Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 513
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33876755

ABSTRACT

Innate immunity provides essential protection against life-threatening fungal infections. However, the outcomes of individual skirmishes between immune cells and fungal pathogens are not a foregone conclusion because some pathogens have evolved mechanisms to evade phagocytic recognition, engulfment, and killing. For example, Candida albicans can escape phagocytosis by activating cellular morphogenesis to form lengthy hyphae that are challenging to engulf. Through live imaging of C. albicans-macrophage interactions, we discovered that macrophages can counteract this by folding fungal hyphae. The folding of fungal hyphae is promoted by Dectin-1, ß2-integrin, VASP, actin-myosin polymerization, and cell motility. Folding facilitates the complete engulfment of long hyphae in some cases and it inhibits hyphal growth, presumably tipping the balance toward successful fungal clearance.


Subject(s)
Candida albicans/pathogenicity , Hyphae/cytology , Macrophages/metabolism , Phagocytosis , AMP-Activated Protein Kinase Kinases , Actomyosin/metabolism , Animals , CD18 Antigens/metabolism , Cell Adhesion Molecules/metabolism , Cells, Cultured , Humans , Hyphae/pathogenicity , Lectins, C-Type/metabolism , Macrophages/microbiology , Mice , Protein Kinases/metabolism , RAW 264.7 Cells
2.
Proc Natl Acad Sci U S A ; 117(38): 23847-23858, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32873646

ABSTRACT

Umbilicaria muhlenbergii is the only known dimorphic lichenized fungus that grows in the hyphal form in lichen thalli but as yeast cells in axenic cultures. However, the regulation of yeast-to-hypha transition and its relationship to the establishment of symbiosis are not clear. In this study, we show that nutrient limitation and hyperosmotic stress trigger the dimorphic change in U. muhlenbergii Contact with algal cells of its photobiont Trebouxia jamesii induced pseudohyphal growth. Treatments with the cAMP diphosphoesterase inhibitor IBMX (3-isobutyl-1-methylxanthine) induced pseudohyphal/hyphal growth and resulted in the differentiation of heavily melanized, lichen cortex-like structures in culture, indicating the role of cAMP signaling in regulating dimorphism. To confirm this observation, we identified and characterized two Gα subunits UmGPA2 and UmGPA3 Whereas deletion of UmGPA2 had only a minor effect on pseudohyphal growth, the ΔUmgpa3 mutant was defective in yeast-to-pseudohypha transition induced by hyperosmotic stress or T. jamesii cells. IBMX treatment suppressed the defect of ΔUmgpa3 in pseudohyphal growth. Transformants expressing the UmGPA3G45V or UmGPA3Q208L dominant active allele were enhanced in the yeast-to-pseudohypha transition and developed pseudohyphae under conditions noninducible to the wild type. Interestingly, T. jamesii cells in close contact with pseudohyphae of UmGPA3G45V and UmGPA3Q208L transformants often collapsed and died after coincubation for over 72 h, indicating that improperly regulated pseudohyphal growth due to dominant active mutations may disrupt the initial establishment of symbiotic interaction between the photobiont and mycobiont. Taken together, these results show that the cAMP-PKA pathway plays a critical role in regulating dimorphism and symbiosis in U. muhlenbergii.


Subject(s)
Ascomycota , Cyclic AMP/metabolism , Lichens , Symbiosis/physiology , Chlorophyta/metabolism , Chlorophyta/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Hyphae/cytology , Hyphae/metabolism , Signal Transduction/physiology
3.
Microb Ecol ; 81(2): 283-292, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32920663

ABSTRACT

Dispersal is a critical ecological process that modulates gene flow and contributes to the maintenance of genetic and taxonomic diversity within ecosystems. Despite an increasing global understanding of the arbuscular mycorrhizal (AM) fungal diversity, distribution and prevalence in different biomes, we have largely ignored the main dispersal mechanisms of these organisms. To provide a geographical and scientific overview of the available data, we systematically searched for the direct evidence on the AM fungal dispersal agents (abiotic and biotic) and different propagule types (i.e. spores, extraradical hyphae or colonized root fragments). We show that the available data (37 articles) on AM fungal dispersal originates mostly from North America, from temperate ecosystems, from biotic dispersal agents (small mammals) and AM fungal spores as propagule type. Much lesser evidence exists from South American, Asian and African tropical systems and other dispersers such as large-bodied birds and mammals and non-spore propagule types. We did not find strong evidence that spore size varies across dispersal agents, but wind and large animals seem to be more efficient dispersers. However, the data is still too scarce to draw firm conclusions from this finding. We further discuss and propose critical research questions and potential approaches to advance the understanding of the ecology of AM fungi dispersal.


Subject(s)
Mycorrhizae/physiology , Animals , Biota , Environment , Geography , Hyphae/cytology , Hyphae/physiology , Mycorrhizae/cytology , Mycorrhizae/isolation & purification , Plant Roots/microbiology , Spores, Fungal/cytology , Spores, Fungal/physiology
4.
Infect Immun ; 88(3)2020 02 20.
Article in English | MEDLINE | ID: mdl-31792076

ABSTRACT

Candida albicans is a leading cause of systemic bloodstream infections, and synthesis of the phospholipid phosphatidylethanolamine (PE) is required for virulence. The psd1Δ/Δ psd2Δ/Δ mutant, which cannot synthesize PE by the cytidine diphosphate diacylglycerol (CDP-DAG) pathway, is avirulent in the mouse model of systemic candidiasis. Similarly, an ept1Δ/Δ mutant, which cannot produce PE by the Kennedy pathway, exhibits decreased kidney fungal burden in systemically infected mice. Conversely, overexpression of EPT1 results in a hypervirulent phenotype in this model. Thus, mutations that increase PE synthesis increase virulence, and mutations that decrease PE synthesis decrease virulence. However, the mechanism by which virulence is regulated by PE synthesis is only partially understood. RNA sequencing was performed on strains with deficient or excessive PE biosynthesis to elucidate the mechanism. Decreased PE synthesis from loss of EPT1 or PSD1 and PSD2 leads to downregulation of genes that impact mitochondrial function. Losses of PSD1 and PSD2, but not EPT1, cause significant increases in transcription of glycosylation genes, which may reflect the substantial cell wall defects in the psd1Δ/Δ psd2Δ/Δ mutant. These accumulated defects could contribute to the decreased virulence observed for mutants with deficient PE synthesis. In contrast to mutants with decreased PE synthesis, there were no transcriptional differences between the EPT1 overexpression strain and the wild type, indicating that the hypervirulent phenotype is a consequence of posttranscriptional changes. It was found that overexpression of EPT1 causes increased chitin content and increased hyphal length. These phenotypes may help to explain the previously observed hypervirulence in the EPT1 overexpressor.


Subject(s)
Candida albicans/pathogenicity , Cell Wall/chemistry , Hyphae/cytology , Phosphatidylethanolamines/metabolism , Candida albicans/metabolism , Candidiasis/microbiology , Cell Wall/metabolism , Chitin/metabolism , Transcription, Genetic
5.
PLoS Pathog ; 14(5): e1006982, 2018 05.
Article in English | MEDLINE | ID: mdl-29775480

ABSTRACT

The pathogenic fungus Cryptococcus neoformans exhibits morphological changes in cell size during lung infection, producing both typical size 5 to 7 µm cells and large titan cells (> 10 µm and up to 100 µm). We found and optimized in vitro conditions that produce titan cells in order to identify the ancestry of titan cells, the environmental determinants, and the key gene regulators of titan cell formation. Titan cells generated in vitro harbor the main characteristics of titan cells produced in vivo including their large cell size (>10 µm), polyploidy with a single nucleus, large vacuole, dense capsule, and thick cell wall. Here we show titan cells derived from the enlargement of progenitor cells in the population independent of yeast growth rate. Change in the incubation medium, hypoxia, nutrient starvation and low pH were the main factors that trigger titan cell formation, while quorum sensing factors like the initial inoculum concentration, pantothenic acid, and the quorum sensing peptide Qsp1p also impacted titan cell formation. Inhibition of ergosterol, protein and nucleic acid biosynthesis altered titan cell formation, as did serum, phospholipids and anti-capsular antibodies in our settings. We explored genetic factors important for titan cell formation using three approaches. Using H99-derivative strains with natural genetic differences, we showed that titan cell formation was dependent on LMP1 and SGF29 genes. By screening a gene deletion collection, we also confirmed that GPR4/5-RIM101, and CAC1 genes were required to generate titan cells and that the PKR1, TSP2, USV101 genes negatively regulated titan cell formation. Furthermore, analysis of spontaneous Pkr1 loss-of-function clinical isolates confirmed the important role of the Pkr1 protein as a negative regulator of titan cell formation. Through development of a standardized and robust in vitro assay, our results provide new insights into titan cell biogenesis with the identification of multiple important factors/pathways.


Subject(s)
Cryptococcus neoformans/cytology , Cryptococcus neoformans/pathogenicity , Animals , Cryptococcosis/microbiology , Cryptococcus neoformans/genetics , Disease Models, Animal , Genes, Fungal , Host-Pathogen Interactions/genetics , Humans , Hyphae/cytology , Hyphae/genetics , Hyphae/pathogenicity , Lung Diseases, Fungal/microbiology , Mice , Mice, Inbred C57BL , Models, Biological , Mutation , Phenotype , Quorum Sensing
6.
PLoS Pathog ; 14(5): e1006978, 2018 05.
Article in English | MEDLINE | ID: mdl-29775474

ABSTRACT

Fungal cells change shape in response to environmental stimuli, and these morphogenic transitions drive pathogenesis and niche adaptation. For example, dimorphic fungi switch between yeast and hyphae in response to changing temperature. The basidiomycete Cryptococcus neoformans undergoes an unusual morphogenetic transition in the host lung from haploid yeast to large, highly polyploid cells termed Titan cells. Titan cells influence fungal interaction with host cells, including through increased drug resistance, altered cell size, and altered Pathogen Associated Molecular Pattern exposure. Despite the important role these cells play in pathogenesis, understanding the environmental stimuli that drive the morphological transition, and the molecular mechanisms underlying their unique biology, has been hampered by the lack of a reproducible in vitro induction system. Here we demonstrate reproducible in vitro Titan cell induction in response to environmental stimuli consistent with the host lung. In vitro Titan cells exhibit all the properties of in vivo generated Titan cells, the current gold standard, including altered capsule, cell wall, size, high mother cell ploidy, and aneuploid progeny. We identify the bacterial peptidoglycan subunit Muramyl Dipeptide as a serum compound associated with shift in cell size and ploidy, and demonstrate the capacity of bronchial lavage fluid and bacterial co-culture to induce Titanisation. Additionally, we demonstrate the capacity of our assay to identify established (cAMP/PKA) and previously undescribed (USV101) regulators of Titanisation in vitro. Finally, we investigate the Titanisation capacity of clinical isolates and their impact on disease outcome. Together, these findings provide new insight into the environmental stimuli and molecular mechanisms underlying the yeast-to-Titan transition and establish an essential in vitro model for the future characterization of this important morphotype.


Subject(s)
Cryptococcus neoformans/cytology , Cryptococcus neoformans/pathogenicity , Animals , Cryptococcosis/microbiology , Cryptococcus neoformans/genetics , Cyclic AMP/metabolism , Disease Models, Animal , Female , Fungal Proteins/metabolism , Host-Pathogen Interactions , Humans , Hyphae/cytology , Hyphae/growth & development , Hyphae/pathogenicity , Lung/microbiology , Lung Diseases, Fungal/microbiology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Models, Biological , Morphogenesis , Polyploidy , Transcription Factors/metabolism , Virulence
7.
Appl Environ Microbiol ; 85(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30737353

ABSTRACT

Basic-region helix-loop-helix (bHLH) proteins are a superfamily of transcription factors that are often involved in the control of growth and differentiation. Recently, it was reported that the bHLH transcription factor DevR is involved in both asexual and sexual development in Aspergillus nidulans and regulates the conidial melanin production in Aspergillus fumigatus In this study, we identified and characterized an Aspergillus oryzae gene that showed high similarity with devR of A. nidulans and A. fumigatus (AodevR). In the AodevR-disrupted strain, growth was delayed and the number of conidia was decreased on Czapek-Dox (CD) minimal agar plates, but the conidiation was partially recovered by adding 0.6 M KCl. Simultaneously, the overexpression of AodevR was induced and resulted in extremely poor growth when the carbon source changed from glucose to polysaccharide (dextrin) in the CD agar plate. Scanning electron microscopy (SEM) indicated that the overexpression of AodevR resulted in extremely thin aberrant hyphal morphology. Conversely, the deletion of AodevR resulted in thicker hyphae and in more resistance to Congo red relative to the control strain. Quantitative reverse transcriptase PCR (RT-PCR) further indicated that AoDevR significantly affects chitin and starch metabolism, and importantly, the overexpression of AodevR inhibited the expression of genes related to starch degradation. A yeast one-hybrid assay suggested that the DevR protein possibly interacted with the promoter of amyR, which encodes a transcription factor involved in amylase production. Importantly, AoDevR is involved in polysaccharide metabolism and affects the growth of the A. oryzae strain.IMPORTANCEAspergillus oryzae is an industrially important filamentous fungus; therefore, a clear understanding of its polysaccharide metabolism and utilization is very important for its industrial utilization. In this study, we revealed that the basic-region helix-loop-helix (bHLH) transcription factor AoDevR is importantly involved in chitin and starch metabolism in A. oryzae The overexpression of AodevR strongly suppressed the expression of amylase-related genes. The results of a yeast one-hybrid assay suggested that the DevR protein potentially interacts with the promoter of amyR, which encodes a transcription factor involved in amylase production and starch utilization. This study provides new insight for further revealing the regulation mechanism of amylase production in A. oryzae.


Subject(s)
Aspergillus oryzae/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carbohydrate Metabolism , Fungal Proteins/metabolism , Transcription Factors/metabolism , Amylases/biosynthesis , Amylases/genetics , Aspergillus oryzae/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Chitin/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Hyphae/cytology , Hyphae/metabolism , Protein Interaction Domains and Motifs , Spores, Fungal/growth & development , Starch/metabolism , Transcription Factors/genetics
8.
Microb Pathog ; 126: 79-84, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30367966

ABSTRACT

The perennial wild rice Zizania latifolia is confined in the swampy habitat and wetland of the Indo-Burma biodiversity hotspot of India and infection by the biotrophic fungus Ustilago esculenta is hallmarked by swellings that develop to form localized smut-gall at the topmost internodal region. The cellular and proteomic events involved in the non-systemic colonization of Z. latifolia by U. esculenta leading to smut-gall formation is poorly understood. Proteins were extracted from the smut-gall region at the topmost internodal region below the apical meristematic tissue from the infected and uninfected parts of Z. latifolia. By combining transmission electron microscopy (TEM) and fluorescent microscopy (FM), we showed that U. esculenta hyphal morphological transitions and movement occurred both intercellularly and intracellularly while sporulation occurred intracellularly in selective cells. Following proteome profiling using two dimensional SDS-PAGE at different phenological phases of smut-gall development and U. esculenta infection, differentially expressed proteins bands and their relative abundance were detected and subjected to liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis. Importantly, the fungus explores at least 7 metabolic pathways and 5 major biological processes to subdue the host defense and thrive successfully on Z. latifolia. The fungus U. esculenta produces proteases and energy acquisition proteins those enhance it's defensive and survival mode in the host. The identified differentially regulated proteins shed-light into why inflorescence is being replaced by bulbous smut-gall at late stages of the disease, as well as the development of resistance in some Z. latifolia plants against U. esculenta infection.


Subject(s)
Host-Pathogen Interactions/physiology , Plant Tumors/microbiology , Poaceae/metabolism , Poaceae/microbiology , Proteomics , Ustilago/metabolism , Ustilago/pathogenicity , Fungal Proteins/metabolism , Gene Expression , Gene Expression Profiling , Gene Ontology , Host-Pathogen Interactions/genetics , Hyphae/cytology , India , Metabolic Networks and Pathways/genetics , Plant Diseases/microbiology , Poaceae/genetics , Ustilago/genetics
9.
FEMS Yeast Res ; 19(6)2019 09 01.
Article in English | MEDLINE | ID: mdl-31403663

ABSTRACT

The commensal species Candida parapsilosis is an emerging human pathogen that has the ability to form biofilms. In this study, we explored the impact of the divalent cations cobalt (Co2+), copper (Cu2+), iron (Fe3+), manganese (Mn2+), nickel (Ni2+) and zinc (Zn2+) on biofilm formation of clinical isolates of C. parapsilosis with no, low and high biofilm forming abilities at 30 and 37°C. All strains besides one isolate showed a concentration-dependent enhancement of biofilm formation at 30°C in the presence of Mn2+ with a maximum at 2 mM. The biofilm forming ability of no and low biofilm forming isolates was >2-fold enhanced in the presence of 2 mM Mn2+, while the effect in high biofilm forming isolate was significantly less pronounced. Of note, cells in the biofilms of no and low biofilm forming strains differentiated into yeast and pseudohyphal cells similar in morphology to high biofilm formers. The biofilm transcriptional activator BCR1 has a dual developmental role in the absence and presence of 2 mM Mn2+ as it promoted biofilm formation of no biofilm forming strains, and, surprisingly, suppressed cells of no biofilm forming strains to develop into pseudohyphae and/or hyphae. Thus, environmental conditions can significantly affect the amount of biofilm formation and cell morphology of C. parapsilosis with Mn2+ to overcome developmental blocks to trigger biofilm formation and to partially relieve BCR1 suppressed cell differentiation.


Subject(s)
Biofilms/growth & development , Candida parapsilosis/drug effects , Candidiasis/microbiology , Cations, Divalent/pharmacology , Fungal Proteins/metabolism , Manganese/pharmacology , Biofilms/drug effects , Candida parapsilosis/cytology , Candida parapsilosis/growth & development , Cell Differentiation/drug effects , Fungal Proteins/genetics , Humans , Hyphae/cytology , Hyphae/drug effects , Hyphae/growth & development , Sequence Deletion , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Appl Microbiol Biotechnol ; 103(16): 6725-6735, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31218375

ABSTRACT

Filamentous fungi serve as production host for a number of highly relevant biotechnological products, like penicillin. In submerged culture, morphology can be exceptionally diverse and is influenced by several process parameters, like aeration, agitation, medium composition or growth rate. Fungal growth leads to several morphological classes encompassing homogeneously dispersed hyphae and various forms of hyphal agglomerates and/or clump structures. Eventually, the so-called pellet structure can be formed, which represents a hyphal agglomerate with a dense core. Pellet structures can hinder oxygen and substrate transport, resulting in different states of viability, which in turn affects productivity and process control. Over the years, several publications have dealt with methods to either gain morphological insight into pellet structure or determine biomass viability. Within this contribution, we present a way to combine both in a flow cytometry-based method employing fluorescent staining. Thereby, we can assess filamentous biomass in a statistically sound way according to (i) morphology and (ii) viability of each detected morphological form. We are confident that this method can shed light on the complex relationship between fungal morphology, viability and productivity-in both process development and routine manufacturing processes.


Subject(s)
Flow Cytometry/methods , Microbial Viability , Penicillium chrysogenum/cytology , Penicillium chrysogenum/physiology , Fluorescence , Hyphae/cytology , Hyphae/physiology , Staining and Labeling/methods
11.
Fungal Genet Biol ; 111: 85-91, 2018 02.
Article in English | MEDLINE | ID: mdl-29129696

ABSTRACT

Basidiomycetes feature a prolonged dikaryotic life stage. A dispute over open versus closed mitosis could be solved using in vivo fluorescence videomicroscopy of histone 2B::EGFP and Lifeact labeled Schizophyllum commune. It revealed nuclei to condense to approximately one fifth in diameter during mitotic prophase. In addition, the specifics of clamp cell formation typical of many basidiomycetes included an actin network at the future site of nuclear division, which allowed for cessation of nuclear movement and re-localization of one nucleus towards the emerging clamp cell, while the other divided along the hyphal axis. Subsequent fusion of the clamp cell to form the clamp connection restored the close association of the two nuclei in a very fast process after clamp fusion. Septation was preceded by actin patches and vesicles involved in formation of the actin ring.


Subject(s)
Actins/physiology , Mitosis/physiology , Schizophyllum/cytology , Cell Nucleus/physiology , Hyphae/cytology , Microscopy, Fluorescence , Microscopy, Video
12.
Fungal Genet Biol ; 110: 48-55, 2018 01.
Article in English | MEDLINE | ID: mdl-29175367

ABSTRACT

Glycogen is a homopolymer of glucose and a ubiquitous cellular-storage carbon. This study investigated which Aspergillus nidulans genes are involved in glycogen metabolism. Gene disruptants of predicted glycogen synthase (gsyA) and glycogenin (glgA) genes accumulated less cellular glycogen than the wild type strain, indicating that GsyA and GlgA synthesize glycogen similarly to other eukaryotes. Meanwhile, gene disruption of gphA encoding glycogen phosphorylase increased the amount of glycogen to a higher degree than wild type during the stationary phase that accompanies carbon-source limitation. GFP-tagged GsyA and GphA were distributed in the cytosol and formed punctate and filamentous structures, respectively. Carbon starvation resulted in elongated GphA-GFP filaments and increased numbers of filaments. These structures were more frequently located in the basal regions of tip cells and adjacent cells than in the apical regions of tip cells. Cellular glycogen visualized by incorporation of a fluorescent glucose analog accumulated in cytoplasmic puncta that were more prevalent in the basal regions, a pattern similar to that seen for GsyA. The colocalization of glycogen and GsyA at punctate structures in tip and sub-apical cells likely represents the cellular machinery for synthesizing glycogen. More frequent colocalization in the basal, rather than tip cell apical regions indicated that tip cells have differentiated subcellular regions for glycogen synthesis. Our findings regarding glycogen, GsyA and GphA distribution evoke the spatial heterogeneity of glycogen metabolism in fungal hyphae.


Subject(s)
Aspergillus nidulans/enzymology , Aspergillus nidulans/metabolism , Fungal Proteins/metabolism , Glycogen/metabolism , Glucosyltransferases/metabolism , Glycogen Synthase/metabolism , Glycoproteins/metabolism , Hyphae/cytology , Hyphae/metabolism
13.
Annu Rev Microbiol ; 67: 587-609, 2013.
Article in English | MEDLINE | ID: mdl-23808332

ABSTRACT

Fungal hyphae extend by apical growth. This process involves the polarized traffic of secretory vesicles to the Spitzenkörper (SPK) and their subsequent distribution to specific domains of the plasma membrane, where they fuse to provide all the enzymes and material needed for cell wall expansion. Endocytic recycling and localized translation of specific mRNAs play an important role in hyphal apical growth. The traffic of vesicular carriers from synthesis sites to their destinations is coordinated by the combined action of coats, tethers, Rab GTPases, motors, and SNAREs in a mechanism that is just beginning to be understood. Only recently has it been confirmed that the different-sized vesicles present at the SPK contain distinct cell wall biosynthetic activities and are distributed in a stratified manner.


Subject(s)
Cell Polarity , Fungi/growth & development , Cell Membrane/genetics , Cell Membrane/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/cytology , Fungi/genetics , Fungi/metabolism , Hyphae/cytology , Hyphae/genetics , Hyphae/growth & development , Hyphae/metabolism , Secretory Vesicles/genetics , Secretory Vesicles/metabolism
14.
Microb Pathog ; 117: 80-87, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29432910

ABSTRACT

The objective of this study was to evaluate the influence of microbe-microbe interactions to identify a strain of Lactobacillus that could reduce the filamentation of Candida albicans ATCC 18804 using in vitro and in vivo models. Thus presenting a probiotic effect against the fungal pathogen. First, we analyzed the ability of 25 clinical isolates of Lactobacillus to reduce filamentation in C. albicans in vitro. We found that L. paracasei isolate 28.4 exhibited the greatest reduction of C. albicans hyphae (p = 0.0109). This reduction was confirmed by scanning electron microscopy analysis. The influence of C. albicans filamentation was found to be contributed through reduced gene expression of filament associated genes (TEC1 and UME6). In an in vivo study, prophylactic provisions with L. paracasei increased the survival of Caenorhabditis elegans worms infected with C. albicans (p = 0.0001) by 29%. Prolonged survival was accompanied by the prevention of cuticle rupture of 27% of the worms by filamentation of C. albicans, a phenotype that is characteristic of C. albicans killing of nematodes, compared to the control group. Lactobacillus paracasei isolate 28.4 reduced the filamentation of C. albicans in vitro by negatively regulating the TEC1 and UME6 genes that are essential for the production of hyphae. Prophylactic provision of Lactobacillus paracasei 28.4 protected C. elegans against candidiasis in vivo. L. paracasei 28.4 has the potential to be employed as an alternative method to control candidiasis.


Subject(s)
Caenorhabditis elegans/microbiology , Candida albicans/growth & development , Hyphae/growth & development , Lacticaseibacillus paracasei/physiology , Models, Theoretical , Animals , Antibiosis , Candida albicans/genetics , Candidiasis/microbiology , Candidiasis/prevention & control , Candidiasis/therapy , DNA-Binding Proteins/genetics , Disease Models, Animal , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Genes, Fungal/genetics , Hyphae/cytology , Lacticaseibacillus paracasei/isolation & purification , Microbial Interactions , Probiotics , Repressor Proteins/genetics , Transcription Factors/genetics
15.
FEMS Yeast Res ; 18(4)2018 06 01.
Article in English | MEDLINE | ID: mdl-29566183

ABSTRACT

Dimorphic yeasts transform into filamentous cells or hyphae in response to environmental cues. The mechanisms for the hyphal transition of dimorphic yeasts have mainly been studied in Candida albicans, an opportunistic human fungal pathogen. The Ras1-MAPK pathway is a major signal transduction pathway for hyphal transition in C. albicans. Recently, the non-pathogenic dimorphic yeast Schizosaccharomyces japonicus has also been used for genetic analyses of hyphal induction. We confirmed that Ras1-MAPK and other MAPK pathways exist in Sz. japonicus. To examine how hyphal transition is induced by environmental stress-triggered signal transduction, we studied the hyphal transition of deletion mutants of MAPK pathways in Sz. japonicus. We found that the MAPK pathways are not involved in hyphal induction, although the mating response is dependent on these pathways. However, only Ras1 deletion caused a severe defect in hyphal development via both DNA damage and environmental stressors. In fact, genes on the Cdc42 branch of the Ras1 (Ras1-Cdc42) pathway, efc25Sj, scd1Sj and scd2Sj, are required for hyphal development. Cell morphology analysis indicated that the apical growth of hyphal cells was inhibited in Ras1-Cdc42-pathway deletion mutants. Thus, the control of cell polarity by the Ras1-Cdc42 pathway is crucial for hyphal development.


Subject(s)
Hyphae/growth & development , Schizosaccharomyces/growth & development , Schizosaccharomyces/genetics , cdc42 GTP-Binding Protein/metabolism , ras Proteins/metabolism , Hyphae/cytology , Schizosaccharomyces/cytology , Signal Transduction , Stress, Physiological
16.
FEMS Yeast Res ; 18(8)2018 12 01.
Article in English | MEDLINE | ID: mdl-30101348

ABSTRACT

The fungal APSES protein family of transcription factors is characterized by a conserved DNA-binding motif facilitating regulation of gene expression in fungal development and other biological processes. However, their functions in the thermally dimorphic fungal pathogen Histoplasma capsulatum are unexplored. Histoplasma capsulatum switches between avirulent hyphae in the environment and virulent yeasts in mammalian hosts. We identified five APSES domain-containing proteins in H. capsulatum homologous to Swi6, Mbp1, Stu1 and Xbp1 proteins and one protein found in related Ascomycetes (APSES-family protein 1; Afp1). Through transcriptional analyses and RNA interference-based functional tests we explored their roles in fungal biology and virulence. Mbp1 serves an essential role and Swi6 contributes to full yeast cell growth. Stu1 is primarily expressed in mycelia and is necessary for aerial hyphae development and conidiation. Xbp1 is the only factor enriched specifically in yeast cells. The APSES proteins do not regulate conversion of conidia into yeast and hyphal morphologies. The APSES-family transcription factors are not individually required for H. capsulatum infection of cultured macrophages or murine infection, nor do any contribute significantly to resistance to cellular stresses including cell wall perturbation, osmotic stress, oxidative stress or antifungal treatment. Further studies of the downstream genes regulated by the individual APSES factors will be helpful in revealing their functional roles in H. capsulatum biology.


Subject(s)
Gene Expression Regulation, Fungal , Histoplasma/cytology , Histoplasma/growth & development , Hyphae/cytology , Hyphae/growth & development , Transcription Factors/metabolism , Transcription, Genetic , Animals , Cell Adhesion , Cell Line , Gene Expression Profiling , Histoplasma/genetics , Histoplasma/pathogenicity , Histoplasmosis/microbiology , Histoplasmosis/pathology , Lung/pathology , Macrophages/microbiology , Mice, Inbred C57BL , RNA Interference , Virulence , Virulence Factors/metabolism
17.
Med Mycol ; 56(7): 877-883, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29228375

ABSTRACT

This study verified the influence of different temperatures on P. insidiosum in vitro zoosporogenesis. P. insidiosum isolates (n = 26) were submitted to zoosporogenesis and incubated at 5°C, 15°C, 20°C and 37°C (1st stage). Grass fragments were evaluated under optical microscopy at 4, 8, and 24 hours of incubation. Afterward, all isolates were incubated at 37°C and assessed at the same periods of time (2nd stage). The development of hyphae, presence of vesicles, zoosporangia and zoospores were checked. Only the presence of short hyphae was observed at 5°C. At 15°C, the hyphae were either under development or elongated and two isolates produced zoospores. When the isolates were submitted to 20°C for 4 hours, the presence of long and mycelial hyphae, vesicles, zoosporangia and zoospores was observed, which also happened at the other periods evaluated. In the second stage, the isolates which were initially at 5°C and 15°C evidenced long developing hyphae with the presence of vesicles, zoosporangia, and zoospores within 4 hours of incubation, and these characteristics were kept at the other evaluated periods. The isolates kept at 37°C showed evident zoosporogenesis in the first 4 hours of evaluation. It was concluded that temperatures of 20°C and 37°C support P. insidiosum zoosporogenesis process. On the other hand, 5°C and 15°C temperatures do not kill the microorganism.


Subject(s)
Pythium/growth & development , Pythium/radiation effects , Spores, Fungal/growth & development , Spores, Fungal/radiation effects , Hyphae/cytology , Hyphae/growth & development , Hyphae/radiation effects , Microscopy , Pythium/cytology , Spores, Fungal/cytology , Temperature
18.
Med Mycol ; 56(8): 1023-1032, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29340656

ABSTRACT

The morphological transition from yeast to a hyphal form, as well as the adhesion capability to the gastrointestinal tract, are implicated virulent determinant in Candida albicans and could be potential targets for prevention of the opportunistic pathogen. Based on this rationale, two yeast strains Saccharomyces cerevisiae KTP and Issatchenkia occidentalis ApC along with reference strain Saccharomyces boulardii NCDC 363 were screened for the probiotic potential. Characters like pH, temperature, bile, simulated gastrointestinal juice tolerance tests, and Caco-2 cell line adhesion assay were determined in the present study. Further, the evaluation of its impact on C. albicans morphological transition and adhesion was assessed using microtitre germ tube test. In terms of probiotic characteristics, both the strains were tolerant to pH 2.5 and the presence of bile (0.3 to 0.6%) with an optimum growth temperature of 37°C. The strain KTP was also resistant to simulated gastric and intestinal juices as compared to control (13% and 41%, respectively) and NCDC 363 (55% and 35%, respectively). In contrast, both the yeasts had reduced adhesiveness to Caco-2 monolayer. Candida virulence in in vitro systems indicated that treatment of live probiotic yeast cells (108 ml) effectively reduced the filamentation and adhesion of C. albicans. The S. cerevisiae KTP had a profound effect on the hyphal development and adhesion when compared to the ApC and NCDC 363. The strain significantly reduced (P < .05) the hyphal growth in co-cultivated (93% and 94%, respectively) and pre-existing hyphae (54% and 68%) of strains C. albicans 183 and 1151. Isolates KTP and ApC also reduced the adhesion (≈ 22% and 41%, respectively) and transition of blastoconidia at two hours of incubation in abiotic surface. This study provides knowledge on the effect of potential probiotic yeasts such as Saccharomyces and non- Saccharomyces strains against virulence characteristic of Candida albicans.


Subject(s)
Candida albicans/physiology , Cell Adhesion , Microbial Interactions , Pichia/physiology , Saccharomyces/physiology , Bile/metabolism , Caco-2 Cells , Candida albicans/cytology , Epithelial Cells/microbiology , Gastric Juice/metabolism , Humans , Hydrogen-Ion Concentration , Hyphae/cytology , Hyphae/growth & development , Pichia/drug effects , Pichia/radiation effects , Saccharomyces/drug effects , Saccharomyces/radiation effects , Temperature
19.
Cell Mol Life Sci ; 74(5): 909-920, 2017 03.
Article in English | MEDLINE | ID: mdl-27714409

ABSTRACT

The oomycete Phytophthora infestans is the cause of late blight in potato and tomato. It is a devastating pathogen and there is an urgent need to design alternative strategies to control the disease. To find novel potential drug targets, we used Lifeact-eGFP expressing P. infestans for high resolution live cell imaging of the actin cytoskeleton in various developmental stages. Previously, we identified actin plaques as structures that are unique for oomycetes. Here we describe two additional novel actin configurations; one associated with plug deposition in germ tubes and the other with appressoria, infection structures formed prior to host cell penetration. Plugs are composed of cell wall material that is deposited in hyphae emerging from cysts to seal off the cytoplasm-depleted base after cytoplasm retraction towards the growing tip. Preceding plug formation there was a typical local actin accumulation and during plug deposition actin remained associated with the leading edge. In appressoria, formed either on an artificial surface or upon contact with plant cells, we observed a novel aster-like actin configuration that was localized at the contact point with the surface. Our findings strongly suggest a role for the actin cytoskeleton in plug formation and plant cell penetration.


Subject(s)
Actins/metabolism , Cell Wall/metabolism , Phytophthora infestans/cytology , Phytophthora infestans/metabolism , Plant Cells/metabolism , Cellulose/metabolism , Culture Media , Hyphae/cytology , Hyphae/metabolism , Solanum lycopersicum/cytology , Solanum lycopersicum/microbiology , Protein Transport
20.
Biochim Biophys Acta ; 1863(9): 2255-66, 2016 09.
Article in English | MEDLINE | ID: mdl-27275845

ABSTRACT

The actin cytoskeleton coordinates numerous fundamental cellular processes. Fimbrins are a class of evolutionally conserved ABPs that mediate actin bundling and regulate actin dynamics and functions. In this study, we identified the fimbrin Sac6 from the important fungal pathogen, Candida albicans. Interestingly, deletion of SAC6 led to increased tolerance to oxidative stress, while its overexpression caused hyper-susceptibility to this stress. Further investigations revealed that Sac6, by interaction with actin, negatively regulated the cytosol-to-nucleus transport of the key OSR (oxidative stress response) transcription factor Cap1 and consequent expression of OSR genes. Moreover, loss of Sac6 enhanced hyphal maintenance, and its overexpression caused a defect in hyphal development, which was attributed to abnormal expression of morphogenesis-related genes. In addition, Sac6 was involved in regulation of secretion of lytic enzymes and virulence of C. albicans. This study reveals a novel mechanism by which fimbrin transcriptionally regulates OSR and morphogenesis, and sheds a novel light on the functions of actin cytoskeleton.


Subject(s)
Candida albicans/growth & development , Candida albicans/genetics , Morphogenesis/genetics , Oxidative Stress , Transcription, Genetic , Actins/metabolism , Candida albicans/cytology , Candida albicans/pathogenicity , Cell Nucleus/metabolism , Cytosol/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Deletion , Genes, Fungal , Hyphae/cytology , Hyphae/growth & development , Hyphae/metabolism , Membrane Glycoproteins , Microfilament Proteins , Models, Biological , Protein Transport , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL