Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
Add more filters

Publication year range
1.
Pharm Res ; 41(6): 1233-1245, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744732

ABSTRACT

PURPOSE: This study was designed to develop ibuprofen (IBU) sustained-release amorphous solid dispersion (ASD) using polymer composites matrix with drug release plateaus for stable release and to further reveal intrinsic links between polymer' matrix ratios and drug release behaviors. METHODS: Hydrophilic polymers and hydrophobic polymers were combined to form different composite matrices in developing IBU ASD formulations by hot melt extrusion technique. The intrinsic links between the mixed polymer matrix ratio and drug dissolution behaviors was deeply clarified from the dissolution curves of hydrophilic polymers and swelling curves of composite matrices, and intermolecular forces among the components in ASDs. RESULTS: IBU + ammonio methacrylate copolymer type B (RSPO) + poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP VA64) physical mixtures presented unstable release behaviors with large error bars due to inhomogeneities at the micrometer level. However, IBU-RSPO-PVP VA64 ASDs showed a "dissolution plateau phenomenon", i.e., release behaviors of IBU in ASDs were unaffected by polymer ratios when PVP VA64 content was 35% ~ 50%, which could reduce risks of variations in release behaviors due to fluctuations in prescriptions/processes. The release of IBU in ASDs was simultaneously regulated by the PVP VA64-mediated "dissolution" and RSPO-PVP VA64 assembly-mediated "swelling". Radial distribution function suggested that similar intermolecular forces between RSPO and PVP VA64 were key mechanisms for the "dissolution plateau phenomenon" in ASDs at 35% ~ 50% of PVP VA64. CONCLUSIONS: This study provided ideas for developing ASD sustained-release formulations with stable release plateau modulated by polymer combinations, taking full advantages of simple process/prescription, ease of scale-up and favorable release behavior of ASD formulations.


Subject(s)
Delayed-Action Preparations , Drug Compounding , Drug Liberation , Ibuprofen , Polymers , Delayed-Action Preparations/chemistry , Ibuprofen/chemistry , Ibuprofen/administration & dosage , Polymers/chemistry , Drug Compounding/methods , Hydrophobic and Hydrophilic Interactions , Solubility , Hot Melt Extrusion Technology/methods , Vinyl Compounds/chemistry , Pyrrolidines/chemistry , Chemistry, Pharmaceutical/methods , Povidone/chemistry
2.
Pharm Dev Technol ; 29(2): 131-142, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38235570

ABSTRACT

The aim of this work was to study the possibility to use SepitrapTM as a carrier for the formulation of amorphous solid dispersions by HME (hot melt extrusion) processing aiming solubility enhancement of poorly water-soluble drugs. SepitrapTM is a microencapsulated powder solubilizer designed to simplify the manufacture of drugs in oral solid forms, not yet tested for this purpose. The performance of SepitrapTM was evaluated in HME processing for amorphous solid dispersions of poorly-water soluble drugs with indomethacin as a model drug. The study was conducted using a twin-screw extruder, two compositions of SepitrapTM and different loads of indomethacin, demonstrating that SepitrapTM could represent a new range of carriers for amorphous solid dispersions for HME processing, reducing necessary downstream steps such as grinding.


Subject(s)
Chemistry, Pharmaceutical , Indomethacin , Drug Compounding , Hot Melt Extrusion Technology , Solubility , Water , Hot Temperature , Drug Carriers
3.
Pharm Dev Technol ; 29(3): 248-257, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38416122

ABSTRACT

This study aimed to develop a tablet that shows a drug release profile similar to the tofacitinib sustained-release tablet (Xeljanz XR®; OROS™) using hot melt extrusion technology. Tofacitinib citrate was selected as the drug. HPMCAS, HPMCP, and Kollidon VA64 were used as thermoplastic polymers to prepare a hot-melt extrudate. The extrudate was obtained from a twin screw extruder and pelletizer. The granules were compressed using a single punch press machine and then coated. TGA, DSC, XRD, FT-IR, and SEM were performed on the hot melt extrudate to understand its physicochemical properties. Dissolution tests were performed using the paddle method (USP Apparatus II). The results showed that the crystallinity state of tofacitinib changed to amorphous after the hot melt extrusion process; however, no chemical change was observed. The drug release profile was similar to that of Xeljanz XR®, which has an initial lag time owing to its OROS™ formulation; a coating process was performed to obtain a similar drug release profile. The lag time was controlled by adjusting the thickness of the coating layer. Moreover, the extrudate size and compression force during tableting did not significantly affect drug release. In conclusion, the new tofacitinib sustained-release tablet prepared using hot melt extrusion showed a drug release behavior similar to that of Xeljanz XR®.


Subject(s)
Hot Melt Extrusion Technology , Hot Temperature , Piperidines , Pyrimidines , Hot Melt Extrusion Technology/methods , Delayed-Action Preparations/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Tablets/chemistry , Drug Liberation , Drug Compounding/methods
4.
Pharm Dev Technol ; 29(3): 258-264, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38407128

ABSTRACT

The aim of this study was to evaluate the suitability of a non-disruptive Raman spectroscopic method to quantify drug concentrations below 5 w% within a polymer matrix produced by hot-melt extrusion (HME). For calibration, praziquantel (PZQ)-polyvinylpyrrolidone-vinylacetat-copolymer (PVP-VA) mixtures were extruded. By focusing the laser light of the Raman probe to a diameter of 1 mm and implementing a self-constructed filament holder, the signal-to-noise (S/N) ratio could be reduced considerably. The obtained Raman spectra show quite high fluorescence, which is likely to be caused by dissolved pharmaceutical active ingredient (API) in the polymer matrix. For content determination, HPLC analysis was conducted as a reference method using the same filament segments. A partial least squares (PLS) model, regressing the PZQ concentrations from HPLC method analysis versus the off-line collected Raman spectra, was developed. The linear correlation for a suitable extrusion run for the production of low-dosed filaments (extrusion 1, two kneading zones) is acceptable (R2 = 0.9915) while the correlation for a extrusion set-up with low miscibility (extrusion 2; without kneading zone) is unacceptable (R2 = 0.5349). The predictive performance of the calibration model from extrusion 1 is rated by the root mean square error of estimation (RMSEE), which was 0.08%. This calibration can now be used to validate the content of low-dosed filaments during HME.


Subject(s)
Povidone , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Povidone/chemistry , Polymers/chemistry , Hot Melt Extrusion Technology , Drug Compounding/methods , Hot Temperature
5.
AAPS PharmSciTech ; 25(2): 37, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355916

ABSTRACT

Hot-melt extrusion (HME) is a globally recognized, robust, effective technology that enhances the bioavailability of poorly soluble active pharmaceutical ingredients and offers an efficient continuous manufacturing process. The twin-screw extruder (TSE) offers an extremely resourceful customizable mixer that is used for continuous compounding and granulation by using different combinations of conveying elements, kneading elements (forward and reverse configuration), and distributive mixing elements. TSE is thus efficiently utilized for dry, wet, or melt granulation not only to manufacture dosage forms such as tablets, capsules, or granule-filled sachets, but also for designing novel formulations such as dry powder inhalers, drying units for granules, nanoextrusion, 3D printing, complexation, and amorphous solid dispersions. Over the past decades, combined academic and pharmaceutical industry collaborations have driven novel innovations for HME technology, which has resulted in a substantial increase in published articles and patents. This article summarizes the challenges and models for executing HME scale-up. Additionally, it covers the benefits of continuous manufacturing, process analytical technology (PAT) considerations, and regulatory requirements. In summary, this well-designed review builds upon our earlier publication, probing deeper into the potential of twin-screw extruders (TSE) for various new applications.


Subject(s)
Chemistry, Pharmaceutical , Technology, Pharmaceutical , Drug Compounding/methods , Technology, Pharmaceutical/methods , Chemistry, Pharmaceutical/methods , Hot Melt Extrusion Technology , Drug Industry/methods , Hot Temperature
6.
AAPS PharmSciTech ; 25(5): 136, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862810

ABSTRACT

Cannabidiol (CBD) is a highly lipophilic compound with poor oral bioavailability, due to poor aqueous solubility and extensive pre-systemic metabolism. The aim of this study was to explore the potential of employing Hot Melt Extrusion (HME) technology for the continuous production of Self Emulsifying Drug Delivery Systems (SEDDS) to improve the solubility and in vitro dissolution performance of CBD. Accordingly, different placebos were processed through HME in order to obtain a lead CBD loaded solid SEDDS. Two SEDDS were prepared with sesame oil, Poloxamer 188, Gelucire®59/14, PEO N80 and Soluplus®. Moreover, Vitamin E was added as an antioxidant. The SEDDS formulations demonstrated emulsification times of 9.19 and 9.30 min for F1 and F2 respectively. The formed emulsions showed smaller droplet size ranging from 150-400 nm that could improve lymphatic uptake of CBD and reduce first pass metabolism. Both formulations showed significantly faster in vitro dissolution rate (90% for F1 and 83% for F2) compared to 14% for the pure CBD within the first hour, giving an enhanced release profile. The formulations were tested for stability over a 60-day time period at 4°C, 25°C, and 40°C. Formulation F1 was stable over the 60-day time-period at 4°C. Therefore, the continuous HME technology could replace conventional methods for processing SEDDS and improve the oral delivery of CBD for better therapeutic outcomes.


Subject(s)
Cannabidiol , Chemistry, Pharmaceutical , Drug Delivery Systems , Emulsions , Solubility , Cannabidiol/chemistry , Cannabidiol/administration & dosage , Emulsions/chemistry , Drug Delivery Systems/methods , Administration, Oral , Chemistry, Pharmaceutical/methods , Hot Melt Extrusion Technology/methods , Drug Liberation , Particle Size , Biological Availability , Drug Compounding/methods , Polyethylene Glycols/chemistry , Drug Stability , Sesame Oil/chemistry , Polyvinyls
7.
Mol Pharm ; 20(8): 3779-3790, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37421361

ABSTRACT

For more than five decades, pharmaceutical manufacturers have been relying heavily on batch manufacturing that is a sequential, multistep, laborious, and time-consuming process. However, late advances in manufacturing technologies have prompted manufacturers to consider continuous manufacturing (CM) is a feasible manufacturing process that encompasses fewer steps and is less tedious and quick. Global regulatory agencies are taking a proactive role to facilitate pharmaceutical industries to adopt CM that assures product quality by employing robust manufacturing technologies encountering fewer interruptions, thereby substantially reducing product failures and recalls. However, adopting innovative CM is known to pose technical and regulatory challenges. Hot melt extrusion (HME) is one such state-of-the-art enabling technology that facilitates CM of diverse pharmaceutical dosage forms, including topical semisolids. Efforts have been made to continuously manufacture semisolids by HME integrating the principles of Quality by Design (QbD) and Quality Risk Management (QRM) and deploying Process Analytical Technologies (PAT) tools. Attempts have been made to systematically elucidate the effect of critical material attributes (CMA) and critical process parameters (CPP) on product critical quality attributes (CQA) and Quality Target Product Profiles (QTPP) deploying PAT tools. The article critically reviews the feasibility of one of the enabling technologies such as HME in CM of topical semisolids. The review highlights the benefits of the CM process and challenges ahead to implement the technology to topical semisolids. Once the CM of semisolids adopting melt extrusion integrated with PAT tools becomes a reality, the process can be extended to manufacture sterile semisolids that usually involve more critical processing steps.


Subject(s)
Hot Melt Extrusion Technology , Technology, Pharmaceutical , Drug Industry , Pharmaceutical Preparations , Hot Temperature , Drug Compounding
8.
Pharm Res ; 40(9): 2253-2268, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37610622

ABSTRACT

PURPOSE: Affinisol HPMC HME is a new popular form of hypromellose specifically designed for the hot melt extrusion and 3D printing of pharmaceutical products. However, reports of its thermal stability include only data obtained under inert N2 atmosphere, which is not consistent with the common pharmaceutical practice. Therefore, detailed investigation of its real-life thermal stability in air is paramount for identification of potential risks and limitations during its high-temperature processing. METHODS: In this work, the Affinisol HPMC HME 15LV powder as well as extruded filaments will be investigated by means of thermogravimetry, differential scanning calorimetry and infrared spectroscopy with respect to its thermal stability. RESULTS: The decomposition in N2 was proceeded in accordance with the literature data and manufacturer's specifications: onset at ~260°C at 0.5°C·min-1, single-step mass loss of 90-95%. However, in laboratory or industrial practice, high-temperature processing is performed in the air, where oxidation-induced degradation drastically changes. The thermogravimetric mass loss in air proceeded in three stages: ~ 5% mass loss with onset at 150°C, ~ 70% mass loss at 200°C, and ~ 15% mass loss at 380°C. Diffusion of O2 into the Affinisol material was identified as the rate-determining step. CONCLUSION: For extrusion temperatures ≥170°C, Affinisol exhibits a significant degree of degradation within the 5 min extruder retention time. Hot melt extrusion of pure Affinisol can be comfortably performed below this temperature. Utilization of plasticizers may be necessary for safe 3D printing.


Subject(s)
Chemistry, Pharmaceutical , Hot Melt Extrusion Technology , Temperature , Chemistry, Pharmaceutical/methods , Hot Temperature , Solubility , Printing, Three-Dimensional
9.
Int J Mol Sci ; 24(6)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36982908

ABSTRACT

Hot Melt Extrusion (HME) technology was developed to obtain blends containing lyophilized Scutellariae baicalensis root extract and chitosan in order to improve the rheological properties of the obtained blends, including tableting and compressibility properties. (Hydroxypropyl)methyl cellulose (HPMC) in 3 different ratios was used as amorphous matrix formers. The systems were characterized using X-ray powder diffraction (PXRD), Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR), and in vitro release, permeability, and microbiological activity studies. Then, the extrudates were used to prepare tablets in order to give them the appropriate pharmaceutical form. HPMC-based systems released baicalin more slowly, resulting in delayed peaks in the acceptor fluid. This behavior can be explained by the fact that HPMC swells significantly, and the dissolved substance must have diffused through the polymer network before being released. The best tabletability properties are provided by the formulation containing the extrudate with lyophilized extract HPMC 50:50 w/w. These tablets offer a valuable baicalin release profile while maintaining good mucoadhesive properties that condition the tablet's retention in the application site and the effectiveness of therapy.


Subject(s)
Chemistry, Pharmaceutical , Chitosan , Chemistry, Pharmaceutical/methods , Hot Melt Extrusion Technology , Solubility , Tablets , Drug Compounding/methods , Hot Temperature
10.
Molecules ; 28(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36677795

ABSTRACT

The aim of this study was to improve the solubility, bioavailability, and stability of resveratrol (RES-SD) Solid Dispersion in Polygonum cuspidatum extract (PCE) by hot melt extrusion (HME). In addition, the role of the auxiliary substances in PCE was also studied. The solid dispersion of Polygonum cuspidatum extract was prepared by hot-melt extrusion. The optimum formula was selected by single factor design and orthogonal test. The optimum formula was barrel temperature 140 °C, screw rotation speed 40 rpm/min, and the ratio of Polygonum cuspidatum extract to HPMCAS was 1:2. The dissolution test showed that PCE-SD increased the dissolution of RES from 46.75 ± 0.47% to 130.06 ± 0.12%. The pharmacokinetics curve of rats showed that PCE-SD increased AUC0-t of RES from 111,471.22 ± 11.4% to 160,458.968 ± 15.7%, indicating an approximately 1.44-fold increase in absorption. In addition, the rotation speed of PCE-SD screw is less than that of RES-SD screw. The bioavailability of PCE-SD was slightly better than that of RES-SD. PCE-SD is more hygroscopic than RES-SD. PCE-SD increased the solubility and oral bioavailability of RES. The auxiliary substances in Polygonum cuspidatum extract have influence on its preparation technology, stability, and bioavailability.


Subject(s)
Fallopia japonica , Hot Melt Extrusion Technology , Rats , Animals , Resveratrol , Biological Availability , Solubility , Plant Extracts , Hot Temperature , Drug Compounding
11.
AAPS PharmSciTech ; 24(7): 203, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37783961

ABSTRACT

The primary focus of the research is to study the role of cocrystal and amorphous solid dispersion approaches for enhancing solubility and preserving the stability of a poorly soluble drug, i.e., ibuprofen (IBP). First, the solvent-assisted grinding approach determined the optimum molar ratio of the drug and the coformer (nicotinamide (NIC)). Later, the polymeric filaments of cocrystals and amorphous solid dispersions were developed using the hot melt extrusion (HME) process, and the printlets were fabricated using the fused deposition modeling (FDM) additive manufacturing process. In addition, the obtained filaments were also milled and compressed into tablets as reference samples. The formation of cocrystals and amorphous solid dispersions was evaluated and confirmed using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffraction (PXRD) analysis. The drug release profiles of 3D printlets with 50% infill were found to be faster and are in line with the release profiles of compressed tablets. In addition, the 3D-printed cocrystal formulation was stable for 6 months at accelerated conditions. However, the 3D printlets of amorphous solid dispersions and compressed tablets failed to retain stability attributed to the recrystallization of the drug and loss in tablet mechanical properties. This shows the suitability of a cocrystal platform as a novel approach for developing stable formulations of poorly soluble drug substances over amorphous solid dispersions.


Subject(s)
Hot Melt Extrusion Technology , Ibuprofen , Solubility , Hot Melt Extrusion Technology/methods , Drug Liberation , Polymers/chemistry , Drug Compounding/methods , Tablets
12.
Medicina (Kaunas) ; 59(12)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38138169

ABSTRACT

Background and Objectives: In spite of the oral environment being healing-prone, its dynamic changes may affect wound healing. The purpose of this study was to assess the oral wound healing effect of Angelica gigas Nakai (AG) prepared by hot-melt extrusion. Materials and Methods: Human gingival fibroblast (HGF) cells were treated with AG or AG via hot-melt extrusion (AGH) for 24 h to determine the optimal concentration. For evaluating the anti-inflammatory effect of AG and AGH, a nitric oxide assay was performed under lipopolysaccharide (LPS) stimulation. The wound-healing effects of AG and AGH were evaluated using cell proliferation/migration assays and wound-healing marker expression through qRT-PCR. Results: Both AG and AGH showed no cytotoxicity on HGH cells. Regarding nitric oxide production, AGH significantly decreased LPS-induced nitric oxide production (p < 0.05). AGH showed a significantly positive result in the cell proliferation/cell migration assay compared with that in AG and the control. Regarding wound healing marker expression, AGH showed significantly greater VEGF and COL1α1 expression levels than those in the others (p < 0.05), whereas α-SMA expression was significantly different among the groups. Conclusions: Within the limits of this study, AGH accelerated oral wound healing in vitro.


Subject(s)
Angelica , Humans , Hot Melt Extrusion Technology , Nitric Oxide , Lipopolysaccharides/pharmacology , Wound Healing/physiology
13.
Mol Pharm ; 19(1): 318-331, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34846902

ABSTRACT

Oral drug therapy requiring large quantities of active pharmaceutical ingredients (APIs) can cause a substantial pill burden, which can increase nonadherence and worsen healthcare outcomes. Maximizing the drug loading of APIs in oral dosage forms is essential to reduce pill burden. This can be challenging for poorly water-soluble APIs without compromising performance. We show a promising strategy for maximizing the drug loading of pH-dependent APIs in amorphous solid dispersions (ASDs) produced by hot-melt extrusion (HME) without compromising their dissolution performance. We examine potential increases in the drug loading (w/w) of telmisartan in ASDs by incorporating bases to modify pH during HME. Telmisartan is a weakly acidic, poorly water-soluble API with pH-dependent solubility. It is practically insoluble at physiological pH, but its solubility increases exponentially at pH values above 10. Telmisartan was extruded with the polymer Soluplus and various bases. With no base, the maximum drug loading achieved by extrusion was only 5% before crystalline telmisartan was detected. Including a strong, water-soluble base (NaOH or KOH) increased the maximum amorphous drug loading to 50%. These results indicate that telmisartan has pH-dependent solubility in a molten polymer, similar to that in an aqueous solution. We also examine the stability of Soluplus when extruded with a strong base, using solid-state nuclear magnetic resonance (ssNMR) to determine that NaOH (but not KOH) causes degradation by hydrolysis. Supersaturation was maintained for at least 20 h during dissolution testing of a 50% telmisartan ASD in biorelevant media.


Subject(s)
Drug Compounding/methods , Hot Melt Extrusion Technology/methods , Telmisartan/chemistry , Drug Liberation , Hydrogen-Ion Concentration , Telmisartan/administration & dosage
14.
Mol Pharm ; 19(1): 332-344, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34910485

ABSTRACT

High-temperature exposure during hot melt extrusion processing of amorphous solid dispersions may result in thermal degradation of the drug. Polymer type may influence the extent of degradation, although the underlying mechanisms are poorly understood. In this study, the model compound, ritonavir (Tm = 126 °C), undergoes thermal degradation upon high-temperature exposure. The extent of degradation of ritonavir in amorphous solid dispersions (ASDs) formulated with poly(vinylpyrrolidone) (PVP), poly(vinylpyrrolidone) vinyl acetate copolymer (PVP/VA), hydroxypropyl methylcellulose acetate succinate (HPMCAS), and hydroxypropyl methylcellulose (HPMC) following isothermal heating and hot melt extrusion was evaluated, and mechanisms related to molecular mobility and intermolecular interactions were assessed. Liquid chromatography-mass spectrometry (LC-MS/MS) studies were used to determine the degradation products and pathways and ultimately the drug-polymer compatibility. The dominant degradation product of ritonavir was the result of a dehydration reaction, which then catalyzed a series of hydrolysis reactions to generate additional degradation products, some newly reported. This reaction series led to accelerated degradation rates with protic polymers, HPMCAS and HPMC, while ASDs with aprotic polymers, PVP and PVP/VA, had reduced degradation rates. This work has implications for understanding mechanisms of thermal degradation and drug-polymer compatibility with respect to the thermal stability of amorphous solid dispersions.


Subject(s)
Drug Compounding/methods , Polymers , Ritonavir/chemistry , Chromatography, High Pressure Liquid , Drug Liberation , Hot Melt Extrusion Technology/methods , Ritonavir/administration & dosage , Spectrophotometry, Infrared , Thermogravimetry
15.
Pharm Dev Technol ; 27(3): 313-318, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35272581

ABSTRACT

The manufacturing of amorphous solid dispersions via hot melt extrusion is a topic of high interest in pharmaceutical development. By this technique, the drug is dissolved in the molten polymer above solubility temperature within the process time. In this study, an experimental framework is proposed determining the minimum required process temperature and the residence time using particularly low quantities of material. Drug/polymer mixtures in different ratios were processed in a micro-scale extruder while the process temperature and residence time were varied systematically. The phase situation was assessed by the turbidity of the final extrudate. Four different drug/polymer mixtures were investigated in three drug/polymer ratios. The minimum required process temperature was close to solubility temperature for each specific formulation. Moreover, an influence of residence time on the phase situation was found. About three minutes were required in order to dissolve the drug in the polymer at these process conditions.


Subject(s)
Chemistry, Pharmaceutical , Hot Melt Extrusion Technology , Chemistry, Pharmaceutical/methods , Drug Carriers , Drug Compounding/methods , Hot Temperature , Polymers , Solubility , Temperature
16.
AAPS PharmSciTech ; 23(6): 176, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35750968

ABSTRACT

Process simulation facilitates scale-up of hot-melt extrusion (HME) and enhances proper understanding of the underlying critical process parameters. However, performing numeric simulations requires profound knowledge of the employed materials' properties. For example, an accurate description of the compounds' melt rheology is paramount for proper simulations. Hence, sample preparation needs to be optimized to yield results as predictive as possible. To identify the optimal preparation method for small amplitude oscillatory shear (SAOS) rheological measurements, binary mixtures of hydroxypropylmethylcellulose acetate succinate or methacrylic acid ethyl acrylate copolymer (Eudragit L100-55) together with the model drugs celecoxib and ketoconazole were prepared. The physical powder mixtures were introduced into the SAOS as a compressed tablet or a disk prepared via vacuum compression molding (VCM). Simulations with the derived parameters were conducted and compared to lab-scale extrusion trials. VCM was identified as the ideal preparation method resulting in the highest similarity between simulated and experimental values, while simulation based on conventional powder-based methods insufficiently described the HME process.


Subject(s)
Autism Spectrum Disorder , Hot Melt Extrusion Technology , Drug Compounding/methods , Hot Temperature , Humans , Powders , Solubility , Tablets
17.
AAPS PharmSciTech ; 23(7): 257, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36114430

ABSTRACT

Hot melt extrusion (HME) has been used for the formulation of topical solid lipid nanoparticle (SLN) gel without using any other size reduction technique including high pressure homogenization or sonication. SLN formulation solely using HME has not been applied to other drugs except IBU. Therefore, the purpose of the present study was to formulate FLB SLN solely using HME technique and evaluate the SLN formulation in inflammation animal model. Stable 0.5% w/v FLB SLN gel with particle size < 250 nm, PI < 0.3 and EE of > 98% was prepared. Differential scanning calorimetry (DSC) thermogram showed that the drug was converted to amorphous form in the HME process. Additionally, rheological studies demonstrated that FLB SLN gel and marketed FLB gel showed shear thinning property. FLB SLN formulation showed significantly (p < 0.05) higher peak force required to spread the formulation as compared to marketed FLB formulation. Stability studies showed that FLB SLN gel was stable for a month at room temperature and 2-4°C. Moreover, in vitro permeation test (IVPT) and ex vivo skin deposition study results revealed that FLB SLN gel showed significant (p < 0.05) increase in drug deposition in dermal layer and drug permeation as compared to control marketed formulation. Further, in vivo anti-inflammatory study showed equivalent inhibition of rat paw edema using 0.5% w/v FLB SLN gel which has 10 times less strength compared to control formulation. Overall, FLB SLN formulation was successfully manufactured solely using HME technique which resulted in enhanced the skin permeation of FLB and superior anti-inflammatory activity.


Subject(s)
Flurbiprofen , Hot Melt Extrusion Technology , Animals , Anti-Inflammatory Agents , Drug Carriers/chemistry , Gels , Liposomes , Nanoparticles , Rats
18.
AAPS PharmSciTech ; 23(7): 248, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36056201

ABSTRACT

This study aimed to formulate and optimize solid-dispersion of meloxicam (MX) employing response-surface-methodology (RSM). RSM allowed identification of the main effects and interactions between studied factors on MX dissolution and acceleration of the optimization process. 33 full factorial design with 27 different formulations was proposed. Effects of drug loading percentage (A), carriers' ratio (B), method of preparation (C), and their interactions on percent MX dissolved after 10 and 30 min (Q10min & Q30min) from fresh and stored samples were studied in distilled water. The considered levels were 2.5%, 5.0%, and 7.5% (factor A), three ratios of Soluplus®/Poloxamer-407 (factor B). Physical mixture (PM), fusion method (FM), and hot-melt-extrusion (HME) were considered factor (C). Stability studies were carried out for 3 months under stress conditions. The proposed optimization design was validated by 3-extra checkpoints formulations. The optimized formulation was selected via numerical optimization and investigated by DSC, XRD, PLM, and in vitro dissolution study. Results showed that HME technique gave the highest MX dissolution rate compared to other techniques (FM & PM). At constant level of factor (C), the amount of MX dissolved increased by decreasing MX loading and increasing Soluplus in carriers' ratio. Actual responses of the optimized formulation were in close consistency with predicted data. Amorphous form of MX in the optimized formulation was proved by DSC, XRD, and PLM. Selected factors and their levels of the optimization design were significantly valuable for demonstrating and adapting the expected formulation characteristics for rapid dissolution of MX (Q10min= 89.09%) from fresh and stored samples.


Subject(s)
Chemistry, Pharmaceutical , Hot Melt Extrusion Technology , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Drug Stability , Hot Temperature , Meloxicam , Solubility
19.
Drug Dev Ind Pharm ; 47(5): 748-757, 2021 May.
Article in English | MEDLINE | ID: mdl-34038307

ABSTRACT

Indomethacin (IND) is one of the supporting drug candidates for colonic targeting but it belongs to BCS class II category presenting a challenge in optimal targeting at the colonic site. To overcome this challenge, we sought to prepare a pH-dependent soluble ternary solid dispersion (SD) of IND of improved solubility and dissolution rate at the colon without the need for a coating. The current study focuses on the preparation of binary SDs of API (IND) with shellac (SSB 55) and Eudragit FS 100 (EFS) and ternary mixtures of IND, SSB 55 together with a new grade of HPMC (A15). Respective SDs were prepared via HME to achieve gastric protection and improved dissolution performance including maintenance of supersaturation. The SDs were characterized and tested for in-vitro dissolution performance using a pH shift dissolution method from 1.1, 5.5, 6.8, and 7.4. A ternary extrudate of IND, SSB 55, and A15 showed improved protection below pH 5.5 with a complete release of 99.5% at pH 7.4 compared to IND neat and binary extrudates from IND-A15, IND-SSB 55, and IND-EFS. It was attributed to an increased level of intermolecular interaction confirmed by ATR-IR and was studied for stability. It was found that in a ternary mixture containing IND, A15 and SSB 55 an increased hydrogen bonding interaction is present, which resulted in improved dissolution performance compared to binary mixtures. Therefore, ternary SDs proved to be a promising concept for future development of colon targeting of poorly soluble drugs.


Subject(s)
Hot Melt Extrusion Technology , Indomethacin , Colon , Drug Carriers , Drug Compounding , Drug Stability , Resins, Plant , Solubility
20.
Drug Dev Ind Pharm ; 47(1): 163-175, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297790

ABSTRACT

OBJECTIVE: The present study involved enhancement of Meloxicam (MX) oral absorption for rapid onset of therapeutic action. A challenging approach using hot-melt-extrusion technique (HME) for production of stable novel preparation of MX pellets was successfully proposed. METHODS: Manipulating HME processing parameters (barrel-temperatures and screw-speed) and proper polymer(s) selection (Soluplus, a combination of Soluplus/Poloxamar and Polyethylene Glycol 6000) were the main strategies involved for productive extrusion of MX. Evaluation of MX solid-state (TGA, DSC and PLM), absolute percent crystallinity, in-vitro dissolution (in acidic/aqueous pHs), and stability testing in accelerated conditions up to 6-months as well as a long-term shelf for 36-months were performed. A comparative bioavailability study of selected MX-Pellets was carried-out against the innovator product (Mobic®) in 6 healthy volunteers under fed-conditions. RESULTS: TGA, DSC and PLM analyses proved the dispersion of MX in amorphous-state within polymeric matrix by HME. MX/Soluplus pellets exhibited the lowest crystallinity % and best dissolution performance among other polymers in both pHs. In addition, presence of Soluplus safeguards final pellets stability under different storage conditions. MX rate of absorption (Tmax) from Soluplus-based pellets attained a value of 45 min, which was 6-times faster than Mobic® (4.5 hr). CONCLUSION: A promising oral MX formula prepared by HME was successfully developed with a rapid onset of analgesic action (Tmax of 45 mins; almost 2-times faster than reported intramuscular injection), hence appropriate in the early relief of pain associated with rheumatoid arthritis and osteoarthritis. Moreover, the proposed formula was physico-chemically stable up to 36 months of shelf-life storage.


Subject(s)
Chemistry, Pharmaceutical , Polyethylene Glycols/chemistry , Polyvinyls , Biological Availability , Drug Compounding , Hot Melt Extrusion Technology , Humans , Meloxicam , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL