis of this oncogene dependency remains incompletely understood. To identify genes that can functionally substitute for oncogenic RAS, we systematically expressed 15,294 open reading frames in a human KRAS-dependent colon cancer cell line engineered to express an inducible KRAS-specific shRNA. We found 147 genes that promoted survival upon KRAS suppression. In particular, the transcriptional coactivator YAP1 rescued cell viability in KRAS-dependent cells upon suppression of KRAS and was required for KRAS-induced cell transformation. Acquired resistance to Kras suppression in a Kras-driven murine lung cancer model also involved increased YAP1 signaling. KRAS and YAP1 converge on the transcription factor FOS and activate a transcriptional program involved in regulating the epithelial-mesenchymal transition (EMT). Together, these findings implicate transcriptional regulation of EMT by YAP1 as a significant component of oncogenic RAS signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Survival , Colonic Neoplasms/drug therapy , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Lung Neoplasms/drug therapy , Phosphoproteins/metabolism , Proto-Oncogene Proteins/metabolism , ras Proteins/metabolism , Animals , Cell Cycle Proteins , Colonic Neoplasms/metabolism , Drug Delivery Systems , HCT116 Cells , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction , Transcription Factors , Transcriptional Activation , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL