ABSTRACT
Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.
Subject(s)
Coronavirus Infections/genetics , Genome-Wide Association Study , Host-Pathogen Interactions , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/immunology , COVID-19/virology , Cell Line , Chlorocebus aethiops , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus/classification , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Gene Knockout Techniques , Gene Regulatory Networks , HEK293 Cells , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Host-Pathogen Interactions/drug effects , Humans , Vero Cells , Virus InternalizationABSTRACT
Thousands of genetic variants in protein-coding genes have been linked to disease. However, the functional impact of most variants is unknown as they occur within intrinsically disordered protein regions that have poorly defined functions1-3. Intrinsically disordered regions can mediate phase separation and the formation of biomolecular condensates, such as the nucleolus4,5. This suggests that mutations in disordered proteins may alter condensate properties and function6-8. Here we show that a subset of disease-associated variants in disordered regions alter phase separation, cause mispartitioning into the nucleolus and disrupt nucleolar function. We discover de novo frameshift variants in HMGB1 that cause brachyphalangy, polydactyly and tibial aplasia syndrome, a rare complex malformation syndrome. The frameshifts replace the intrinsically disordered acidic tail of HMGB1 with an arginine-rich basic tail. The mutant tail alters HMGB1 phase separation, enhances its partitioning into the nucleolus and causes nucleolar dysfunction. We built a catalogue of more than 200,000 variants in disordered carboxy-terminal tails and identified more than 600 frameshifts that create arginine-rich basic tails in transcription factors and other proteins. For 12 out of the 13 disease-associated variants tested, the mutation enhanced partitioning into the nucleolus, and several variants altered rRNA biogenesis. These data identify the cause of a rare complex syndrome and suggest that a large number of genetic variants may dysregulate nucleoli and other biomolecular condensates in humans.
Subject(s)
Cell Nucleolus , HMGB1 Protein , Humans , Arginine/genetics , Arginine/metabolism , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , Cell Nucleolus/pathology , HMGB1 Protein/chemistry , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Syndrome , Frameshift Mutation , Phase TransitionABSTRACT
Inducing graft acceptance without chronic immunosuppression remains an elusive goal in organ transplantation. Using an experimental transplantation mouse model, we demonstrate that local macrophage activation through dectin-1 and toll-like receptor 4 (TLR4) drives trained immunity-associated cytokine production during allograft rejection. We conducted nanoimmunotherapeutic studies and found that a short-term mTOR-specific high-density lipoprotein (HDL) nanobiologic treatment (mTORi-HDL) averted macrophage aerobic glycolysis and the epigenetic modifications underlying inflammatory cytokine production. The resulting regulatory macrophages prevented alloreactive CD8+ T cell-mediated immunity and promoted tolerogenic CD4+ regulatory T (Treg) cell expansion. To enhance therapeutic efficacy, we complemented the mTORi-HDL treatment with a CD40-TRAF6-specific nanobiologic (TRAF6i-HDL) that inhibits co-stimulation. This synergistic nanoimmunotherapy resulted in indefinite allograft survival. Together, we show that HDL-based nanoimmunotherapy can be employed to control macrophage function in vivo. Our strategy, focused on preventing inflammatory innate immune responses, provides a framework for developing targeted therapies that promote immunological tolerance.
Subject(s)
Graft Survival/immunology , Immunosuppression Therapy , Inflammation/immunology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Organ Transplantation , Allografts , Animals , Biomarkers , HMGB1 Protein/genetics , Immune Tolerance , Immunity, Innate , Immunologic Memory , Macrophages/immunology , Macrophages/metabolism , Mice , TOR Serine-Threonine Kinases/metabolism , Vimentin/geneticsABSTRACT
Caspase-11, a cytosolic endotoxin (lipopolysaccharide: LPS) receptor, mediates pyroptosis, a lytic form of cell death. Caspase-11-dependent pyroptosis mediates lethality in endotoxemia, but it is unclear how LPS is delivered into the cytosol for the activation of caspase-11. Here we discovered that hepatocyte-released high mobility group box 1 (HMGB1) was required for caspase-11-dependent pyroptosis and lethality in endotoxemia and bacterial sepsis. Mechanistically, hepatocyte-released HMGB1 bound LPS and targeted its internalization into the lysosomes of macrophages and endothelial cells via the receptor for advanced glycation end-products (RAGE). Subsequently, HMGB1 permeabilized the phospholipid bilayer in the acidic environment of lysosomes. This resulted in LPS leakage into the cytosol and caspase-11 activation. Depletion of hepatocyte HMGB1, inhibition of hepatocyte HMGB1 release, neutralizing extracellular HMGB1, or RAGE deficiency prevented caspase-11-dependent pyroptosis and death in endotoxemia and bacterial sepsis. These findings indicate that HMGB1 interacts with LPS to mediate caspase-11-dependent pyroptosis in lethal sepsis.
Subject(s)
Caspases/immunology , Endotoxins/immunology , HMGB1 Protein/immunology , Pyroptosis/immunology , Sepsis/immunology , Animals , Caspases/genetics , Caspases/metabolism , Cells, Cultured , Endothelial Cells/immunology , Endothelial Cells/metabolism , Endotoxins/metabolism , HEK293 Cells , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Humans , Lipopolysaccharides/immunology , Lipopolysaccharides/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Receptor for Advanced Glycation End Products/immunology , Receptor for Advanced Glycation End Products/metabolism , Sepsis/genetics , Sepsis/metabolism , THP-1 CellsABSTRACT
To initiate V(D)J recombination for generating the adaptive immune response of vertebrates, RAG1/2 recombinase cleaves DNA at a pair of recombination signal sequences, the 12- and 23-RSS. We have determined crystal and cryo-EM structures of RAG1/2 with DNA in the pre-reaction and hairpin-forming complexes up to 2.75 Å resolution. Both protein and DNA exhibit structural plasticity and undergo dramatic conformational changes. Coding-flank DNAs extensively rotate, shift, and deform for nicking and hairpin formation. Two intertwined RAG1 subunits crisscross four times between the asymmetric pair of severely bent 12/23-RSS DNAs. Location-sensitive bending of 60° and 150° in 12- and 23-RSS spacers, respectively, must occur for RAG1/2 to capture the nonamers and pair the heptamers for symmetric double-strand breakage. DNA pairing is thus sequence-context dependent and structure specific, which partly explains the "beyond 12/23" restriction. Finally, catalysis in crystallo reveals the process of DNA hairpin formation and its stabilization by interleaved base stacking.
Subject(s)
DNA Breaks, Double-Stranded , DNA-Binding Proteins/metabolism , DNA/metabolism , Homeodomain Proteins/metabolism , V(D)J Recombination , Binding Sites , Catalysis , Cryoelectron Microscopy , Crystallography, X-Ray , DNA/genetics , DNA/ultrastructure , DNA-Binding Proteins/genetics , DNA-Binding Proteins/ultrastructure , HEK293 Cells , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/ultrastructure , Humans , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Structure-Activity RelationshipABSTRACT
Asbestos is the main cause of malignant mesothelioma. Previous studies have linked asbestos-induced mesothelioma to the release of HMGB1 from the nucleus to the cytoplasm, and from the cytoplasm to the extracellular space. In the cytoplasm, HMGB1 induces autophagy impairing asbestos-induced cell death. Extracellularly, HMGB1 stimulates the secretion of TNFα. Jointly, these two cytokines kick-start a chronic inflammatory process that over time promotes mesothelioma development. Whether the main source of extracellular HMGB1 were the mesothelial cells, the inflammatory cells, or both was unsolved. This information is critical to identify the targets and design preventive/therapeutic strategies to interfere with asbestos-induced mesothelioma. To address this issue, we developed the conditional mesothelial HMGB1-knockout (Hmgb1ΔpMeso) and the conditional myelomonocytic-lineage HMGB1-knockout (Hmgb1ΔMylc) mouse models. We establish here that HMGB1 is mainly produced and released by the mesothelial cells during the early phases of inflammation following asbestos exposure. The release of HMGB1 from mesothelial cells leads to atypical mesothelial hyperplasia, and in some animals, this evolves over the years into mesothelioma. We found that Hmgb1ΔpMeso, whose mesothelial cells cannot produce HMGB1, show a greatly reduced inflammatory response to asbestos, and their mesothelial cells express and secrete significantly reduced levels of TNFα. Moreover, the tissue microenvironment in areas of asbestos deposits displays an increased fraction of M1-polarized macrophages compared to M2 macrophages. Supporting the biological significance of these findings, Hmgb1ΔpMeso mice showed a delayed and reduced incidence of mesothelioma and an increased mesothelioma-specific survival. Altogether, our study provides a biological explanation for HMGB1 as a driver of asbestos-induced mesothelioma.
Subject(s)
Asbestos , HMGB1 Protein , Mesothelioma, Malignant , Mesothelioma , Animals , Mice , Tumor Necrosis Factor-alpha/genetics , HMGB1 Protein/genetics , Mesothelioma/chemically induced , Mesothelioma/genetics , Asbestos/toxicity , Inflammation , Tumor MicroenvironmentABSTRACT
Studies universally find early age of drinking onset is linked to lifelong risks of alcohol problems and alcohol use disorder (AUD). Assessment of the lasting effect of drinking during adolescent development in humans is confounded by the diversity of environmental and genetic factors that affect adolescent development, including emerging personality disorders and progressive increases in drinking trajectories into adulthood. Preclinical studies using an adolescent intermittent ethanol (AIE) exposure rat model of underage binge drinking avoid the human confounds and support lifelong changes that increase risks. AIE increases adult alcohol drinking, risky decision-making, reward-seeking, and anxiety as well as reductions in executive function that all increase risks for the development of an AUD. AIE causes persistent increases in brain neuroimmune signaling high-mobility group box 1 (HMGB1), Toll-like receptor, receptor for advanced glycation end products, and innate immune genes that are also found to be increased in human AUD brain. HMGB1 is released from cells by ethanol, both free and within extracellular vesicles, that act on neurons and glia, shifting transcription and cellular phenotype. AIE-induced decreases in adult hippocampal neurogenesis and loss of basal forebrain cholinergic neurons are reviewed as examples of persistent AIE-induced pathology. Both are prevented and reversed by anti-inflammatory and epigenetic drugs. Findings suggest AIE-increased HMGB1 signaling induces the RE-1 silencing transcript blunting cholinergic gene expression, shifting neuronal phenotype. Inhibition of HMGB1 neuroimmune signaling, histone methylation enzymes, and galantamine, the cholinesterase inhibitor, both prevent and reverse AIE pathology. These findings provide new targets that may reverse AUD neuropathology as well as other brain diseases linked to neuroimmune signaling. SIGNIFICANCE STATEMENT: Adolescent underage binge drinking studies find that earlier adolescent drinking is associated with lifelong alcohol problems including high levels of lifetime alcohol use disorder (AUD). Preclinical studies find the underage binge drinking adolescent intermittent ethanol (AIE) model causes lasting changes in adults that increase risks of developing adult alcohol problems. Loss of hippocampal neurogenesis and loss of basal forebrain cholinergic neurons provide examples of how AIE-induced epigenetic and neuroimmune signaling provide novel therapeutic targets for adult AUD.
Subject(s)
Alcoholism , Binge Drinking , HMGB1 Protein , Underage Drinking , Adolescent , Animals , Humans , Rats , Alcohol Drinking , Alcoholism/drug therapy , Alcoholism/genetics , Alcoholism/pathology , Binge Drinking/genetics , Binge Drinking/metabolism , Binge Drinking/pathology , Epigenesis, Genetic , Ethanol/adverse effects , HMGB1 Protein/genetics , HMGB1 Protein/metabolismABSTRACT
Viruses hijack host proteins to promote infection and dampen host defenses. Adenovirus encodes the multifunctional protein VII that serves both to compact viral genomes inside the virion and disrupt host chromatin. Protein VII binds the abundant nuclear protein high mobility group box 1 (HMGB1) and sequesters HMGB1 in chromatin. HMGB1 is an abundant host nuclear protein that can also be released from infected cells as an alarmin to amplify inflammatory responses. By sequestering HMGB1, protein VII prevents its release, thus inhibiting downstream inflammatory signaling. However, the consequences of this chromatin sequestration on host transcription are unknown. Here, we employ bacterial two-hybrid interaction assays and human cell culture to interrogate the mechanism of the protein VII-HMGB1 interaction. HMGB1 contains two DNA binding domains, the A- and B-boxes, that bend DNA to promote transcription factor binding while the C-terminal tail regulates this interaction. We demonstrate that protein VII interacts directly with the A-box of HMGB1, an interaction that is inhibited by the HMGB1 C-terminal tail. By cellular fractionation, we show that protein VII renders A-box containing constructs insoluble, thereby acting to prevent their release from cells. This sequestration is not dependent on HMGB1's ability to bind DNA but does require post-translational modifications on protein VII. Importantly, we demonstrate that protein VII inhibits expression of interferon ß, in an HMGB1-dependent manner, but does not affect transcription of downstream interferon-stimulated genes. Together, our results demonstrate that protein VII specifically harnesses HMGB1 through its A-box domain to depress the innate immune response and promote infection.
Subject(s)
HMGB1 Protein , Interferons , Humans , HMGB1 Protein/genetics , Nuclear Proteins , Chromatin , AdenoviridaeABSTRACT
Diabetic kidney disease (DKD) is the predominant type of end-stage renal disease. Increasing evidence suggests thatglomerular mesangial cell (MC) inflammation is pivotal for cell proliferation and DKD progression. However, the exactmechanism of MC inflammation remains largely unknown. This study aims to elucidate the role of inflammatoryfactor high-mobility group box 1 (Hmgb1) in DKD. Inflammatory factors related to DKD progression are screened viaRNA sequencing (RNA-seq). In vivo and in vitro experiments, including db/db diabetic mice model, CCK-8 assay, EdUassay, flow cytometric analysis, Co-IP, FISH, qRT-PCR, western blot, single cell nuclear RNA sequencing (snRNA-seq),are performed to investigate the effects of Hmgb1 on the inflammatory behavior of MCs in DKD. Here, wedemonstrate that Hmgb1 is significantly upregulated in renal tissues of DKD mice and mesangial cells cultured withhigh glucose, and Hmgb1 cytopasmic accumulation promotes MC inflammation and proliferation. Mechanistically,Hmgb1 cytopasmic accumulation is two-way regulated by MC-specific cyto-lncRNA E130307A14Rik interaction andlactate-mediated acetylated and lactylated Hmgb1 nucleocytoplasmic translocation, and accelerates NFκB signalingpathway activation via directly binding to IκBα. Together, this work reveals the promoting role of Hmgb1 on MCinflammation and proliferation in DKD and helps expound the regulation of Hmgb1 cytopasmic accumulation in twoways. In particular, Hmgb1 may be a promising therapeutic target for DKD.
Subject(s)
Diabetic Nephropathies , HMGB1 Protein , Mesangial Cells , NF-kappa B , Signal Transduction , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Mesangial Cells/metabolism , Mesangial Cells/pathology , Mice , NF-kappa B/metabolism , Male , Cell Proliferation , Disease Progression , Mice, Inbred C57BL , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Cytosol/metabolism , Humans , Inflammation/pathology , Inflammation/metabolismABSTRACT
DNA damage induced by oxidative stress during cardiac hypertrophy activates the ataxia telangiectasia mutated (ATM)-mediated DNA damage response (DDR) signaling, in turn aggravating the pathological cardiomyocyte growth. This study aims to identify the functional associations of long noncoding RNA (lncRNAs) with cardiac hypertrophy and DDR. The altered ventricular lncRNAs in the mice between sham and transverse aortic constriction (TAC) group were identified by microarray analysis, and a novel lncRNA AK144717 was found to gradually upregulate during the development of pathological cardiac hypertrophy induced by TAC surgery or angiotensin II (Ang II) stimulation. Silencing AK144717 had a similar anti-hypertrophic effect to that of ATM inhibitor KU55933 and also suppressed the activated ATM-DDR signaling induced by hypertrophic stimuli. The involvement of AK144717 in DDR and cardiac hypertrophy was closely related to its interaction with HMGB1, as silencing HMGB1 abolished the effects of AK144717 knockdown. The binding of AK144717 to HMGB1 prevented the interaction between HMGB1 and SIRT1, contributing to the increased acetylation and then cytosolic translocation of HMGB1. Overall, our study highlights the role of AK144717 in the hypertrophic response by interacting with HMGB1 and regulating DDR, hinting that AK144717 is a promising therapeutic target for pathological cardiac growth.
Subject(s)
Cardiomegaly , DNA Damage , HMGB1 Protein , RNA, Long Noncoding , Animals , Male , Mice , Acetylation , Angiotensin II/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Cardiomegaly/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction , Sirtuin 1/metabolism , Sirtuin 1/geneticsABSTRACT
Intimal hyperplasia is a complicated pathophysiological phenomenon attributable to in-stent restenosis, and the underlying mechanism remains unclear. Interleukin enhancer-binding factor 3 (ILF3), a double-stranded RNA-binding protein involved in regulating mRNA stability, has been recently demonstrated to assume a crucial role in cardiovascular disease; nevertheless, its impact on intimal hyperplasia remains unknown. In current study, we used samples of human restenotic arteries and rodent models of intimal hyperplasia, we found that vascular smooth muscle cell (VSMC) ILF3 expression was markedly elevated in human restenotic arteries and murine ligated carotid arteries. SMC-specific ILF3 knockout mice significantly suppressed injury induced neointimal formation. In vitro, platelet-derived growth factor type BB (PDGF-BB) treatment elevated the level of VSMC ILF3 in a dose- and time-dependent manner. ILF3 silencing markedly inhibited PDGF-BB-induced phenotype switching, proliferation, and migration in VSMCs. Transcriptome sequencing and RNA immunoprecipitation sequencing depicted that ILF3 maintained its stability upon binding to the mRNA of the high-mobility group box 1 protein (HMGB1), thereby exerting an inhibitory effect on the transcription of dual specificity phosphatase 16 (DUSP16) through enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3). Therefore, the results both in vitro and in vivo indicated that the loss of ILF3 in VSMC ameliorated neointimal hyperplasia by regulating the STAT3/DUSP16 axis through the degradation of HMGB1 mRNA. Our findings revealed that vascular injury activates VSMC ILF3, which in turn promotes intima formation. Consequently, targeting specific VSMC ILF3 may present a potential therapeutic strategy for ameliorating cardiovascular restenosis.
Subject(s)
HMGB1 Protein , Hyperplasia , Mice, Knockout , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Nuclear Factor 90 Proteins , RNA Stability , STAT3 Transcription Factor , Tunica Intima , Animals , Humans , Male , Mice , Cell Movement , Cell Proliferation , Disease Models, Animal , Gene Expression Regulation , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , Neointima/pathology , Nuclear Factor 90 Proteins/metabolism , Nuclear Factor 90 Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , STAT3 Transcription Factor/metabolism , Tunica Intima/metabolism , Tunica Intima/pathologyABSTRACT
This study aims to investigate the relationship between toxoplasmosis and this pathway, which may be effective in the formation of epilepsy by acting through the HMGB1/RAGE/TLR4/NF-κB signalling pathway in patients with idiopathic epilepsy. In the study, four different experimental groups were formed by selecting Toxoplasma gondii IgG positive and negative patients with idiopathic epilepsy and healthy controls. Experimental groups were as follows: Group 1: Epilepsy+/Toxo- (E+, T-) (n = 10), Group 2: Epilepsy-/Toxo- (E-, T-) (n = 10), Group 3: Epilepsy-/Toxo+ (E-, T+) (n = 10), Group 4: Epilepsy+/Toxo+ (E+, T+) (n = 10). HMGB1, RAGE, TLR4, TLR1, TLR2, TLR3, IRAK1, IRAK2, IKBKB, IKBKG, BCL3, IL1ß, IL10, 1 L8 and TNFα mRNA expression levels in the HMGB/RAGE/TLR4/NF-κB signalling pathway were determined by quantitative simultaneous PCR (qRT-PCR) after collecting blood samples from all patients in the groups. Statistical analysis was performed by one-way ANOVA followed by LSD post-hoc tests, and p < 0.05 was considered to denote statistical significance. The gene expression levels of HMGB1, TLR4, IL10, IL1B, IL8, and TLR2 were significantly higher in the G1 group than in the other groups (p < 0.05). In the G3 group, RAGE and BCL3 gene expression levels were significantly higher than in the other groups (p < 0.05). In the G4 group, however, IRAK2, IKBKB, and IKBKG gene expression levels were significantly higher than in the other groups (p < 0.05). HMGB1, TLR4, IRAK2, IKBKB, IL10, IL1B, IL1B, and IL8 in this signalling pathway are highly expressed in epilepsy patients in G1 and seizures occur with the stimulation of excitatory mechanisms by acting through this pathway. The signalling pathway in epilepsy may be activated by HMGB1, TLR4, and TLR2, which are considered to increase the level of proinflammatory cytokines. In T. gondii, this pathway is activated by RAGE and BCL3.
Subject(s)
Epilepsy , HMGB1 Protein , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Toxoplasmosis , Humans , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Male , Female , Epilepsy/metabolism , Epilepsy/genetics , Epilepsy/parasitology , Adult , Toxoplasmosis/parasitology , Toxoplasmosis/metabolism , Toxoplasmosis/complications , Toxoplasmosis/blood , Toxoplasmosis/genetics , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Case-Control Studies , Young Adult , Middle Aged , Antigens, Neoplasm , Mitogen-Activated Protein KinasesABSTRACT
BACKGROUND: High-mobility group B1 (HMGB1) is both a DNA binding nuclear factor modulating transcription and a crucial cytokine that mediates the response to both infectious and noninfectious inflammation such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. HMGB1 has been proposed to control ribosome biogenesis, similar as the other members of a class of HMGB proteins. RESULTS: Here, we report that HMGB1 selectively promotes transcription of genes involved in the regulation of transcription, osteoclast differentiation and apoptotic process. Improved RNA immunoprecipitation by UV cross-linking and deep sequencing (iRIP-seq) experiment revealed that HMGB1 selectively bound to mRNAs functioning not only in signal transduction and gene expression, but also in axon guidance, focal adhesion, and extracellular matrix organization. Importantly, HMGB1-bound reads were strongly enriched in specific structured RNAs, including the domain II of 28S rRNA, H/ACA box snoRNAs including snoRNA63 and scaRNAs. RTL-P experiment showed that overexpression of HMGB1 led to a decreased methylation modification of 28S rRNA at position Am2388, Cm2409, and Gm2411. We further showed that HMGB1 overexpression increased ribosome RNA expression levels and enhanced protein synthesis. CONCLUSION: Taken together, our results support a model in which HMGB1 binds to multiple RNA species in human cancer cells, which could at least partially contribute to HMGB1-modulated rRNA modification, protein synthesis function of ribosomes, and differential gene expression including rRNA genes. These findings provide additional mechanistic clues to HMGB1 functions in cancers and cell differentiation.
Subject(s)
HMGB1 Protein , RNA Methylation , Humans , HeLa Cells , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Methylation , RNA, Ribosomal, 28S/metabolism , RNA, Small Nucleolar/chemistry , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , RNA Methylation/geneticsABSTRACT
Tumor cells remodel the phenotype and function of tumor microenvironment (TME) cells to favor tumor progression. Previous studies have shown that neutrophils in TME are polarized to N2 tumor-associated neutrophils (TANs) by tumor derived factors, thus promoting tumor growth and metastasis, angiogenesis, therapy resistance, and immunosuppression. Exosomes act as critical intercellular messengers in human health and diseases including cancer. So far, the biological roles of exosomes from N2 TANs in gastric cancer have not been well characterized. Herein, we represented the first report that exosomes from N2 TANs promoted gastric cancer metastasis in vitro and in vivo. We found that exosomes from N2 TANs transferred miR-4745-5p/3911 to gastric cancer cells to downregulate SLIT2 (slit guidance ligand 2) gene expression. Adenovirus-mediated overexpression of SLIT2 reversed the promotion of gastric cancer metastasis by N2 TANs derived exosomes. We further revealed that gastric cancer cells induced glucose metabolic reprogramming in neutrophils through exosomal HMGB1 (high mobility group protein B1)/NF-κB pathway, which mediated neutrophil N2 polarization and miR-4745-5p/3911 upregulation. We further employed ddPCR (droplet digital PCR) to detect the expression of miR-4745-5p/3911 in N2 TANs exosomes from human serum samples and found their increased levels in gastric cancer patients compared to healthy controls and benign gastric disease patients. Conclusively, our results indicate that N2 TANs facilitate cancer metastasis via regulation of SLIT2 in gastric cancer cells by exosomal miR-4745-5p/3911, which provides a new insight into the roles of TME cells derived exosomes in gastric cancer metastasis and offers a potential biomarker for gastric cancer diagnosis.
Subject(s)
Exosomes , Gene Expression Regulation, Neoplastic , Intercellular Signaling Peptides and Proteins , MicroRNAs , Nerve Tissue Proteins , Neutrophils , Stomach Neoplasms , Tumor Microenvironment , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Exosomes/metabolism , Exosomes/genetics , Humans , Neutrophils/metabolism , Neutrophils/pathology , MicroRNAs/genetics , Animals , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Cell Line, Tumor , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Tumor Microenvironment/genetics , Neoplasm Metastasis , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , MaleABSTRACT
Jawed vertebrate adaptive immunity relies on the RAG1/RAG2 (RAG) recombinase, a domesticated transposase, for assembly of antigen receptor genes. Using an integration-activated form of RAG1 with methionine at residue 848 and cryo-electron microscopy, we determined structures that capture RAG engaged with transposon ends and U-shaped target DNA prior to integration (the target capture complex) and two forms of the RAG strand transfer complex that differ based on whether target site DNA is annealed or dynamic. Target site DNA base unstacking, flipping, and melting by RAG1 methionine 848 explain how this residue activates transposition, how RAG can stabilize sharp bends in target DNA, and why replacement of residue 848 by arginine during RAG domestication led to suppression of transposition activity. RAG2 extends a jawed vertebrate-specific loop to interact with target site DNA, and functional assays demonstrate that this loop represents another evolutionary adaptation acquired during RAG domestication to inhibit transposition. Our findings identify mechanistic principles of the final step in cut-and-paste transposition and the molecular and structural logic underlying the transformation of RAG from transposase to recombinase.
Subject(s)
DNA-Binding Proteins/chemistry , Evolution, Molecular , Homeodomain Proteins/chemistry , Recombinases/chemistry , Animals , Cryoelectron Microscopy , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HMGB1 Protein/chemistry , HMGB1 Protein/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Models, Molecular , Nuclear Proteins , Protein Conformation , Recombinases/genetics , Recombination, Genetic , Transposases/chemistry , Transposases/genetics , Transposases/metabolism , VertebratesABSTRACT
BACKGROUND: Macrophage-derived extracellular vesicle (macrophage-EV) is highly studied for its regulatory role in atherosclerosis (AS). Our current study tried to elucidate the possible role of macrophage-EV loaded with small interfering RNA against high-mobility group box 1 (siHMGB1) affecting atherosclerotic plaque formation. METHODS: In silico analysis was performed to find critical factors in mouse atherosclerotic plaque formation. EVs secreted by RAW 264.7 cells were collected by ultracentrifugation and characterized, followed by the preparation of macrophage-EV-loaded siHMGB1 (macrophage-EV/siHMGB1). ApoE-/- mice were used to construct an AS mouse model by a high-fat diet, followed by injection of macrophage-EV/siHMGB1 to assess the in vivo effect of macrophage-EV/siHMGB1 on AS mice. RAW264.7 cells were subjected to ox-LDL, LPS or macrophage-EV/siHMGB1 for analyzing the in vitro effect of macrophage-EV/siHMGB1 on macrophage pyrophosis and inflammation. RESULTS: In silico analysis found that HMGB1 was closely related to the development of AS. Macrophage-EV/siHMGB could inhibit the release of HMGB1 from macrophages to outside cells, and the reduced HMGB1 release could inhibit foam cell formation. Besides, macrophage-EV/siHMGB also inhibited the LPS-induced Caspase-11 activation, thus inhibiting macrophage pyroptosis and preventing atherosclerotic plaque formation. CONCLUSION: Our results proved that macrophage-EV/siHMGB could inhibit foam cell formation and suppress macrophage pyroptosis, finally preventing atherosclerotic plaque formation in AS mice.
Subject(s)
Atherosclerosis , Extracellular Vesicles , HMGB1 Protein , Plaque, Atherosclerotic , Animals , Mice , Apolipoproteins E/genetics , Atherosclerosis/genetics , Caspases , Down-Regulation , HMGB1 Protein/genetics , Lipopolysaccharides/pharmacology , Macrophages , PyroptosisABSTRACT
OBJECTIVE: The purpose of this study is to investigate the role of high mobility group protein B1 (HMGB1) in placental development and fetal growth. METHODS: We employed the Cre-loxP recombination system to establish a placenta-specific HMGB1 knockout mouse model. Breeding HMGB1flox/flox mice with Elf5-Cre mice facilitated the knockout, leveraging Elf5 expression in extra-embryonic ectoderm, ectoplacental cone, and trophoblast giant cells at 12.5 days of embryonic development. The primary goal of this model was to elucidate the molecular mechanism of HMGB1 in placental development, assessing parameters such as placental weight, fetal weight, and bone development. Additionally, we utilized lentiviral interference and overexpression of HMGB1 in human trophoblast cells to further investigate HMGB1's functional role. RESULTS: Our findings indicate that the HMGB1flox/floxElf5cre/+ mouse displays fetal growth restriction, characterized by decreased placental and fetal weight and impaired bone development. The absence of HMGB1 inhibits autophagosome formation, impairs lysosomal degradation, and disrupts autophagic flux. Depletion of HMGB1 in human trophoblast cells also suppresses cell viability, proliferation, migration, and invasion by inhibiting the ERK signaling pathway. Overexpression of HMGB1 observed the opposite phenotypes. CONCLUSIONS: HMGB1 participates in the regulation of autophagy through the ERK signaling pathway and affects placental development.
Subject(s)
Autophagy , HMGB1 Protein , MAP Kinase Signaling System , Placenta , Trophoblasts , Animals , Female , Humans , Mice , Pregnancy , Autophagy/physiology , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , MAP Kinase Signaling System/physiology , Mice, Knockout , Placenta/metabolism , Placentation/physiology , Trophoblasts/metabolism , Trophoblasts/physiology , MaleABSTRACT
The clade III subfamily of OsSWEETs includes transmembrane proteins necessary for susceptibility to bacterial blight (BB). These genes are targeted by the specific transcription activator-like effector (TALE) of Xanthomonas oryzae pv. oryzae and mediate sucrose efflux for bacterial proliferation. However, the mechanism through which OsSWEETs regulate rice immunity has not been fully elucidated. Here, we demonstrated that the cytosolic carboxyl terminus of OsSWEET11a/Xa13 is required for complementing susceptibility to PXO99 in IRBB13 (xa13/xa13). Interestingly, the C-terminus of ZmXa13, the maize homologue of OsSWEET11a/Xa13, could perfectly substitute for the C-terminus of OsSWEET11a/Xa13. Furthermore, OsSWEET11a/Xa13 interacted with the high-mobility group B1 (OsHMGB1) protein and the small heat shock-like protein OsHsp20L through the same regions in the C-terminus. Consistent with the physical interactions, knockdown or knockout of either OsHMGB1 or OsHsp20L caused an enhanced PXO99-resistant phenotype similar to that of OsSWEET11a/OsXa13. Surprisingly, the plants in which OsHMGB1 or OsHsp20L was repressed developed increased resistance to PXO86, PXO61 and YN24, which carry TALEs targeting OsSWEET14/Xa41 or OsSWEET11a/Xa13. Additionally, OsHsp20L can interact with all six members of clade III OsSWEETs, whereas OsHMGB1 can interact with five other members in addition to OsSWEET12. Overall, we revealed that OsHMGB1 and OsHsp20L mediate conserved BB susceptibility by interacting with clade III OsSWEETs, which are candidates for breeding broad-spectrum disease-resistant rice.
Subject(s)
Oryza , Plant Diseases , Plant Immunity , Plant Proteins , Xanthomonas , Oryza/genetics , Oryza/immunology , Oryza/metabolism , Oryza/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Immunity/genetics , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Gene Expression Regulation, Plant , Disease Resistance/geneticsABSTRACT
Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA), serving as the viral persistence form and transcription template of HBV infection, hijacks host histone and non-histone proteins to form a minichromosome and utilizes posttranslational modifications (PTMs) "histone code" for its transcriptional regulation. HBV X protein (HBx) is known as a cccDNA transcription activator. In this study we established a dual system of the inducible reporter cell lines modelling infection with wildtype (wt) and HBx-null HBV, both secreting HA-tagged HBeAg as a semi-quantitative marker for cccDNA transcription. The cccDNA-bound histone PTM profiling of wt and HBx-null systems, using chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR), confirmed that HBx is essential for maintenance of cccDNA at transcriptionally active state, characterized by active histone PTM markers. Differential proteomics analysis of cccDNA minichromosome established in wt and HBx-null HBV cell lines revealed group-specific hits. One of the hits in HBx-deficient condition was a non-histone host DNA-binding protein high mobility group box 1 (HMGB1). Its elevated association to HBx-null cccDNA was validated by ChIP-qPCR assay in both the HBV stable cell lines and infection systems in vitro. Furthermore, experimental downregulation of HMGB1 in HBx-null HBV inducible and infection models resulted in transcriptional re-activation of the cccDNA minichromosome, accompanied by a switch of the cccDNA-associated histones to euchromatic state with activating histone PTMs landscape and subsequent upregulation of cccDNA transcription. Mechanistically, HBx interacts with HMGB1 and prevents its binding to cccDNA without affecting the steady state level of HMGB1. Taken together, our results suggest that HMGB1 is a novel host restriction factor of HBV cccDNA with epigenetic silencing mechanism, which can be counteracted by viral transcription activator HBx.
Subject(s)
HMGB1 Protein , Hepatitis B , DNA, Circular/genetics , DNA, Circular/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , Epigenesis, Genetic , HMGB1 Protein/genetics , Hep G2 Cells , Hepatitis B virus/metabolism , Histones/metabolism , Humans , Trans-Activators , Transcription Factors/metabolism , Viral Regulatory and Accessory Proteins , Virus Replication/geneticsABSTRACT
Aberration of the gastric mucosal barrier homeostasis circuit is one of the key features linked to the onset of gastric ulcers (GU). This work aimed to inspect the gastroprotective influence of dimethyl fumarate (DMF) on ethanol-induced GU in rats and to decipher the possible mechanisms entailed. Rats were pretreated with either DMF (80 mg/kg) or omeprazole (OMP) (20 mg/kg) by oral gavage for 2 weeks. After 24 h of starvation, ethanol (5 ml/kg, oral) was employed to trigger GU in rats, while carboxymethyl cellulose (CMC) was used as a control. Ethanol notably elevated both macroscopic and microscopic gastric damage. DMF and OMP exhibited similar effects on gastric ulcer healing. DMF intervention led to a substantial improvement in gastric insults. DMF significantly reduced ethanol-triggered gastric lesions, as manifested by decreased gastric secretion, acidity, ulcer surface area percent, reduced leukocyte incursion, and increased mucus percent. DMF upregulated miR-34a-5p expression concomitant with the suppression of high mobility group box1 (HMGB1) and inflammatory responses in gastric mucosal homogenate. DMF improved GU by restoring reduced antioxidant defense mechanisms through the coactivation of nuclear factor erythroid 2-related factor-2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPARγ), and sirtuin1 (SIRT1), indicating the protective role of the PPARγ/SIRT1/Nrf2 pathway. Intriguingly, DMF mitigated apoptosis in ethanol-elicited GU. Taken together, this research implies the potential for the repurposing of DMF as an innovative gastroprotective medication to reestablish the balance of the gastric mucosal barrier via the attenuation of gastric inflammation, oxidative stress, and apoptosis.