Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
Add more filters

Publication year range
1.
J Virol ; 98(2): e0197523, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38294249

ABSTRACT

The highly pathogenic arenavirus, Junín virus (JUNV), expresses three truncated alternative isoforms of its nucleoprotein (NP), i.e., NP53kD, NP47kD, and NP40kD. While both NP47kD and NP40kD have been previously shown to be products of caspase cleavage, here, we show that expression of the third isoform NP53kD is due to alternative in-frame translation from M80. Based on this information, we were able to generate recombinant JUNVs lacking each of these isoforms. Infection with these mutants revealed that, while all three isoforms contribute to the efficient control of caspase activation, NP40kD plays the predominant role. In contrast to full-length NP (i.e., NP65kD), which is localized to inclusion bodies, where viral RNA synthesis takes place, the loss of portions of the N-terminal coiled-coil region in these isoforms leads to a diffuse cytoplasmic distribution and a loss of function in viral RNA synthesis. Nonetheless, NP53kD, NP47kD, and NP40kD all retain robust interferon antagonistic and 3'-5' exonuclease activities. We suggest that the altered localization of these NP isoforms allows them to be more efficiently targeted by activated caspases for cleavage as decoy substrates, and to be better positioned to degrade viral double-stranded (ds)RNA species that accumulate in the cytoplasm during virus infection and/or interact with cytosolic RNA sensors, thereby limiting dsRNA-mediated innate immune responses. Taken together, this work provides insight into the mechanism by which JUNV leverages apoptosis during infection to generate biologically distinct pools of NP and contributes to our understanding of the expression and biological relevance of alternative protein isoforms during virus infection.IMPORTANCEA limited coding capacity means that RNA viruses need strategies to diversify their proteome. The nucleoprotein (NP) of the highly pathogenic arenavirus Junín virus (JUNV) produces three N-terminally truncated isoforms: two (NP47kD and NP40kD) are known to be produced by caspase cleavage, while, here, we show that NP53kD is produced by alternative translation initiation. Recombinant JUNVs lacking individual NP isoforms revealed that all three isoforms contribute to inhibiting caspase activation during infection, but cleavage to generate NP40kD makes the biggest contribution. Importantly, all three isoforms retain their ability to digest double-stranded (ds)RNA and inhibit interferon promoter activation but have a diffuse cytoplasmic distribution. Given the cytoplasmic localization of both aberrant viral dsRNAs, as well as dsRNA sensors and many other cellular components of innate immune activation pathways, we suggest that the generation of NP isoforms not only contributes to evasion of apoptosis but also robust control of the antiviral response.


Subject(s)
Caspases , Cytoplasm , Hemorrhagic Fever, American , Host-Pathogen Interactions , Immunity, Innate , Junin virus , Nucleoproteins , Protein Biosynthesis , Humans , Apoptosis , Caspase Inhibitors/metabolism , Caspases/metabolism , Cytoplasm/metabolism , Cytoplasm/virology , Enzyme Activation , Hemorrhagic Fever, American/immunology , Hemorrhagic Fever, American/virology , Interferons/genetics , Interferons/immunology , Junin virus/genetics , Junin virus/metabolism , Junin virus/pathogenicity , Nucleoproteins/biosynthesis , Nucleoproteins/genetics , Nucleoproteins/metabolism , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Viral/biosynthesis , RNA, Viral/genetics , Virus Replication
2.
J Virol ; 96(8): e0020922, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35343792

ABSTRACT

Several highly pathogenic mammarenaviruses cause severe hemorrhagic and neurologic disease in humans for which vaccines and antivirals are limited or unavailable. New World (NW) mammarenavirus Machupo virus (MACV) infection causes Bolivian hemorrhagic fever in humans. We previously reported that the disruption of specific N-linked glycan sites on the glycoprotein (GPC) partially attenuates MACV in an interferon alpha/beta and gamma (IFN-α/ß and -γ) receptor knockout (R-/-) mouse model. However, some capability to induce neurological pathology still remained. The highly pathogenic Junin virus (JUNV) is another NW arenavirus closely related to MACV. An F427I substitution in the GPC transmembrane domain (TMD) rendered JUNV attenuated in a lethal mouse model after intracranial inoculation. In this study, we rationally designed and rescued a MACV containing mutations at two glycosylation sites and the corresponding F438I substitution in the GPC TMD. The MACV mutant is fully attenuated in IFN-α/ß and -γ R-/- mice and outbred guinea pigs. Furthermore, inoculation with this mutant MACV completely protected guinea pigs from wild-type MACV lethal challenge. Last, we found the GPC TMD F438I substitution greatly impaired MACV growth in neuronal cell lines of mouse and human origins. Our results highlight the critical roles of the glycans and the TMD on the GPC in arenavirus virulence, which provide insight into the rational design of potential vaccine candidates for highly pathogenic arenaviruses. IMPORTANCE For arenaviruses, the only vaccine available is the live attenuated Candid#1 vaccine, a JUNV vaccine approved in Argentina. We and others have found that the glycans on GPC and the F427 residue in the GPC TMD are important for virulence of JUNV. Nevertheless, mutating either of them is not sufficient for full and stable attenuation of JUNV. Using reverse genetics, we disrupted specific glycosylation sites on MACV GPC and also introduced the corresponding F438I substitution in the GPC TMD. This MACV mutant is fully attenuated in two animal models and protects animals from lethal infection. Thus, our studies highlight the feasibility of rational attenuation of highly pathogenic arenaviruses for vaccine development. Another important finding from this study is that the F438I substitution in GPC TMD could substantially affect MACV replication in neurons. Future studies are warranted to elucidate the underlying mechanism and the implication of this mutation in arenavirus neural tropism.


Subject(s)
Arenaviruses, New World , Hemorrhagic Fever, American , Viral Vaccines , Animals , Arenaviruses, New World/genetics , Arenaviruses, New World/immunology , Disease Models, Animal , Glycoproteins/metabolism , Glycosylation , Guinea Pigs , Hemorrhagic Fever, American/immunology , Hemorrhagic Fever, American/virology , Junin virus/genetics , Junin virus/immunology , Mutation , Vaccines, Attenuated/immunology , Viral Vaccines/immunology
3.
PLoS Pathog ; 17(3): e1009356, 2021 03.
Article in English | MEDLINE | ID: mdl-33647064

ABSTRACT

Several arenaviruses cause hemorrhagic fevers in humans with high case fatality rates. A vaccine named Candid#1 is available only against Junin virus (JUNV) in Argentina. Specific N-linked glycans on the arenavirus surface glycoprotein (GP) mask important epitopes and help the virus evade antibody responses. However the role of GPC glycans in arenavirus pathogenicity is largely unclear. In a lethal animal model of hemorrhagic fever-causing Machupo virus (MACV) infection, we found that a chimeric MACV with the ectodomain of GPC from Candid#1 vaccine was partially attenuated. Interestingly, mutations resulting in acquisition of N-linked glycans at GPC N83 and N166 frequently occurred in late stages of the infection. These glycosylation sites are conserved in the GPC of wild-type MACV, indicating that this is a phenotypic reversion for the chimeric MACV to gain those glycans crucial for infection in vivo. Further studies indicated that the GPC mutant viruses with additional glycans became more resistant to neutralizing antibodies and more virulent in animals. On the other hand, disruption of these glycosylation sites on wild-type MACV GPC rendered the virus substantially attenuated in vivo and also more susceptible to antibody neutralization, while loss of these glycans did not affect virus growth in cultured cells. We also found that MACV lacking specific GPC glycans elicited higher levels of neutralizing antibodies against wild-type MACV. Our findings revealed the critical role of specific glycans on GPC in arenavirus pathogenicity and have important implications for rational design of vaccines against this group of hemorrhagic fever-causing viruses.


Subject(s)
Antibodies, Viral/immunology , Arenavirus/immunology , Hemorrhagic Fever, American/virology , Junin virus/pathogenicity , Animals , Antibodies, Neutralizing/immunology , Arenaviruses, New World/genetics , Arenaviruses, New World/immunology , Arenaviruses, New World/pathogenicity , Hemorrhagic Fever, American/immunology , Hemorrhagic Fever, American/prevention & control , Humans , Junin virus/immunology , Viral Vaccines/immunology
4.
J Virol ; 95(17): e0186820, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34132574

ABSTRACT

Pathogenic clade B New World mammarenaviruses (NWM) can cause Argentine, Venezuelan, Brazilian, and Bolivian hemorrhagic fevers. Sequence variability among NWM glycoproteins (GP) poses a challenge to the development of broadly neutralizing therapeutics against the entire clade of viruses. However, blockade of their shared binding site on the apical domain of human transferrin receptor 1 (hTfR1/CD71) presents an opportunity for the development of effective and broadly neutralizing therapeutics. Here, we demonstrate that the murine monoclonal antibody OKT9, which targets the apical domain of hTfR1, can sterically block cellular entry by viral particles presenting clade B NWM glycoproteins (GP1-GP2). OKT9 blockade is also effective against viral particles pseudotyped with glycoproteins of a recently identified pathogenic Sabia-like virus. With nanomolar affinity for hTfR1, the OKT9 antigen binding fragment (OKT9-Fab) sterically blocks clade B NWM-GP1s and reduces infectivity of an attenuated strain of Junin virus. Binding of OKT9 to the hTfR1 ectodomain in its soluble, dimeric state produces stable assemblies that are observable by negative-stain electron microscopy. A model of the OKT9-sTfR1 complex, informed by the known crystallographic structure of sTfR1 and a newly determined structure of the OKT9 antigen binding fragment (Fab), suggests that OKT9 and the Machupo virus GP1 share a binding site on the hTfR1 apical domain. The structural basis for this interaction presents a framework for the design and development of high-affinity, broadly acting agents targeting clade B NWMs. IMPORTANCE Pathogenic clade B NWMs cause grave infectious diseases, the South American hemorrhagic fevers. Their etiological agents are Junin (JUNV), Guanarito (GTOV), Sabiá (SABV), Machupo (MACV), Chapare (CHAV), and a new Sabiá-like (SABV-L) virus recently identified in Brazil. These are priority A pathogens due to their high infectivity and mortality, their potential for person-to-person transmission, and the limited availability of effective therapeutics and vaccines to curb their effects. While low homology between surface glycoproteins of NWMs foils efforts to develop broadly neutralizing therapies targeting NWMs, this work provides structural evidence that OKT9, a monoclonal antibody targeting a single NWM glycoprotein binding site on hTfR1, can efficiently prevent their entry into cells.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , Arenaviruses, New World/physiology , Glycoproteins/immunology , Hemorrhagic Fever, American/prevention & control , Receptors, Transferrin/immunology , A549 Cells , Amino Acid Sequence , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Hemorrhagic Fever, American/immunology , Hemorrhagic Fever, American/virology , Humans , Protein Structure, Tertiary , Receptors, Transferrin/chemistry , Receptors, Transferrin/genetics
5.
J Virol ; 95(14): e0039721, 2021 06 24.
Article in English | MEDLINE | ID: mdl-33952638

ABSTRACT

Live-attenuated virus vaccines are highly effective in preventing viral disease but carry intrinsic risks of residual virulence and reversion to pathogenicity. The classically derived Candid#1 virus protects seasonal field workers in Argentina against zoonotic infection by Junín virus (JUNV) but is not approved in the United States, in part due to the potential for reversion at the attenuating locus, a phenylalanine-to-isoleucine substitution at position 427 in the GP2 subunit of the GPC envelope glycoprotein. Previously, we demonstrated facile reversion of recombinant Candid#1 (rCan) in cell culture and identified an epistatic interaction between the attenuating I427 and a secondary K33S mutation in the stable signal peptide (SSP) subunit of GPC that imposes an evolutionary barrier to reversion. The magnitude of this genetic barrier is manifest in our repeated failures to rescue the hypothetical revertant virus. In this study, we show that K33S rCan is safe and attenuated in guinea pigs and capable of eliciting potent virus-neutralizing antibodies. Immunized animals are fully protected against lethal challenge with virulent JUNV. In addition, we employed a more permissive model of infection in neonatal mice to investigate genetic reversion. RNA sequence analysis of the recovered virus identified revertant viruses in pups inoculated with the parental rCan virus and none in mice receiving K33S rCan (P < 0.0001). Taken together, our findings support the further development of K33S rCan as a safe second-generation JUNV vaccine. IMPORTANCE Our most successful vaccines comprise weakened strains of virus that initiate a limited and benign infection in immunized persons. The live-attenuated Candid#1 strain of Junín virus (JUNV) was developed to protect field workers in Argentina from rodent-borne hemorrhagic fever but is not licensed in the United States, in part due to the likelihood of genetic reversion to virulence. A single-amino-acid change in the GPC envelope glycoprotein of the virus is responsible for attenuation, and a single nucleotide change may regenerate the pathogenic virus. Here, we take advantage of a unique genetic interaction between GPC subunits to design a mutant Candid#1 virus that establishes an evolutionary barrier to reversion. The mutant virus (K33S rCan) is fully attenuated and protects immunized guinea pigs against lethal JUNV infection. We find no instances of reversion in mice inoculated with K33S rCan. This work supports the further development of K33S rCan as a second-generation JUNV vaccine.


Subject(s)
Hemorrhagic Fever, American/prevention & control , Junin virus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Chlorocebus aethiops , Guinea Pigs , Hemorrhagic Fever, American/immunology , Immunogenicity, Vaccine , Junin virus/genetics , Junin virus/pathogenicity , Male , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vero Cells , Viral Vaccines/genetics , Virulence
6.
J Virol ; 94(5)2020 02 14.
Article in English | MEDLINE | ID: mdl-31801871

ABSTRACT

Machupo virus (MACV), the causative agent of Bolivian hemorrhagic fever (BHF), is a New World arenavirus that was first isolated in Bolivia from a human spleen in 1963. Due to the lack of a specific vaccine or therapy, this virus is considered a major risk to public health and is classified as a category A priority pathogen by the U.S. National Institutes of Health. In this study, we used DNA vaccination against the MACV glycoprotein precursor complex (GPC) and murine hybridoma technology to generate 25 mouse monoclonal antibodies (MAbs) against the GPC of MACV. Out of 25 MAbs, five were found to have potent neutralization activity in vitro against a recombinant vesicular stomatitis virus expressing MACV GPC (VSV-MACV) as well as against authentic MACV. Furthermore, the five neutralizing MAbs exhibited strong antibody-dependent cellular cytotoxicity (ADCC) activity in a reporter assay. When tested in vivo using VSV-MACV in a Stat2-/- mouse model, three MAbs significantly lowered viral loads in the spleen. Our work provides valuable insights into epitopes targeted by neutralizing antibodies that could be potent targets for vaccines and therapeutics and shed light on the importance of effector functions in immunity against MACV.IMPORTANCE MACV infections are a significant public health concern and lead to high case fatality rates. No specific treatment or vaccine for MACV infections exist. However, cases of Junin virus infection, a related virus, can be treated with convalescent-phase serum. This indicates that a MAb-based therapy for MACV could be effective. Here, we describe several MAbs that neutralize MACV and could be used for this purpose.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Arenaviruses, New World/immunology , Glycoproteins/immunology , Hemorrhagic Fever, American/prevention & control , Animals , Antibodies, Viral/immunology , Cross Reactions , Disease Models, Animal , Epitopes , Female , Hemorrhagic Fever, American/immunology , Hemorrhagic Fever, American/virology , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Public Health , STAT2 Transcription Factor/genetics , Spleen , Vaccines, DNA , Viral Load
7.
J Virol ; 94(4)2020 01 31.
Article in English | MEDLINE | ID: mdl-31748396

ABSTRACT

Several clade B New World arenaviruses (NWAs) can cause severe and often fatal hemorrhagic fever, for which preventive and therapeutic measures are severely limited. These NWAs use human transferrin receptor 1 (hTfR1) as a host cell receptor for virus entry. The most prevalent of the pathogenic NWAs is Junín virus (JUNV), the etiological agent of Argentine hemorrhagic fever. Small animal models of JUNV infection are limited because most laboratory rodent species are refractory to disease. Only guinea pigs are known to develop disease following JUNV infection, but the underlying mechanisms are not well characterized. In the present study, we demonstrate marked susceptibility of Hartley guinea pigs to uniformly lethal disease when challenged with as few as 4 PFU of the Romero strain of JUNV. In vitro, we show that infection of primary guinea pig macrophages results in greater JUNV replication compared to infection of hamster or mouse macrophages. We provide evidence that the guinea pig TfR1 (gpTfR1) is the principal receptor for JUNV, while hamster and mouse orthologs fail to support viral entry/infection of pseudotyped murine leukemia viruses expressing pathogenic NWA glycoproteins or JUNV. Together, our results indicate that gpTfR1 serves as the primary receptor for pathogenic NWAs, enhancing viral infection in guinea pigs.IMPORTANCE JUNV is one of five known NWAs that cause viral hemorrhagic fever in humans. Countermeasures against JUNV infection are limited to immunization with the Candid#1 vaccine and immune plasma, which are available only in Argentina. The gold standard small animal model for JUNV infection is the guinea pig. Here, we demonstrate high sensitivity of this species to severe JUNV infection and identify gpTfR1 as the primary receptor. Use of hTfR1 for host cell entry is a feature shared by pathogenic NWAs. Our results show that expression of gpTfR1 or hTfR1 comparably enhances JUNV virus entry/infectivity. Our findings shed light on JUNV infection in guinea pigs as a model for human disease and suggest that similar pathophysiological mechanisms related to iron sequestration during infection and regulation of TfR1 expression may be shared between humans and guinea pigs. A better understanding of the underlying disease process will guide development of new therapeutic interventions.


Subject(s)
Junin virus/immunology , Junin virus/pathogenicity , Receptors, Transferrin/metabolism , Animals , Arenavirus/immunology , Arenavirus/pathogenicity , CHO Cells , Chlorocebus aethiops , Cricetulus , Disease Models, Animal , Female , Glycoproteins/metabolism , Guinea Pigs/immunology , Guinea Pigs/metabolism , HEK293 Cells , Hemorrhagic Fever, American/immunology , Hemorrhagic Fever, American/virology , Hemorrhagic Fevers, Viral/immunology , Hemorrhagic Fevers, Viral/virology , Humans , Junin virus/metabolism , Macrophages/virology , Male , Receptors, Transferrin/immunology , Vero Cells , Virus Internalization , Virus Replication
8.
Proc Natl Acad Sci U S A ; 114(27): 7031-7036, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28630325

ABSTRACT

Transmission of hemorrhagic fever New World arenaviruses from their rodent reservoirs to human populations poses substantial public health and economic dangers. These zoonotic events are enabled by the specific interaction between the New World arenaviral attachment glycoprotein, GP1, and cell surface human transferrin receptor (hTfR1). Here, we present the structural basis for how a mouse-derived neutralizing antibody (nAb), OD01, disrupts this interaction by targeting the receptor-binding surface of the GP1 glycoprotein from Junín virus (JUNV), a hemorrhagic fever arenavirus endemic in central Argentina. Comparison of our structure with that of a previously reported nAb complex (JUNV GP1-GD01) reveals largely overlapping epitopes but highly distinct antibody-binding modes. Despite differences in GP1 recognition, we find that both antibodies present a key tyrosine residue, albeit on different chains, that inserts into a central pocket on JUNV GP1 and effectively mimics the contacts made by the host TfR1. These data provide a molecular-level description of how antibodies derived from different germline origins arrive at equivalent immunological solutions to virus neutralization.


Subject(s)
Antibodies, Neutralizing/immunology , Hemorrhagic Fever, American/immunology , Neutralization Tests , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Binding Sites , Crystallography, X-Ray , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Glycoproteins/chemistry , HEK293 Cells , Humans , Immune System , Junin virus , Protein Binding , Recombinant Proteins/immunology , Viral Envelope Proteins/chemistry
9.
Proc Natl Acad Sci U S A ; 113(16): 4458-63, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27044104

ABSTRACT

Countermeasures against potential biothreat agents remain important to US Homeland Security, and many of these pharmaceuticals could have dual use in the improvement of global public health. Junin virus, the causative agent of Argentine hemorrhagic fever (AHF), is an arenavirus identified as a category A high-priority agent. There are no Food and Drug Administration (FDA) approved drugs available for preventing or treating AHF, and the current treatment option is limited to administration of immune plasma. Whereas immune plasma demonstrates the feasibility of passive immunotherapy, it is limited in quantity, variable in quality, and poses safety risks such as transmission of transfusion-borne diseases. In an effort to develop a monoclonal antibody (mAb)-based alternative to plasma, three previously described neutralizing murine mAbs were expressed as mouse-human chimeric antibodies and evaluated in the guinea pig model of AHF. These mAbs provided 100% protection against lethal challenge when administered 2 d after infection (dpi), and one of them (J199) was capable of providing 100% protection when treatment was initiated 6 dpi and 92% protection when initiated 7 dpi. The efficacy of J199 is superior to that previously described for all other evaluated drugs, and its high potency suggests that mAbs like J199 offer an economical alternative to immune plasma and an effective dual use (bioterrorism/public health) therapeutic.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Viral/pharmacology , Hemorrhagic Fever, American/drug therapy , Hemorrhagic Fever, American/immunology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Disease Models, Animal , Drug Evaluation, Preclinical , Guinea Pigs , Humans , Junin virus , Mice , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/pharmacology
10.
Virol J ; 15(1): 99, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29879985

ABSTRACT

BACKGROUND: Machupo virus (MACV) is a member of the Mammarenavirus genus, Arenaviridae family and is the etiologic agent of Bolivian hemorrhagic fever, which causes small outbreaks or sporadic cases. Several other arenaviruses in South America Junín virus (JUNV) in Argentina, Guanarito in Venezuela, Sabiá in Brazil and Chapare in Bolivia, also are responsible for human hemorrhagic fevers. Among these arenaviruses, JUNV caused thousands of human cases until 1991, when the live attenuated Candid #1 vaccine, was used. Other than Candid #1 vaccine, few other therapeutic or prophylactic treatments exist. Therefore, new strategies for production of safe countermeasures with broad spectrum activity are needed. FINDINGS: We tested a tri-segmented MACV, a potential vaccine candidate with several mutations, (r3MACV). In cell culture, r3MACV showed a 2-log reduction in infectious virus particle production and the MACV inhibition of INF-1ß was removed from the construct and produced by infected cells. Furthermore, in an animal experiment, r3MACV was able to protect 50% of guinea pigs from a simultaneous lethal JUNV challenge. Protected animals didn't display clinical symptoms nor were virus particles found in peripheral blood (day 14) or in organs (day 28 post-inoculation). The r3MACV provided a higher protection than the Candid #1 vaccine. CONCLUSIONS: The r3MACV provides a potential countermeasure against two South America arenaviruses responsible of human hemorrhagic fever.


Subject(s)
Arenaviruses, New World/immunology , Hemorrhagic Fever, American/immunology , Hemorrhagic Fever, American/prevention & control , Vaccines, Virus-Like Particle/immunology , Animals , Body Weight , Cell Line , Chlorocebus aethiops , Disease Models, Animal , Guinea Pigs , Hemorrhagic Fever, American/virology , Humans , Junin virus/immunology , Lethal Dose 50 , Survival Rate , Vaccination , Vaccines, Attenuated/immunology , Vero Cells , Viral Load , Viremia/prevention & control , Viremia/virology
11.
Int J Mol Sci ; 18(5)2017 May 12.
Article in English | MEDLINE | ID: mdl-28498311

ABSTRACT

Some New World (NW) and Old World (OW) mammalian arenaviruses are emerging, zoonotic viruses that can cause lethal hemorrhagic fever (HF) infections in humans. While these are closely related RNA viruses, the infected hosts appear to mount different types of immune responses against them. Lassa virus (LASV) infection, for example, results in suppressed immune function in progressive disease stage, whereas patients infected with Junín virus (JUNV) develop overt pro-inflammatory cytokine production. These viruses have also evolved different molecular strategies to evade host immune recognition and activation. This paper summarizes current progress in understanding the differential immune responses to pathogenic arenaviruses and how the information can be exploited toward the development of vaccines against them.


Subject(s)
Hemorrhagic Fever, American/immunology , Junin virus/immunology , Lassa Fever/immunology , Lassa virus/immunology , Animals , Hemorrhagic Fever, American/prevention & control , Hemorrhagic Fever, American/therapy , Humans , Immune Evasion , Lassa Fever/prevention & control , Lassa Fever/therapy , Viral Vaccines/immunology
12.
Vopr Virusol ; 60(1): 46-9, 2015.
Article in Russian | MEDLINE | ID: mdl-26021075

ABSTRACT

The goal of this work was to describe methodological approaches to determination of sensitivity and specificity of the enzyme-linked immunosorbent assay kit (ELISA Kit) for detection of the specific anti-Junin virus (JV) antibody. Comparison of ELISA to plaque reduction neutralization test (PRNT) showed direct relationship between antibody titers in the samples of serum of immunized animals, determined by either PRNT or ELISA methods. The obtained results provided an opportunity to form the panels of positive and negative serum samples to determine the sensitivity and specificity of the ELISA Kit. Sensitivity of the ELISA Kit was at least 98% when studying the samples of serum of immunized guinea pigs and rabbits (determined as positive in PRNT). The sensitivity of the ELISA Kit was at least 68% when studying the samples determined by PNRT as uncertain positive. The specificity was 98%. The specificity of the ELISA Kit was 98%.


Subject(s)
Antibodies, Viral , Hemorrhagic Fever, American , Junin virus/immunology , Reagent Kits, Diagnostic , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Enzyme-Linked Immunosorbent Assay , Guinea Pigs , Hemorrhagic Fever, American/blood , Hemorrhagic Fever, American/diagnosis , Hemorrhagic Fever, American/immunology , Humans , Rabbits , Sensitivity and Specificity
13.
Nat Commun ; 15(1): 6421, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080316

ABSTRACT

The rodent-borne Andes virus (ANDV) causes a severe disease in humans. We developed an ANDV mRNA vaccine based on the M segment of the viral genome, either with regular uridine (U-mRNA) or N1-methylpseudouridine (m1Ψ-mRNA). Female mice immunized by m1Ψ-mRNA developed slightly greater germinal center (GC) responses than U-mRNA-immunized mice. Single cell RNA and BCR sequencing of the GC B cells revealed similar levels of activation, except an additional cluster of cells exhibiting interferon response in animals vaccinated with U-mRNA but not m1Ψ-mRNA. Similar immunoglobulin class-switching and somatic hypermutations were observed in response to the vaccines. Female Syrian hamsters were immunized via a prime-boost regimen with two doses of each vaccine. The titers of glycoprotein-binding antibodies were greater for U-mRNA construct than for m1Ψ-mRNA construct; however, the titers of ANDV-neutralizing antibodies were similar. Vaccinated animals were challenged with a lethal dose of ANDV, along with a naïve control group. All control animals and two animals vaccinated with a lower dose of m1Ψ-mRNA succumbed to infection whereas other vaccinated animals survived without evidence of virus replication. The data demonstrate the development of a protective vaccine against ANDV and the lack of a substantial effect of m1Ψ modification on immunogenicity and protection in rodents.


Subject(s)
Mesocricetus , Uridine , Viral Vaccines , Animals , Female , Mice , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Messenger/immunology , Antibodies, Viral/immunology , Orthohantavirus/immunology , Orthohantavirus/genetics , Antibodies, Neutralizing/immunology , Germinal Center/immunology , Pseudouridine/immunology , Cricetinae , mRNA Vaccines , Hemorrhagic Fever, American/prevention & control , Hemorrhagic Fever, American/immunology , Hemorrhagic Fever, American/virology , RNA, Viral/genetics , RNA, Viral/immunology , B-Lymphocytes/immunology , Humans , Vaccine Development
14.
Medicina (B Aires) ; 73(4): 303-9, 2013.
Article in Spanish | MEDLINE | ID: mdl-23924527

ABSTRACT

Argentine hemorrhagic fever is a severe acute disease caused by Junin virus. For prevention of this disease an effective vaccine called Candid#1 has been developed, composed of a live attenuated Junin virus strain. During a clinical trial conducted at Instituto Nacional de Enfermedades Virales Humanas (INEVH) in 2005, Junin virus was isolated from two vaccinated volunteers by co-culture of peripheral mononuclear blood cells. The aim of this study was to compare the strains isolated from these human volunteers with Candid#1 strain regarding phenotypic characteristics of attenuation according to the indicators developed by Contigiani and Sabattini in 1977. The three strains were lethal to suckling mice but not to 10-12 days old mice and guinea pigs. Surviving guinea pigs from primary infection were protected when challenged by intra-muscular inoculation with lethal doses of a virulent strain. Infection and protection rates indicate that these strains are highly infective and protective in the hosts studied herein. These results demonstrate that Junin virus strains isolated from volunteers immunized with Candid#1 maintain the same attenuated phenotype of Candid#1 vaccine after one passage in humans.


Subject(s)
Genetic Markers , Junin virus/isolation & purification , Phenotype , Viral Vaccines , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cells, Cultured , Guinea Pigs , Hemorrhagic Fever, American/blood , Hemorrhagic Fever, American/immunology , Humans , Junin virus/immunology , Junin virus/pathogenicity , Mice , Neutralization Tests , Vaccines, Attenuated/immunology , Viral Vaccines/immunology
15.
J Virol ; 85(4): 1684-95, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21123370

ABSTRACT

Several arenaviruses, chiefly Lassa virus (LASV) and Junin virus in West Africa and Argentina, respectively, cause hemorrhagic fever (HF) disease in humans that is associated with high morbidity and significant mortality. The investigation of antiviral strategies to combat HF arenaviruses is hampered by the requirement of biosafety level 4 (BSL-4) facilities to work with these viruses. These biosafety hurdles could be overcome by the use of recombinant single-cycle infectious arenaviruses. To explore this concept, we have developed a recombinant lymphocytic choriomeningitis virus (LCMV) (rLCMVΔGP/GFP) where we replaced the viral glycoprotein (GP) with the green fluorescent protein (GFP). We generated high titers of GP-pseudotyped rLCMVΔGP/GFP via genetic trans complementation using stable cell lines that constitutively express LCMV or LASV GPs. Replication of these GP-pseudotyped rLCMVΔGP/GFP viruses was restricted to GP-expressing cell lines. This system allowed us to rapidly and reliably characterize and quantify the neutralization activities of serum antibodies against LCMV and LASV within a BSL-2 facility. The sensitivity of the GFP-based microneutralization assay we developed was similar to that obtained with a conventionally used focus reduction neutralization (FRNT) assay. Using GP-pseudotyped rLCMVΔGP/GFP, we have also obtained evidence supporting the feasibility of this approach to identify and evaluate candidate antiviral drugs against HF arenaviruses without the need of BSL-4 laboratories.


Subject(s)
Antiviral Agents/pharmacology , Glycoproteins/metabolism , Hemorrhagic Fever, American/diagnosis , Lymphocytic choriomeningitis virus/pathogenicity , Neutralization Tests/methods , Recombinant Proteins/metabolism , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cell Line , Chlorocebus aethiops , Cricetinae , Glycoproteins/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hemorrhagic Fever, American/immunology , Hemorrhagic Fever, American/virology , Lassa virus/genetics , Lassa virus/immunology , Lassa virus/metabolism , Lymphocytic choriomeningitis virus/genetics , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/metabolism , Recombinant Proteins/genetics , Vero Cells , Viral Proteins/genetics , Viral Proteins/metabolism
16.
J Virol ; 85(4): 1473-83, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21123388

ABSTRACT

The New World arenavirus Junin virus (JUNV) is the causative agent of Argentine hemorrhagic fever (AHF), which is associated with high morbidity and significant mortality. Several pathogenic strains of JUNV have been documented, and a highly attenuated vaccine strain (Candid #1) was generated and used to vaccinate the human population at risk. The identification and functional characterization of viral genetic determinants associated with AHF and Candid #1 attenuation would contribute to the elucidation of the mechanisms contributing to AHF and the development of better vaccines and therapeutics. To this end, we used reverse genetics to rescue the pathogenic Romero and the attenuated Candid #1 strains of JUNV from cloned cDNAs. Both recombinant Candid #1 (rCandid #1) and Romero (rRomero) had the same growth properties and phenotypic features in cultured cells and in vivo as their corresponding parental viruses. Infection with rRomero caused 100% lethality in guinea pigs, whereas rCandid #1 infection was asymptomatic and provided protection against a lethal challenge with Romero. Notably, Romero and Candid #1 trans-acting proteins, L and NP, required for virus RNA replication and gene expression were exchangeable in a minigenome rescue assay. These findings support the feasibility of studies aimed at determining the contribution of each viral gene to JUNV pathogenesis and attenuation. In addition, we rescued Candid #1 viruses with three segments that efficiently expressed foreign genes introduced into their genomes. This finding opens the way for the development of a safe multivalent arenavirus vaccine.


Subject(s)
DNA, Complementary/genetics , Hemorrhagic Fever, American/immunology , Hemorrhagic Fever, American/pathology , Junin virus/pathogenicity , Recombination, Genetic , Vaccines, Attenuated , Viral Vaccines , Animals , Antibodies, Viral/blood , Arenaviridae Infections/immunology , Arenaviridae Infections/pathology , Arenaviridae Infections/prevention & control , Arenaviridae Infections/virology , Base Sequence , Cell Line , Chlorocebus aethiops , Cloning, Molecular , Cricetinae , Female , Genotype , Guinea Pigs , Hemorrhagic Fever, American/prevention & control , Hemorrhagic Fever, American/virology , Humans , Immunization , Junin virus/genetics , Junin virus/immunology , Junin virus/physiology , Molecular Sequence Data , Phenotype , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vero Cells , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Viral Vaccines/immunology , Virus Replication
17.
Medicina (B Aires) ; 70(3): 215-22, 2010.
Article in Spanish | MEDLINE | ID: mdl-20529769

ABSTRACT

A clinical study in 946 human volunteers was done to compare Candid #1 vaccine manufactured in Argentina with the vaccine produced in USA that had been previously used. The efficacy was evaluated using immunogenicity measured by the detection of neutralizing antibodies as a subrogate marker. Safety was evaluated comparing the rate of adverse events. Both vaccines showed a comparable rate of seroconversion, slightly higher than the efficacy estimated from previous studies (95.5%). There were no severe adverse events related to the vaccines. The general events considered related to the vaccines were not clinically relevant and disappeared either spontaneously or with symptomatic treatment. Similar rates of adverse events (29.9% for the Argentine vaccine and 35.0% for the USA vaccine) were found for both vaccines. These included: headache, weakness, myalgias, mild low blood cell (< 4,000/mm(3)) and platelet (< 150,000/mm(3)) counts, nausea and/or vomiting, fever, retroocular pain, dizziness, microhematuria, low backache and exantema. These results indicate that the vaccine Candid#1 manufactured in Argentina is equivalent to the manufactured in USA. These results allowed the National Institute of Human Viral Diseases (INEVH) to register the vaccine produced locally under the National Regulatory Authority (ANMAT).


Subject(s)
Hemorrhagic Fever, American/prevention & control , Junin virus/immunology , Viral Vaccines/adverse effects , Viral Vaccines/immunology , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Argentina , Double-Blind Method , Female , Hemorrhagic Fever, American/immunology , Humans , Male , Middle Aged , Prospective Studies , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/immunology , Young Adult
18.
Antiviral Res ; 174: 104666, 2020 02.
Article in English | MEDLINE | ID: mdl-31760108

ABSTRACT

Argentine haemorrhagic fever (AHF) is a rodent-borne disease with a lethality as high as ~30%, which is caused by the New World arenavirus, Junín virus (JUNV). It was once a major epidemic in South America and puts millions of people in Argentina at risk. Here, we aimed to develop horse antibodies or antibody fragments against JUNV. Before preparing the horse antibodies, a strategy to efficiently generate horse antisera was established based on comparisons among immunogens and immunization methods in both mice and horses. Antisera against JUNV were finally obtained by vaccinating horses with vesicular stomatitis virus pseudotypes bearing JUNV GP. The horse antibodies IgG and F(ab')2 were subsequently demonstrated to effectively neutralize vesicular stomatitis virus pseudotypes bearing JUNV GP and to show some cross-neutralization against pathogenic New World arenaviruses. Further research revealed that Asp123 on GP1 is an important site for the binding of antibodies targeting mainly JUNV GP1 for neutralization. Collectively, this study presents an efficient strategy to develop horse antisera against JUNV and provides GP1-specific horse antibodies as potential therapeutics for AHF.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Hemorrhagic Fever, American/veterinary , Horses/immunology , Immunoglobulin Fragments/immunology , Junin virus/immunology , Animals , Cross Reactions , Female , Hemorrhagic Fever, American/immunology , Mice , Mice, Inbred BALB C , Neutralization Tests
19.
Antiviral Res ; 163: 106-116, 2019 03.
Article in English | MEDLINE | ID: mdl-30668977

ABSTRACT

Arenaviruses cause several viral hemorrhagic fevers endemic to Africa and South America. The respective causative agents are classified as biosafety level (BSL) 4 pathogens. Unlike for most other BSL4 agents, for the New World arenavirus Junín virus (JUNV) both a highly effective vaccination (Candid#1) and a post-exposure treatment, based on convalescent plasma transfer, are available. In particular, neutralizing antibodies (nAbs) represent a key protective determinant in JUNV infection, which is supported by the correlation between successful passive antibody therapy and the levels of nAbs administered. Unfortunately, comparable resources for the management of other closely related arenavirus infections are not available. Given the significant challenges inherent in studying BSL4 pathogens, our goal was to first assess the suitability of a JUNV transcription and replication-competent virus-like particle (trVLP) system for measuring virus neutralization under BSL1/2 conditions. Indeed, we could show that infection with JUNV trVLPs is glycoprotein (GP) dependent, that trVLP input has a direct correlation to reporter readout, and that these trVLPs can be neutralized by human serum with kinetics similar to those obtained using authentic virus. These properties make trVLPs suitable for use as a proxy for virus in neutralization assays. Using this platform we then evaluated the potential of JUNV nAbs to cross-neutralize entry mediated by GPs from other arenaviruses using JUNV (strain Romero)-based trVLPs bearing GPs either from other JUNV strains, other closely related New World arenaviruses (e.g. Tacaribe, Machupo, Sabiá), or the distantly related Lassa virus. While nAbs against the JUNV vaccine strain are also active against a range of other JUNV strains, they appear to have little or no capacity to neutralize other arenavirus species, suggesting that therapy with whole plasma directed against another species is unlikely to be successful and that the targeted development of cross-specific monoclonal antibody-based resources is likely needed. Such efforts will be supported by the availability of this BSL1/2 screening platform which provides a rapid and easy means to characterize the potency and reactivity of anti-arenavirus neutralizing antibodies against a range of arenavirus species.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cross Reactions , Junin virus/immunology , Arenaviruses, New World/immunology , HEK293 Cells , Hemorrhagic Fever, American/immunology , Humans , Virus Replication
20.
Front Immunol ; 10: 2499, 2019.
Article in English | MEDLINE | ID: mdl-31695702

ABSTRACT

The New World arenavirus Junin (JUNV) is the etiological agent of Argentine hemorrhagic fever (AHF). Previous studies of human macrophage infection by the Old-World arenaviruses Mopeia and Lassa showed that while the non-pathogenic Mopeia virus replicates and activates human macrophages, the pathogenic Lassa virus replicates but fails to activate human macrophages. Less is known in regard to the impact of New World arenavirus infection on the human macrophage immune response. Macrophage activation is critical for controlling infections but could also be usurped favoring immune evasion. Therefore, it is crucial to understand how the JUNV infection modulates macrophage plasticity to clarify its role in AHF pathogenesis. With this aim in mind, we compared infection with the attenuated Candid 1 (C#1) or the pathogenic P strains of the JUNV virus in human macrophage cultures. The results showed that both JUNV strains similarly replicated and induced morphological changes as early as 1 day post-infection. However, both strains differentially induced the expression of CD71, the receptor for cell entry, the activation and maturation molecules CD80, CD86, and HLA-DR and selectively modulated cytokine production. Higher levels of TNF-α, IL-10, and IL-12 were detected with C#1 strain, while the P strain induced only higher levels of IL-6. We also found that C#1 strain infection skewed macrophage polarization to M1, whereas the P strain shifted the response to an M2 phenotype. Interestingly, the MERTK receptor, that negatively regulates the immune response, was down-regulated by C#1 strain and up-regulated by P strain infection. Similarly, the target genes of MERTK activation, the cytokine suppressors SOCS1 and SOCS3, were also increased after P strain infection, in addition to IRF-1, that regulates type I IFN levels, which were higher with C#1 compared with P strain infection. Together, this differential activation/polarization pattern of macrophages elicited by P strain suggests a more evasive immune response and may have important implications in the pathogenesis of AHF and underpinning the development of new potential therapeutic strategies.


Subject(s)
Hemorrhagic Fever, American/immunology , Junin virus/immunology , Macrophage Activation , Macrophages/immunology , Animals , B7-1 Antigen/immunology , B7-2 Antigen/immunology , Chlorocebus aethiops , Cricetinae , Cytokines/immunology , HLA-DR Antigens/immunology , Hemorrhagic Fever, American/pathology , Humans , Species Specificity , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL