Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 744
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(50): e2313148120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38060563

ABSTRACT

The atypical protein kinase ALPK1 is activated by the bacterial nucleotide sugar ADP-heptose and phosphorylates TIFA to switch on a signaling pathway that combats microbial infection. In contrast, ALPK1 mutations cause two human diseases: the ALPK1[T237M] and ALPK1[Y254C] mutations underlie ROSAH syndrome (retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis, and migraine headache), while the ALPK1[V1092A] mutation accounts for 45% of spiradenoma and 30% of spiradenocarcinoma cases studied. In this study, we demonstrate that unlike wild-type (WT) ALPK1, the disease-causing ALPK1 mutants trigger the TIFA-dependent activation of an NF-κB/activator protein 1 reporter gene in the absence of ADP-heptose, which can be suppressed by either of two additional mutations in the ADP-heptose binding site that prevent the activation of WT ALPK1 by ADP-heptose. These observations are explained by our key finding that although ALPK1[T237M] and ALPK1[V1092A] are activated by bacterial ADP-heptose, they can also be activated by nucleotide sugars present in human cells (UDP-mannose, ADP-ribose, and cyclic ADP-ribose) which can be prevented by disruption of the ADP-heptose binding site. The ALPK1[V1092A] mutant was also activated by GDP-mannose, which did not activate ALPK1[T237M]. These are new examples of disease-causing mutations permitting the allosteric activation of an enzyme by endogenous molecules that the WT enzyme does not respond to. We propose that the loss of the specificity of ALPK1 for bacterial ADP-heptose underlies ROSAH syndrome and spiradenoma/spiradenocarcinoma caused by ALPK1 mutation.


Subject(s)
Acrospiroma , Sweat Gland Neoplasms , Humans , Nucleotides/genetics , Sugars , Splenomegaly , Mannose , Heptoses/metabolism
2.
Biochemistry ; 63(10): 1359-1368, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38685871

ABSTRACT

Sedoheptulose 7-phosphate (SH7P) cyclases are a subset of sugar phosphate cyclases that are known to catalyze the first committed step in many biosynthetic pathways in primary and secondary metabolism. Among them are 2-epi-5-epi-valiolone synthase (EEVS) and 2-epi-valiolone synthase (EVS), two closely related SH7P cyclases that catalyze the conversion of SH7P to 2-epi-5-epi-valiolone and 2-epi-valiolone, respectively. However, how these two homologous enzymes use a common substrate to produce stereochemically different products is unknown. Two competing hypotheses have been proposed for the stereospecificity of EEVS and EVS: (1) variation in aldol acceptor geometry during enzyme catalysis, and (2) preselection of the α-pyranose or ß-pyranose forms of the substrate by the enzymes. Yet, there is no direct evidence to support or rule out either of these hypotheses. Here we report the synthesis of the carba-analogs of the α-pyranose and ß-pyranose forms of SH7P and their use in probing the stereospecificity of ValA (EEVS from Streptomyces hygroscopicus subsp. jinggangensis) and Amir_2000 (EVS from Actinosynnema mirum DSM 43827). Kinetic studies of the enzymes in the presence of the synthetic compounds as well as docking studies of the enzymes with the α- and ß-pyranose forms of SH7P suggest that the inverted configuration of the products of EEVS and EVS is not due to the preselection of the different forms of the substrate by the enzymes.


Subject(s)
Heptoses , Sugar Phosphates , Sugar Phosphates/metabolism , Sugar Phosphates/chemistry , Heptoses/chemistry , Heptoses/metabolism , Stereoisomerism , Substrate Specificity , Streptomyces/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism
3.
Curr Top Microbiol Immunol ; 444: 185-206, 2023.
Article in English | MEDLINE | ID: mdl-38231219

ABSTRACT

Gastric cancer is a very serious and deadly disease worldwide with about one million new cases every year. Most gastric cancer subtypes are associated with genetic and epigenetic aberrations caused by chromosome instability, microsatellite instability or Epstein-Barr virus infection. Another risk factor is an infection with Helicobacter pylori, which also triggers severe alterations in the host genome. This pathogen expresses an extraordinary repertoire of virulence determinants that take over control of important host cell signaling functions. In fact, H. pylori is a paradigm of persistent infection, chronic inflammation and cellular destruction. In particular, H. pylori profoundly induces chromosomal DNA damage by introducing double-strand breaks (DSBs) followed by genomic instability. DSBs appear in response to oxidative stress and pro-inflammatory transcription during the S-phase of the epithelial cell cycle, which mainly depends on the presence of the bacterial cag pathogenicity island (cagPAI)-encoded type IV secretion system (T4SS). This scenario is closely connected with the T4SS-mediated injection of ADP-glycero-ß-D-manno-heptose (ADP-heptose) and oncoprotein CagA. While ADP-heptose links transcription factor NF-κB-induced innate immune signaling with RNA-loop-mediated DNA replication stress and introduction of DSBs, intracellular CagA targets the tumor suppressor BRCA1. The latter scenario promotes BRCAness, a disease characterized by the deficiency of effective DSB repair. In addition, genetic studies of patients demonstrated the presence of gastric cancer-associated single nucleotide polymorphisms (SNPs) in immune-regulatory and other genes as well as specific pathogenic germline variants in several crucial genes involved in homologous recombination and DNA repair, all of which are connected to H. pylori infection. Here we review the molecular mechanisms leading to chromosomal DNA damage and specific genetic aberrations in the presence or absence of H. pylori infection, and discuss their importance in gastric carcinogenesis.


Subject(s)
Epstein-Barr Virus Infections , Helicobacter pylori , Stomach Neoplasms , Humans , DNA , DNA Damage , Helicobacter pylori/genetics , Heptoses , Herpesvirus 4, Human , Stomach Neoplasms/genetics
4.
Biochemistry ; 62(21): 3145-3158, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37890137

ABSTRACT

Campylobacter jejuni is the leading cause of food poisoning in North America. The exterior surface of this bacterium is coated with a capsular polysaccharide (CPS) that consists of a repeating sequence of 2-5 different carbohydrates that is anchored to the outer membrane. Heptoses of various configurations are among the most common monosaccharides that have been identified within the CPS. It is currently thought that all heptose variations derive from the modification of GDP-d-glycero-α-d-manno-heptose (GMH). From the associated gene clusters for CPS biosynthesis, we have identified 20 unique enzymes with different substrate profiles that are used by the various strains and serotypes of C. jejuni to make six different stereoisomers of GDP-6-deoxy-heptose, four stereoisomers of GDP-d-glycero-heptoses, and two stereoisomers of GDP-3,6-dideoxy-heptoses starting from d-sedoheptulose-7-phosphate. The modification enzymes include a C4-dehydrogenase, a C4,6-dehydratase, three C3- and/or C5-epimerases, a C3-dehydratase, eight C4-reductases, two pyranose/furanose mutases, and four enzymes for the formation of GMH from d-sedoheptulose-7-phosphate. We have mixed these enzymes in different combinations to make novel GDP-heptose modifications, including GDP-6-hydroxy-heptoses, GDP-3-deoxy-heptoses, and GDP-3,6-dideoxy-heptoses.


Subject(s)
Campylobacter jejuni , Humans , Polysaccharides/metabolism , Heptoses , Metabolic Networks and Pathways , Hydro-Lyases/metabolism , Phosphates/metabolism
5.
Biochemistry ; 62(1): 134-144, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36534477

ABSTRACT

Campylobacter jejuni is a human pathogen and the leading cause of food poisoning in the United States and Europe. Surrounding the exterior surface of this bacterium is a capsular polysaccharide (CPS) that consists of a repeating sequence of common and unusual carbohydrate segments. At least 10 different heptose sugars have thus far been identified in the various strains of C. jejuni. The accepted biosynthetic pathway for the construction of the 6-deoxy-heptoses begins with the 4,6-dehydration of GDP-d-glycero-d-manno-heptose by a dehydratase, followed by an epimerase that racemizes C3 and/or C5 of the product GDP-6-deoxy-4-keto-d-lyxo-heptose. In the final step, a C4-reductase catalyzes the NADPH reduction of the resulting 4-keto product. However, in some strains and serotypes of C. jejuni, there are two separate C4-reductases with different product specificities in the gene cluster for CPS formation. Five pairs of these tandem C4-reductases were isolated, and the catalytic properties were ascertained. In four out of five cases, one of the two C4-reductases is able to catalyze the isomerization of C3 and C5 of GDP-6-deoxy-4-keto-d-lyxo-heptose, in addition to the catalysis of the reduction of C4, thus bypassing the requirement for a separate C3/C5-isomerase. In each case, the 3'-end of the gene for the first C4-reductase contains a poly-G tract of 8-10 guanine residues that may be used to control the expression and/or catalytic activity of either C4-reductase. The three-dimensional structure of the C4-reductase from serotype HS:15, which only does a reduction of C4, was determined to 1.45 Å resolution in the presence of NADPH and GDP.


Subject(s)
Campylobacter jejuni , Oxidoreductases , Humans , Oxidoreductases/metabolism , Racemases and Epimerases/genetics , Racemases and Epimerases/metabolism , NADP/metabolism , Polysaccharides/metabolism , Heptoses
6.
J Am Chem Soc ; 145(16): 9003-9010, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37040604

ABSTRACT

The infection of Campylobacter jejuni results in a significant diarrhea disease, which is highly fatal to young children in unindustrialized countries. Developing a new therapy is required due to increasing antibiotic resistance. Herein, we described a total synthesis of a C. jejuni NCTC11168 capsular polysaccharide repeating unit containing a linker moiety via an intramolecular anomeric protection (iMAP) strategy. This one-step 1,6-protecting method structured the challenging furanosyl galactosamine configuration, facilitated further concise regioselective protection, and smoothed the heptose synthesis. The tetrasaccharide was constructed in a [2 + 1 + 1] manner. The synthesis of this complicated CPS tetrasaccharide was completed in merely 28 steps, including the preparation of all the building blocks, construction of the tetrasaccharide skeleton, and functional group transformations.


Subject(s)
Campylobacter jejuni , Child , Humans , Child, Preschool , Polysaccharides , Heptoses , Oligosaccharides , Bacterial Capsules
7.
Int J Med Microbiol ; 313(4): 151585, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37399704

ABSTRACT

Lipopolysaccharide inner core heptose metabolites, including ADP-heptose, play a substantial role in the activation of cell-autonomous innate immune responses in eukaryotic cells, via the ALPK1-TIFA signaling pathway, as demonstrated for various pathogenic bacteria. The important role of LPS heptose metabolites during Helicobacter pylori infection of the human gastric niche has been demonstrated for gastric epithelial cells and macrophages, while the role of heptose metabolites on human neutrophils has not been investigated. In this study, we aimed to gain a better understanding of the activation potential of bacterial heptose metabolites for human neutrophil cells. To do so, we used pure ADP-heptose and, as a bacterial model, H. pylori, which can transport heptose metabolites into the human host cell via the Cag Type 4 Secretion System (CagT4SS). Main questions were how bacterial heptose metabolites impact on the pro-inflammatory activation, alone and in the bacterial context, and how they influence maturation of human neutrophils. Results of the present study demonstrated that neutrophils respond with high sensitivity to pure heptose metabolites, and that global regulation networks and neutrophil maturation are influenced by heptose exposure. Furthermore, activation of human neutrophils by live H. pylori is strongly impacted by the presence of LPS heptose metabolites and the functionality of its CagT4SS. Similar activities were determined in cell culture neutrophils of different maturation states and in human primary neutrophils. In conclusion, we demonstrated that specific heptose metabolites or bacteria producing heptoses exhibit a strong activity on cell-autonomous innate responses of human neutrophils.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Heptoses , Neutrophils , Humans , Helicobacter Infections/microbiology , Heptoses/metabolism , Lipopolysaccharides/metabolism , Neutrophils/metabolism
8.
Chemistry ; 29(62): e202302277, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37552007

ABSTRACT

Fluorinated carbohydrates are important tools for understanding the deregulation of metabolic fluxes and pathways. Fluorinating specific positions within the sugar scaffold can lead to enhanced metabolic stability and subsequent metabolic trapping in cells. This principle has, however, never been applied to study the metabolism of the rare sugars of the pentose phosphate pathway (PPP). In this study, two fluorinated derivatives of d-sedoheptulose were designed and synthesized: 4-deoxy-4-fluoro-d-sedoheptulose (4DFS) and 3-deoxy-3-fluoro-d-sedoheptulose (3DFS). Both sugars are taken up by human fibroblasts but only 4DFS is phosphorylated. Fluorination of d-sedoheptulose at C-4 effectively halts the enzymatic degradation by transaldolase and transketolase. 4DFS thus has a high potential as a new PPP imaging probe based on the principle of metabolic trapping. Therefore, the synthesis of potential radiolabeling precursors for 4DFS for future radiofluorinations with fluorine-18 is presented.


Subject(s)
Heptoses , Sugars , Humans , Pentose Phosphate Pathway , Halogenation
9.
Biochem J ; 479(20): 2195-2216, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36098982

ABSTRACT

ADP-heptose activates the protein kinase ALPK1 triggering TIFA phosphorylation at Thr9, the recruitment of TRAF6 and the subsequent production of inflammatory mediators. Here, we demonstrate that ADP-heptose also stimulates the formation of Lys63- and Met1-linked ubiquitin chains to activate the TAK1 and canonical IKK complexes, respectively. We further show that the E3 ligases TRAF6 and c-IAP1 operate redundantly to generate the Lys63-linked ubiquitin chains required for pathway activation, which we demonstrate are attached to TRAF6, TRAF2 and c-IAP1, and that c-IAP1 is recruited to TIFA by TRAF2. ADP-heptose also induces activation of the kinase TBK1 by a TAK1-independent mechanism, which require TRAF2 and TRAF6. We establish that ALPK1 phosphorylates TIFA directly at Thr177 as well as Thr9 in vitro. Thr177 is located within the TRAF6-binding motif and its mutation to Asp prevents TRAF6 but not TRAF2 binding, indicating a role in restricting ADP-heptose signalling. We conclude that ADP-heptose signalling is controlled by the combined actions of TRAF2/c-IAP1 and TRAF6.


Subject(s)
Heptoses , TNF Receptor-Associated Factor 6 , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , Heptoses/chemistry , Heptoses/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Protein Kinases/metabolism , Adenosine Diphosphate , Inflammation Mediators , NF-kappa B/genetics , NF-kappa B/metabolism
10.
Int J Mol Sci ; 24(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38003258

ABSTRACT

Inactivation of enzymes responsible for biosynthesis of the cell wall component of ADP-glycero-manno-heptose causes the development of oxidative stress and sensitivity of bacteria to antibiotics of a hydrophobic nature. The metabolic precursor of ADP-heptose is sedoheptulose-7-phosphate (S7P), an intermediate of the non-oxidative branch of the pentose phosphate pathway (PPP), in which ribose-5-phosphate and NADPH are generated. Inactivation of the first stage of ADP-heptose synthesis (ΔgmhA) prevents the outflow of S7P from the PPP, and this mutant is characterized by a reduced biosynthesis of NADPH and of the Glu-Cys-Gly tripeptide, glutathione, molecules known to be involved in the resistance to oxidative stress. We found that the derepression of purine biosynthesis (∆purR) normalizes the metabolic equilibrium in PPP in ΔgmhA mutants, suppressing the negative effects of gmhA mutation likely via the over-expression of the glycine-serine pathway that is under the negative control of PurR and might be responsible for the enhanced synthesis of NADPH and glutathione. Consistently, the activity of the soxRS system, as well as the level of glutathionylation and oxidation of proteins, indicative of oxidative stress, were reduced in the double ΔgmhAΔpurR mutant compared to the ΔgmhA mutant.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , NADP/metabolism , Purines/pharmacology , Purines/metabolism , Heptoses/chemistry , Heptoses/metabolism , Glutathione/metabolism , Pentose Phosphate Pathway
11.
Biochemistry ; 61(19): 2138-2147, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36107882

ABSTRACT

Campylobacter jejuni is the leading cause of food poisoning in the United States and Europe. A capsular polysaccharide that coats the exterior of the bacterium helps evade the host immune system. At least 33 different strains of C. jejuni have been identified, and the chemical structures of 12 different capsular polysaccharides (CPSs) have been characterized from various serotypes. Thus far, 10 different heptose sugars have been found in the chemically characterized CPSs, and each of these are currently thought to originate from the modification of GDP-d-glycero-d-manno-heptose by the successive action of 4,6-dehydratase (or C4-dehydrogenase), C3- or C3/C5-epimerase, and C4-reductase. Within the sequenced strains of C. jejuni, we have identified 25 different C4-reductases that cluster into nine groups at a sequence identity of >90%. Eight of the proteins from seven different clusters were purified, and their product profiles were determined with GDP-6-deoxy-4-keto-heptose substrates using NMR and ESI mass spectrometry. The isolated products included GDP-6-deoxy-l-gluco-heptose (serotype HS:2), GDP-6-deoxy-l-galacto-heptose (serotype HS:42), GDP-6-deoxy-l-gulo-heptose (serotype HS:15), GDP-6-deoxy-d-ido-heptose (serotypes HS:3, HS:4, and HS:33), GDP-6-deoxy-d-manno-heptose (serotype HS:53), and GDP-6-deoxy-d-altro-heptose (serotype HS:23/36). Based on these observations, the product specificity can be reliably predicted for 14 additional C4-reductases from C. jejuni. The remaining three C4-reductases are highly likely to be required for the biosynthesis of 3,6-dideoxy-heptose products.


Subject(s)
Campylobacter jejuni , Campylobacter jejuni/metabolism , Heptoses , Hydro-Lyases/metabolism , Oxidoreductases/metabolism , Polysaccharides/metabolism , Racemases and Epimerases/metabolism
12.
Biochemistry ; 61(13): 1313-1322, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35715226

ABSTRACT

Campylobacter jejuni is a human pathogen and a leading cause of food poisoning in the United States and Europe. Surrounding the outside of the bacterium is a carbohydrate coat known as the capsular polysaccharide. Various strains of C. jejuni have different sequences of unusual sugars and an assortment of decorations. Many of the serotypes have heptoses with differing stereochemical arrangements at C2 through C6. One of the many common modifications is a 6-deoxy-heptose that is formed by dehydration of GDP-d-glycero-α-d-manno-heptose to GDP-6-deoxy-4-keto-d-lyxo-heptose via the action of the enzyme GDP-d-glycero-α-d-manno-heptose 4,6-dehydratase. Herein, we report the biochemical and structural characterization of this enzyme from C. jejuni 81-176 (serotype HS:23/36). The enzyme was purified to homogeneity, and its three-dimensional structure was determined to a resolution of 2.1 Å. Kinetic analyses suggest that the reaction mechanism proceeds through the formation of a 4-keto intermediate followed by the loss of water from C5/C6. Based on the three-dimensional structure, it is proposed that oxidation of C4 is assisted by proton transfer from the hydroxyl group to the phenolate of Tyr-159 and hydride transfer to the tightly bound NAD+ in the active site. Elimination of water at C5/C6 is most likely assisted by abstraction of the proton at C5 by Glu-136 and subsequent proton transfer to the hydroxyl at C6 via Ser-134 and Tyr-159. A bioinformatic analysis identified 19 additional 4,6-dehydratases from serotyped strains of C. jejuni that are 89-98% identical in the amino acid sequence, indicating that each of these strains should contain a 6-deoxy-heptose within their capsular polysaccharides.


Subject(s)
Campylobacter jejuni , Bacterial Proteins/chemistry , Heptoses/chemistry , Humans , Hydro-Lyases/metabolism , Protons , Water/metabolism
13.
Biochemistry ; 61(15): 1572-1584, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35861590

ABSTRACT

Glycosyltransferase (GT) enzymes promote the formation of glycosidic bonds between a sugar molecule and a diversity of substrates. Heptosyltransferase II (HepII) is a GT involved in the lipopolysaccharide (LPS) biosynthetic pathway that transfers the seven-carbon sugar (l-glycero-d-manno-heptose, Hep) onto a lipid-anchored glycopolymer (heptosylated Kdo2-Lipid A, Hep-Kdo2-Lipid A, or HLA). LPS plays a key role in Gram-negative bacterial sepsis, biofilm formation, and host colonization, and as such, LPS biosynthetic enzymes are targets for novel antimicrobial therapeutics. Three heptosyltransferases are involved in the inner-core LPS biosynthesis, with Escherichia coli HepII being the last to be quantitatively characterized in vivo. HepII shares modest sequence similarity with heptosyltransferase I (HepI) while maintaining a high degree of structural homology. Here, we report the first kinetic and biophysical characterization of HepII and demonstrate the properties of HepII that are shared with HepI, including sugar donor promiscuity and sugar acceptor-induced secondary structural changes, which results in significant thermal stabilization. HepII also has an increased catalytic efficiency and a significantly tighter binding affinity for both of its substrates compared to HepI. A structural model of the HepII ternary complex, refined by molecular dynamics simulations, was developed to probe the potentially important substrate-protein contacts. Ligand binding-induced changes in Trp fluorescence in HepII enabled the determination of substrate dissociation constants. Combined, these efforts meaningfully enhance our understanding of the heptosyltransferase family of enzymes and will aid in future efforts to design novel, potent, and specific inhibitors for this family of enzymes.


Subject(s)
Escherichia coli , Glycosyltransferases , Lipid A , Catalysis , Escherichia coli/enzymology , Glycosyltransferases/metabolism , Heptoses/chemistry , Lipid A/metabolism , Lipopolysaccharides , Molecular Dynamics Simulation
14.
J Biol Chem ; 296: 100352, 2021.
Article in English | MEDLINE | ID: mdl-33524389

ABSTRACT

Many bacteria produce polysaccharide-based capsules that protect them from environmental insults and play a role in virulence, host invasion, and other functions. Understanding how the polysaccharide components are synthesized could provide new means to combat bacterial infections. We have previously characterized two pairs of homologous enzymes involved in the biosynthesis of capsular sugar precursors GDP-6-deoxy-D-altro-heptose and GDP-6-OMe-L-gluco-heptose in Campylobacter jejuni. However, the substrate specificity and mechanism of action of these enzymes-C3 and/or C5 epimerases DdahB and MlghB and C4 reductases DdahC and MlghC-are unknown. Here, we demonstrate that these enzymes are highly specific for heptose substrates, using mannose substrates inefficiently with the exception of MlghB. We show that DdahB and MlghB feature a jellyroll fold typical of cupins, which possess a range of activities including epimerizations, GDP occupying a similar position as in cupins. DdahC and MlghC contain a Rossman fold, a catalytic triad, and a small C-terminal domain typical of short-chain dehydratase reductase enzymes. Integrating structural information with site-directed mutagenesis allowed us to identify features unique to each enzyme and provide mechanistic insight. In the epimerases, mutagenesis of H67, D173, N121, Y134, and Y132 suggested the presence of alternative catalytic residues. We showed that the reductases could reduce GDP-4-keto-6-deoxy-mannulose without prior epimerization although DdahC preferred the pre-epimerized substrate and identified T110 and H180 as important for substrate specificity and catalytic efficacy. This information can be exploited to identify inhibitors for therapeutic applications or to tailor these enzymes to synthesize novel sugars useful as glycobiology tools.


Subject(s)
Bacterial Proteins/metabolism , Campylobacter jejuni/metabolism , Heptoses/metabolism , Oxidoreductases/metabolism , Racemases and Epimerases/metabolism , Bacterial Proteins/chemistry , Campylobacter Infections/microbiology , Campylobacter jejuni/chemistry , Heptoses/chemistry , Humans , Oxidoreductases/chemistry , Protein Conformation , Racemases and Epimerases/chemistry , Substrate Specificity
15.
Infect Immun ; 90(7): e0022422, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35762751

ABSTRACT

Klebsiella pneumoniae is a leading cause of Gram-negative bacteremia, which is a major source of morbidity and mortality worldwide. Gram-negative bacteremia requires three major steps: primary site infection, dissemination to the blood, and bloodstream survival. Because K. pneumoniae is a leading cause of health care-associated pneumonia, the lung is a common primary infection site leading to secondary bacteremia. K. pneumoniae factors essential for lung fitness have been characterized, but those required for subsequent bloodstream infection are unclear. To identify K. pneumoniae genes associated with dissemination and bloodstream survival, we combined previously and newly analyzed insertion site sequencing (InSeq) data from a murine model of bacteremic pneumonia. This analysis revealed the gene gmhB as important for either dissemination from the lung or bloodstream survival. In Escherichia coli, GmhB is a partially redundant enzyme in the synthesis of ADP-heptose for the lipopolysaccharide (LPS) core. To characterize its function in K. pneumoniae, an isogenic knockout strain (ΔgmhB) and complemented mutant were generated. During pneumonia, GmhB did not contribute to lung fitness and did not alter normal immune responses. However, GmhB enhanced bloodstream survival in a manner independent of serum susceptibility, specifically conveying resistance to spleen-mediated killing. In a tail-vein injection of murine bacteremia, GmhB was also required by K. pneumoniae, E. coli, and Citrobacter freundii for optimal fitness in the spleen and liver. Together, this study identifies GmhB as a conserved Gram-negative bacteremia fitness factor that acts through LPS-mediated mechanisms to enhance fitness in blood-filtering organs.


Subject(s)
Bacteremia , Klebsiella Infections , Adenosine Diphosphate , Animals , Bacteremia/genetics , Escherichia coli/genetics , Heptoses , Klebsiella pneumoniae/genetics , Lipopolysaccharides , Mice
16.
Cell Mol Life Sci ; 78(1): 17-29, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32591860

ABSTRACT

The innate immune response constitutes the first line of defense against pathogens. It involves the recognition of pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs), the production of inflammatory cytokines and the recruitment of immune cells to infection sites. Recently, ADP-heptose, a soluble intermediate of the lipopolysaccharide biosynthetic pathway in Gram-negative bacteria, has been identified by several research groups as a PAMP. Here, we recapitulate the evidence that led to this identification and discuss the controversy over the immunogenic properties of heptose 1,7-bisphosphate (HBP), another bacterial heptose previously defined as an activator of innate immunity. Then, we describe the mechanism of ADP-heptose sensing by alpha-protein kinase 1 (ALPK1) and its downstream signaling pathway that involves the proteins TIFA and TRAF6 and induces the activation of NF-κB and the secretion of inflammatory cytokines. Finally, we discuss possible delivery mechanisms of ADP-heptose in cells during infection, and propose new lines of thinking to further explore the roles of the ADP-heptose/ALPK1/TIFA axis in infections and its potential implication in the control of intestinal homeostasis.


Subject(s)
Heptoses/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism , Protein Kinases/metabolism , Cytokines/metabolism , Gram-Negative Bacteria/immunology , Gram-Negative Bacteria/metabolism , Humans , Immunity, Innate , Lipopolysaccharides/biosynthesis , Lipopolysaccharides/chemistry , NF-kappa B/metabolism , Signal Transduction
17.
Int J Mol Sci ; 23(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35682658

ABSTRACT

Glioblastoma (GBM) is the most common form of malignant brain cancer and is considered the deadliest human cancer. Because of poor outcomes in this disease, there is an urgent need for progress in understanding the molecular mechanisms of GBM therapeutic resistance, as well as novel and innovative therapies for cancer prevention and treatment. The pentose phosphate pathway (PPP) is a metabolic pathway complementary to glycolysis, and several PPP enzymes have already been demonstrated as potential targets in cancer therapy. In this work, we aimed to evaluate the role of sedoheptulose kinase (SHPK), a key regulator of carbon flux that catalyzes the phosphorylation of sedoheptulose in the nonoxidative arm of the PPP. SHPK expression was investigated in patients with GBM using microarray data. SHPK was also overexpressed in GBM cells, and functional studies were conducted. SHPK expression in GBM shows a significant correlation with histology, prognosis, and survival. In particular, its increased expression is associated with a worse prognosis. Furthermore, its overexpression in GBM cells confirms an increase in cell proliferation. This work highlights for the first time the importance of SHPK in GBM for tumor progression and proposes this enzyme and the nonoxidative PPP as possible therapeutic targets.


Subject(s)
Glioblastoma , Pentose Phosphate Pathway , Cell Proliferation , Glioblastoma/genetics , Glioblastoma/metabolism , Heptoses , Humans
18.
Molecules ; 27(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36364355

ABSTRACT

Heptose phosphates-unique linkers between endotoxic lipid A and O-antigen in the bacterial membrane-are pathogen-associated molecular patterns recognized by the receptors of the innate immune system. Understanding the mechanisms of immune system activation is important for the development of therapeutic agents to combat infectious diseases and overcome antibiotic resistance. However, in practice, it is difficult to obtain a substantial amount of heptose phosphates for biological studies due to the narrow scope of the reported synthetic procedures. We have optimized and developed an inexpensive and convenient synthesis for the first performed gram-scale production of 1-O-methyl d-glycero-α-d-gluco-heptoside 7-phosphate from readily available d-glucose. Scaling up to such amounts of the product, we have increased the efficiency of the synthesis and reduced the number of steps of the classical route through the direct phosphorylation of the O6,O7-unprotected heptose. The refined method could be of practical value for further biological screening of heptose phosphate derivatives.


Subject(s)
Glucose , Phosphates , Heptoses , Pathogen-Associated Molecular Pattern Molecules , Lipopolysaccharides
19.
Biochemistry ; 60(19): 1552-1563, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33900734

ABSTRACT

Campylobacter jejuni is the leading cause of food poisoning in the United States and Europe. The exterior cell surface of C. jejuni is coated with a capsular polysaccharide (CPS) that is essential for the maintenance and integrity of the bacterial cell wall and evasion of the host immune response. The identity and sequences of the monosaccharide components of the CPS are quite variable and dependent on the specific strain of C. jejuni. It is currently thought that the immediate precursor for the multiple variations found in the heptose moieties of the C. jejuni CPS is GDP-d-glycero-α-d-manno-heptose. In C. jejuni NCTC 11168, the heptose moiety is d-glycero-l-gluco-heptose. It has previously been shown that Cj1427 catalyzes the oxidation of GDP-d-glycero-α-d-manno-heptose to GDP-d-glycero-4-keto-α-d-lyxo-heptose using α-ketoglutarate as a cosubstrate. Cj1430 was now demonstrated to catalyze the double epimerization of this product at C3 and C5 to form GDP-d-glycero-4-keto-ß-l-xylo-heptose. Cj1428 subsequently catalyzes the stereospecific reduction of this GDP-linked heptose by NADPH to form GDP-d-glycero-ß-l-gluco-heptose. The three-dimensional crystal structure of Cj1430 was determined to a resolution of 1.85 Å in the presence of bound GDP-d-glycero-ß-l-gluco-heptose, a product analogue. The structure shows that it belongs to the cupin superfamily. The three-dimensional crystal structure of Cj1428 was solved in the presence of NADPH to a resolution of 1.50 Å. Its fold places it into the short-chain dehydrogenase/reductase superfamily. Typically, members in this family display a characteristic signature sequence of YXXXK, with the conserved tyrosine serving a key role in catalysis. In Cj1428, this residue is a phenylalanine.


Subject(s)
Campylobacter jejuni/metabolism , Heptoses/biosynthesis , Bacterial Proteins/chemistry , Campylobacter jejuni/pathogenicity , Guanosine Diphosphate/metabolism , Heptoses/chemistry , Heptoses/metabolism , Ketoglutaric Acids/metabolism , Monosaccharides/metabolism , Oxidoreductases/metabolism , Polysaccharides/metabolism , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/metabolism
20.
Biochemistry ; 60(37): 2836-2843, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34505775

ABSTRACT

Campylobacter jejuni is a Gram-negative, pathogenic bacterium that causes campylobacteriosis, a form of gastroenteritis. C. jejuni is the most frequent cause of food-borne illness in the world, surpassing Salmonella and E. coli. Coating the surface of C. jejuni is a layer of sugar molecules known as the capsular polysaccharide that, in C. jejuni NCTC 11168, is composed of a repeating unit of d-glycero-l-gluco-heptose, d-glucuronic acid, d-N-acetyl-galactosamine, and d-ribose. The d-glucuronic acid moiety is further amidated with either serinol or ethanolamine. It is unknown how these modifications are synthesized and attached to the polysaccharide. Here, we report the catalytic activities of two previously uncharacterized, pyridoxal phosphate (PLP)-dependent enzymes, Cj1436 and Cj1437, from C. jejuni NCTC 11168. Using a combination of mass spectrometry and nuclear magnetic resonance, we determined that Cj1436 catalyzes the decarboxylation of l-serine phosphate to ethanolamine phosphate. Cj1437 was shown to catalyze the transamination of dihydroxyacetone phosphate to (S)-serinol phosphate in the presence of l-glutamate. The probable routes to the ultimate formation of the glucuronamide substructures in the capsular polysaccharides of C. jejuni are discussed.


Subject(s)
Bacterial Capsules/enzymology , Bacterial Capsules/metabolism , Campylobacter jejuni/enzymology , Bacterial Capsules/genetics , Bacterial Proteins/chemistry , Campylobacter Infections/microbiology , Campylobacter jejuni/metabolism , Carbohydrate Metabolism , Heptoses/biosynthesis , Polysaccharides/biosynthesis , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/metabolism , Pyridoxal Phosphate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL