ABSTRACT
Fungi and bacteria often engage in complex interactions, such as the formation of multicellular biofilms within the human body. Knowledge about how interkingdom biofilms initiate and coalesce into higher-level communities and which functions the different species carry out during biofilm formation remain limited. We found native-state assemblages of Candida albicans (fungi) and Streptococcus mutans (bacteria) with highly structured arrangement in saliva from diseased patients with childhood tooth decay. Further analyses revealed that bacterial clusters are attached within a network of fungal yeasts, hyphae, and exopolysaccharides, which bind to surfaces as a preassembled cell group. The interkingdom assemblages exhibit emergent functions, including enhanced surface colonization and growth rate, stronger tolerance to antimicrobials, and improved shear resistance, compared to either species alone. Notably, we discovered that the interkingdom assemblages display a unique form of migratory spatial mobility that enables fast spreading of biofilms across surfaces and causes enhanced, more extensive tooth decay. Using mutants, selective inactivation of species, and selective matrix removal, we demonstrate that the enhanced stress resistance and surface mobility arise from the exopolymeric matrix and require the presence of both species in the assemblage. The mobility is directed by fungal filamentation as hyphae extend and contact the surface, lifting the assemblage with a "forward-leaping motion." Bacterial cell clusters can "hitchhike" on this mobile unit while continuously growing, to spread across the surface three-dimensionally and merge with other assemblages, promoting community expansion. Together, our results reveal an interkingdom assemblage in human saliva that behaves like a supraorganism, with disease-causing emergent functionalities that cannot be achieved without coassembly.
Subject(s)
Biofilms , Saliva , Streptococcus mutans , Candida albicans/metabolism , Child , Disease , Humans , Hyphae/physiology , Population Dynamics , Saliva/microbiologyABSTRACT
As the primary decomposers of organic material in terrestrial ecosystems, fungi are critical agents of the global carbon cycle. Yet our ability to link fungal community composition to ecosystem functioning is constrained by a limited understanding of the factors accounting for different wood decomposition rates among fungi. Here we examine which traits best explain fungal decomposition ability by combining detailed trait-based assays on 34 saprotrophic fungi from across North America in the laboratory with a 5-y field study comprising 1,582 fungi isolated from 74 decomposing logs. Fungal growth rate (hyphal extension rate) was the strongest single predictor of fungal-mediated wood decomposition rate under laboratory conditions, and accounted for up to 27% of the in situ variation in decomposition in the field. At the individual level, decomposition rate was negatively correlated with moisture niche width (an indicator of drought stress tolerance) and with the production of nutrient-mineralizing extracellular enzymes. Together, these results suggest that decomposition rates strongly align with a dominance-tolerance life-history trade-off that was previously identified in these isolates, forming a spectrum from slow-growing, stress-tolerant fungi that are poor decomposers to fast-growing, highly competitive fungi with fast decomposition rates. Our study illustrates how an understanding of fungal trait variation could improve our predictive ability of the early and midstages of wood decay, to which our findings are most applicable. By mapping our results onto the biogeographic distribution of the dominance-tolerance trade-off across North America, we approximate broad-scale patterns in intrinsic fungal-mediated wood decomposition rates.
Subject(s)
Fungi/physiology , Wood/microbiology , Carbon Cycle/physiology , Ecosystem , Fungi/classification , Fungi/enzymology , Hyphae/physiology , Mycobiome/physiology , North AmericaABSTRACT
Candida albicans, an opportunistic fungal pathogen, is a significant cause of human infections, particularly in immunocompromised individuals. Phenotypic plasticity between two morphological phenotypes, yeast and hyphae, is a key mechanism by which C. albicans can thrive in many microenvironments and cause disease in the host. Understanding the decision points and key driver genes controlling this important transition and how these genes respond to different environmental signals is critical to understanding how C. albicans causes infections in the host. Here we build and analyze a Boolean dynamical model of the C. albicans yeast to hyphal transition, integrating multiple environmental factors and regulatory mechanisms. We validate the model by a systematic comparison to prior experiments, which led to agreement in 17 out of 22 cases. The discrepancies motivate alternative hypotheses that are testable by follow-up experiments. Analysis of this model revealed two time-constrained windows of opportunity that must be met for the complete transition from the yeast to hyphal phenotype, as well as control strategies that can robustly prevent this transition. We experimentally validate two of these control predictions in C. albicans strains lacking the transcription factor UME6 and the histone deacetylase HDA1, respectively. This model will serve as a strong base from which to develop a systems biology understanding of C. albicans morphogenesis.
Subject(s)
Candida albicans , Hyphae , Models, Biological , Candida albicans/genetics , Candida albicans/physiology , Hyphae/genetics , Hyphae/physiology , Morphogenesis/genetics , Morphogenesis/physiology , Phenotype , Systems BiologyABSTRACT
Filamentous fungi that colonize microenvironments, such as animal or plant tissue or soil, must find optimal paths through their habitat, but the biological basis for negotiating growth in constrained environments is unknown. We used time-lapse live-cell imaging of Neurospora crassa in microfluidic environments to show how constraining geometries determine the intracellular processes responsible for fungal growth. We found that, if a hypha made contact with obstacles at acute angles, the Spitzenkörper (an assembly of vesicles) moved from the center of the apical dome closer to the obstacle, thus functioning as an internal gyroscope, which preserved the information regarding the initial growth direction. Additionally, the off-axis trajectory of the Spitzenkörper was tracked by microtubules exhibiting "cutting corner" patterns. By contrast, if a hypha made contact with an obstacle at near-orthogonal incidence, the directional memory was lost, due to the temporary collapse of the Spitzenkörper-microtubule system, followed by the formation of two "daughter" hyphae growing in opposite directions along the contour of the obstacle. Finally, a hypha passing a lateral opening in constraining channels continued to grow unperturbed, but a daughter hypha gradually branched into the opening and formed its own Spitzenkörper-microtubule system. These observations suggest that the Spitzenkörper-microtubule system is responsible for efficient space partitioning in microenvironments, but, in its absence during constraint-induced apical splitting and lateral branching, the directional memory is lost, and growth is driven solely by the isotropic turgor pressure. These results further our understanding of fungal growth in microenvironments relevant to environmental, industrial, and medical applications.
Subject(s)
Hyphae/growth & development , Neurospora crassa/growth & development , Environment , Hyphae/physiology , Microtubules/physiology , Neurospora crassa/physiology , Optical Imaging , Time-Lapse ImagingABSTRACT
Mucoromycota representatives are known to harbor two types of endohyphal bacteria (EHB)-Burkholderia-related endobacteria (BRE) and Mycoplasma-related endobacteria (MRE). While both BRE and MRE occur in fungi representing all subphyla of Mucoromycota, their distribution is not well studied. Therefore, it is difficult to resolve the evolutionary history of these associations in favor of one of the following two alternative hypotheses explaining their origin: "early invasion" and "late invasion." Our main goal was to fill this knowledge gap by surveying Mucoromycota fungi for the presence of EHB. We screened 196 fungal strains from 16 genera using a PCR-based approach to detect bacterial 16S rRNA genes, complemented with fluorescence in situ hybridization (FISH) imaging to confirm the presence of bacteria within the hyphae. We detected Burkholderiaceae in ca. 20% of fungal strains. Some of these bacteria clustered phylogenetically with previously described BRE clades, whereas others grouped with free-living Paraburkholderia Importantly, the latter were detected in Umbelopsidales, which previously were not known to harbor endobacteria. Our results suggest that this group of EHB is recruited from the environment, supporting the late invasion scenario. This pattern complements the early invasion scenario apparent in the BRE clade of EHB.IMPORTANCE Bacteria living within fungal hyphae present an example of one of the most intimate relationships between fungi and bacteria. Even though there are several well-described examples of such partnerships, their prevalence within the fungal kingdom remains unknown. Our study focused on early divergent terrestrial fungi in the phylum Mucoromycota. We found that ca. 20% of the strains tested harbored bacteria from the family Burkholderiaceae Not only did we confirm the presence of bacteria from previously described endosymbiont clades, we also identified a new group of endohyphal Burkholderiaceae representing the genus Paraburkholderia We established that more than half of the screened Umbelopsis strains were positive for bacteria from this new group. We also determined that, while previously described BRE codiverged with their fungal hosts, Paraburkholderia symbionts did not.
Subject(s)
Burkholderiaceae/physiology , Fungi/physiology , Hyphae/physiology , In Situ Hybridization, Fluorescence , Polymerase Chain Reaction , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysisABSTRACT
Rhizopus species are opportunistic pathogens and cause infections which lead to deaths in individuals with the weakened immune system. Some strains of Rhizopus species have been detected to have a symbiotic relationship with bacteria. The toxicity of the Rhizopus species is important. Because strains harbouring endofungal bacteria are able to produce secondary metabolites and if endofungal bacteria are released from mycelium, serious problems can occur. We aimed to investigate the presence of endofungal bacteria in Rhizopus species isolated from food samples. Rhizopus species were isolated from different food samples. The presence of endofungal bacteria in the Rhizopus isolates was investigated. Rhizopus strains containing the endofungal bacteria were identified through phenotypic and genotypic methods. Universal primers amplifying bacterial 16S rRNA region were used to amplify 1.2-1.5-kb fragment from fungal metagenomic DNA. Sequence analysis of PCR products amplified from fungal metagenomic DNA was made. Fluorescence microscopy and scanning electron microscopy were used to visualize the presence of endofungal bacteria in fungal hyphae. According to our results, the Rhizopus strains is associated with Serratia marcescens, Pseudomonas fluorescens and Klebsiella pneumoniae. Until now there is no evidence that Pseudomonas fluorescens and Klebsiella pneumoniae were identified as endofungal. These species are opportunistic pathogen dangerous for humans. It is important for humans not only the presence of the fungi but also the presence of the endofungal bacteria in foods. Our work is important because it draws attention to the presence of endofungal bacteria in foods. Because there is danger releasing of a bacterium from the mycelium, it is likely to face sepsis or serious problems.
Subject(s)
Hyphae/physiology , Klebsiella pneumoniae/isolation & purification , Pseudomonas fluorescens/isolation & purification , Rhizopus/metabolism , Serratia marcescens/isolation & purification , DNA, Fungal/genetics , Food Microbiology , Humans , Klebsiella pneumoniae/growth & development , Mycelium/chemistry , Pseudomonas fluorescens/growth & development , RNA, Ribosomal, 16S/genetics , Rhizopus/genetics , Serratia marcescens/growth & development , SymbiosisABSTRACT
Dispersal is a critical ecological process that modulates gene flow and contributes to the maintenance of genetic and taxonomic diversity within ecosystems. Despite an increasing global understanding of the arbuscular mycorrhizal (AM) fungal diversity, distribution and prevalence in different biomes, we have largely ignored the main dispersal mechanisms of these organisms. To provide a geographical and scientific overview of the available data, we systematically searched for the direct evidence on the AM fungal dispersal agents (abiotic and biotic) and different propagule types (i.e. spores, extraradical hyphae or colonized root fragments). We show that the available data (37 articles) on AM fungal dispersal originates mostly from North America, from temperate ecosystems, from biotic dispersal agents (small mammals) and AM fungal spores as propagule type. Much lesser evidence exists from South American, Asian and African tropical systems and other dispersers such as large-bodied birds and mammals and non-spore propagule types. We did not find strong evidence that spore size varies across dispersal agents, but wind and large animals seem to be more efficient dispersers. However, the data is still too scarce to draw firm conclusions from this finding. We further discuss and propose critical research questions and potential approaches to advance the understanding of the ecology of AM fungi dispersal.
Subject(s)
Mycorrhizae/physiology , Animals , Biota , Environment , Geography , Hyphae/cytology , Hyphae/physiology , Mycorrhizae/cytology , Mycorrhizae/isolation & purification , Plant Roots/microbiology , Spores, Fungal/cytology , Spores, Fungal/physiologyABSTRACT
A plethora of bacteria-fungal interactions occur on the extended fungal hyphae network in soil. The mycosphere of saprophytic fungi can serve as a bacterial niche boosting their survival, dispersion, and activity. Such ecological concepts can be converted to bioproducts for sustainable agriculture. Accordingly, we tested the hypothesis that the well-characterised beneficial bacterium Serratia marcescens UENF-22GI can enhance plant growth-promoting properties when combined with Trichoderma longibrachiatum UENF-F476. The cultural and cell interactions demonstrated S. marcescens and T. longibrachiatum mutual compatibility. Bacteria cells were able to attach, forming aggregates to biofilms and migrating through the fungal hyphae network. Long-distance bacterial migration through growing hyphae was confirmed using a two-compartment Petri dishes assay. Fungal inoculation increased the bacteria survival rates into the vermicompost substrate over the experimental time. Also, in vitro indolic compound, phosphorus, and zinc solubilisation bacteria activities increased in the presence of the fungus. In line with the ecophysiological bacteria fitness, the bacterium-fungal combination boosted tomato and papaya plantlet growth when applied into the plant substrate under nursery conditions. Mutualistic interaction between mycosphere-colonizing bacterium S. marcescens UENF-22GI and the saprotrophic fungi T. longibrachiatum UENF-F467 increased the ecological fitness of the bacteria alongside with beneficial potential for plant growth. A proper combination and delivery of mutual compatible beneficial bacteria-fungal represent an open avenue for microbial-based products for the biological enrichment of plant substrates in agricultural systems.
Subject(s)
Carica/growth & development , Hypocreales/physiology , Serratia marcescens/physiology , Soil Microbiology , Solanum lycopersicum/growth & development , Biofilms , Carica/microbiology , Hyphae/physiology , Solanum lycopersicum/microbiology , Seedlings/growth & development , Seedlings/microbiologyABSTRACT
In filamentous fungi, the formation of hyphal branches is a critical process that supports the ability of mycelia to radiate across and colonize growth substrates. Branching can occur at hyphal tips (apical branching) or from subapical hyphal compartments (lateral branching). The primary focus of this review is on lateral branching. Current understanding of the physiological and molecular mechanisms that underlie the formation of lateral branches is summarized. This includes emphasis on the spatial regulation of branch formation as well as the roles of the morphogenetic machinery in branch emergence. An improved understanding of hyphal branching will provide greater insight into the morphological differentiation of fungal mycelia.
Subject(s)
Fungi/physiology , Hyphae/physiologyABSTRACT
Large skeleton specimens are often featured as iconic open displays in Natural History Museums, for example, the blue whale 'Hope' at the Natural History Museum, London. A study on Hope's bone surface was performed to assess the biodeterioration potential of fungi. Fungi were isolated, and a fungal internal transcribed spacer (ITS) clone library survey was performed on dust and bone material. Mineral particles derived from bone and dust were analysed using energy dispersive X-ray spectroscopy, variable pressure scanning electron microscopy (SEM) and high vacuum SEM. Results showed that bone material, although mainly mineral in nature, and therefore less susceptible than organic materials to biodeterioration phenomena in the indoor environments, offers niches for specialized fungi and is affected by unusual and yet not so well-documented mechanisms of alteration. Areas of bone surface were covered with a dense biofilm mostly composed of fungal hyphae, which produced tunnelling and extensive deposition of calcium and iron-containing secondary minerals. Airborne halophilic and xerophilic fungi including taxa grouping into Ascomycota and Basidiomycota, capable of displacing salts and overcome little water availability, were found to dominate the microbiome of the bone surface.
Subject(s)
Bone and Bones/microbiology , Fungi/physiology , Minerals/metabolism , Museums , Ascomycota/physiology , Basidiomycota/physiology , Dust/analysis , Fungi/classification , Fungi/ultrastructure , Hyphae/physiology , Microscopy, Electron, ScanningABSTRACT
Pyricularia oryzae is the causal agent of blast disease on staple gramineous crops. Sulphur is an essential element for the biosynthesis of cysteine and methionine in fungi. Here, we targeted the P. oryzae PoMET3 encoding the enzyme ATP sulfurylase, and PoMET14 encoding the APS (adenosine-5'-phosphosulphate) kinase that are involved in sulfate assimilation and sulphur-containing amino acids biosynthesis. In P. oryzae, deletion of PoMET3 or PoMET14 separately results in defects of conidiophore formation, significant impairments in conidiation, methionine and cysteine auxotrophy, limited invasive hypha extension, and remarkably reduced virulence on rice and barley. Furthermore, the defects of the null mutants could be restored by supplementing with exogenous cysteine or methionine. Our study explored the biological functions of sulfur assimilation and sulphur-containing amino acids biosynthesis in P. oryzae.
Subject(s)
Ascomycota/physiology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Sulfate Adenylyltransferase/metabolism , Ascomycota/drug effects , Cysteine/metabolism , Cysteine/pharmacology , Gene Deletion , Hordeum/microbiology , Hyphae/pathogenicity , Hyphae/physiology , Methionine/metabolism , Methionine/pharmacology , Mutation , Oryza/microbiology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Plant Diseases/microbiology , Spores, Fungal , Sulfate Adenylyltransferase/genetics , VirulenceABSTRACT
Candida albicans is a multimorphic commensal organism and opportunistic fungal pathogen in humans. A morphological switch between unicellular budding yeast and multicellular filamentous hyphal growth forms plays a vital role in the virulence of C. albicans, and this transition is regulated in response to a range of environmental cues that are encountered in distinct host niches. Many unique transcription factors contribute to the transcriptional regulatory network that integrates these distinct environmental cues and determines which phenotypic state will be expressed. These hyphal morphogenesis regulators have been extensively investigated, and represent an increasingly important focus of study, due to their central role in controlling a key C. albicans virulence attribute. This review provides a succinct summary of the transcriptional regulatory factors and environmental signals that control hyphal morphogenesis in C. albicans.
Subject(s)
Candida albicans/genetics , Candida albicans/physiology , Hyphae/growth & development , Transcription Factors/genetics , Animals , Candida albicans/pathogenicity , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Gene Regulatory Networks , Humans , Hyphae/physiology , Mice , VirulenceABSTRACT
This work briefly surveys the diversity of selected subcellular characteristics in hyphal tip cells of the fungal kingdom (Mycota). Hyphae are filamentous cells that grow by tip extension. It is a highly polarised mechanism that requires a robust secretory system for the delivery of materials (e.g. membrane, proteins, cell wall materials) to sites of cell growth. These events result it the self-assembly of a Spitzenkörper (Spk), found most often in the Basidiomycota, Ascomycota, and Blastocladiomycota, or an apical vesicle crescent (AVC), present in the most Mucoromycota and Zoopagomycota. The Spk is a complex apical body composed of secretory vesicles, cytoskeletal elements, and signaling proteins. The AVC appears less complex, though little is known of its composition other than secretory vesicles. Both bodies influence hyphal growth and morphogenesis. Other factors such as cytoskeletal functions, endocytosis, cytoplasmic flow, and turgor pressure are also important in sustaining hyphal growth. Clarifying subcellular structures, functions, and behaviours through bioimagining analysis are providing a better understanding of the cell biology and phylogenetic relationships of fungi. LAY DESCRIPTION: Fungi are most familiar to the public as yeast, molds, and mushrooms. They are eukaryotic organisms that inhabit diverse ecological niches around the world and are critical to the health of ecosystems performing roles in decomposition of organic matter and nutrient recycling (Heath, 1990). Fungi are heterotrophs, unlike plants, and comprise the most successful and diverse phyla of eukaryotic microbes, interacting with all other forms of life in associations that range from beneficial (e.g., mycorrhizae) to antagonistic (e.g., pathogens). Some fungi can be parasitic or pathogenic on plants (e.g., Cryphonectria parasitica, Magnaporthe grisea), insects (e.g., Beauveria bassiana, Cordyceps sp.), invertebrates (e.g., Drechslerella anchonia), vertebrates (e.g., Coccidioides immitis, Candia albicans) and other fungi (e.g., Trichoderma viride, Ampelomyces quisqualis). The majority of fungi, however, are saprophytes, obtaining nutrition through the brake down of non-living organic matter.
Subject(s)
Fungi/ultrastructure , Hyphae/ultrastructure , Cytoplasm/physiology , Cytoplasm/ultrastructure , Cytoskeleton/physiology , Cytoskeleton/ultrastructure , Endocytosis , Fungi/growth & development , Fungi/physiology , Hyphae/growth & development , Hyphae/physiology , Morphogenesis , Organelles/ultrastructure , Phylogeny , Secretory Vesicles/physiology , Secretory Vesicles/ultrastructureABSTRACT
Sclerotia are dense, hard tissue structures formed by asexual reproduction of fungal hyphae in adverse environmental conditions. Macrofungal sclerotia are used in medicinal materials, healthcare foods, and nutritional supplements because of their nutritional value and biologically active ingredients, which are attracting increasing attention. Over the past few decades, the influence of abiotic factors such as nutrition (e.g., carbon and nitrogen sources) and environmental conditions (e.g., temperature, pH), and of the local biotic community (e.g., concomitants) on the formation of macrofungal sclerotia has been studied. The molecular mechanisms controlling macrofungal sclerotia formation, including oxidative stress (reactive oxygen species), signal transduction (Ca2+ channels and mitogen-activated protein kinase pathways), and gene expression regulation (differential expression of important enzyme or structural protein genes), have also been revealed. At the end of this review, future research prospects in the field of biogenesis of macrofungal sclerotia are discussed. KEY POINTS: ⢠We describe factors that influence biogenesis of macrofungal sclerotia. ⢠We explain molecular mechanisms of sclerotial biogenesis. ⢠We discuss future directions of study of macrofungal sclerotia biogenesis.
Subject(s)
Ascomycota/genetics , Hyphae/physiology , Organelle Biogenesis , Ascomycota/physiology , Gene Expression Regulation, Fungal , Oxidative Stress , Reactive Oxygen Species , Signal Transduction , TemperatureABSTRACT
Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA) catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways.
Subject(s)
Candida albicans/physiology , Carbon Dioxide/metabolism , Citric Acid Cycle , Cyclic AMP/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Candida albicans/genetics , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fungal Proteins/metabolism , Gene Expression Profiling , Heat Shock Transcription Factors , Hyphae/genetics , Hyphae/physiology , Sequence Analysis, RNA , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolismABSTRACT
Candida albicans is an important opportunistic fungal pathogen, and its pathogenicity is closely related to its ability to form hyphae. ESCRT system was initially discovered as a membrane-budding machinery involved in the formation of multivesicular bodies. More recently, the role of ESCRT is vastly expanded. Early reports showed that the ESCRT system is involved in inducing hyphae under neutral-alkaline environment via the Rim101 pathway. We previously found that in the environment that contains serum, one ESCRT protein, Vps4, is essential for polarity maintenance during hyphal formation, as its deletion causes the formation of multiple hyphae. In this study, we found that Vps4 is also essential for the proper localization of Cdc42 and Cdc3, which may be related to its role in polarity maintenance. We also discovered that deletions of the ESCRT proteins significantly delay germination and cause downregulation of hyphal-specific genes, most prominent of which is HGC1. Since Hgc1 is essential for many aspects of hyphal growth, its downregulation could explain our observed phenotypes. Our further studies show that ESCRT proteins are involved in the dynamics of Ras1. Deletions of VPS4 or SNF7 significantly decrease the recovery rate of GFP-Ras1 in the fluorescence recovery after photobleaching experiment. The decreased Ras1 dynamics may disrupt the signaling pathway and lead to downregulation of hyphal-specific genes. Therefore, in this study we discovered a novel and Rim101 independent mechanism used by the ESCRT system to regulate hyphal induction and polarity maintenance, which could provide insights on the pathogenicity mechanism of Candia albicans.
Subject(s)
Candida albicans/physiology , Endosomal Sorting Complexes Required for Transport/physiology , Fungal Proteins/isolation & purification , Blotting, Western , Candida albicans/genetics , Candida albicans/growth & development , Candida albicans/pathogenicity , Down-Regulation , Endosomal Sorting Complexes Required for Transport/deficiency , Fungal Proteins/immunology , Fungal Proteins/physiology , Gene Expression Regulation, Fungal , Humans , Hyphae/genetics , Hyphae/growth & development , Hyphae/physiology , Signal TransductionABSTRACT
Polymicrobial intra-abdominal infections (IAI) are clinically prevalent and cause significant morbidity and mortality, especially those involving fungi. Our laboratory developed a mouse model of polymicrobial IAI and demonstrated that coinfection with Candida albicans and Staphylococcus aureus (C. albicans/S. aureus) results in 80 to 90% mortality in 48 to 72 h due to robust local and systemic inflammation. Surprisingly, inoculation with Candida dubliniensis and S. aureus resulted in minimal mortality, and rechallenge of mice with lethal C. albicans/S. aureus conferred >90% protection up to 60 days postinoculation. Protection was mediated by Gr-1+ polymorphonuclear leukocytes, indicating a novel form of trained innate immunity (TII). The purpose of this study was to determine the microbial requirements and spectrum of innate-mediated protection. In addition to Candida dubliniensis, several other low-virulence Candida species (C. glabrata, C. auris, and C. albicansefg1Δ/Δ cph1Δ/Δ) and Saccharomyces cerevisiae conferred significant protection with or without S. aureus For C. dubliniensis-mediated protection, hyphal formation was not required, with protection conferred as early as 7 days after primary challenge but not at 120 days, and also following multiple lethal C. albicans/S. aureus rechallenges. This protection also extended to a lethal intravenous (i.v.) C. albicans challenge but had no effect in the C. albicans vaginitis model. Finally, studies revealed the ability of the low-virulence Candida species that conferred protection to invade the bone marrow by 24 h post-primary challenge, with a positive correlation between femoral bone marrow fungal infiltration at 48 h and protection upon rechallenge. These results support and further extend the characterization of this novel TII in protection against lethal fungal-bacterial IAI and sepsis.
Subject(s)
Candida/physiology , Coinfection/immunology , Immunity, Innate , Animals , Bone Marrow/microbiology , Coinfection/prevention & control , Female , Hyphae/physiology , Mice , Myeloid-Derived Suppressor Cells/physiology , Staphylococcus aureus/physiology , Time Factors , Vagina/microbiology , VirulenceABSTRACT
Verticillium dahliae nuclear transcription factors Som1 and Vta3 can rescue adhesion in a FLO8-deficient Saccharomyces cerevisiae strain. Som1 and Vta3 induce the expression of the yeast FLO1 and FLO11 genes encoding adhesins. Som1 and Vta3 are sequentially required for root penetration and colonisation of the plant host by V. dahliae. The SOM1 and VTA3 genes were deleted and their functions in fungus-induced plant pathogenesis were studied using genetic, cell biology, proteomic and plant pathogenicity experiments. Som1 supports fungal adhesion and root penetration and is required earlier than Vta3 in the colonisation of plant root surfaces and tomato plant infection. Som1 controls septa positioning and the size of vacuoles, and subsequently hyphal development including aerial hyphae formation and normal hyphal branching. Som1 and Vta3 control conidiation, microsclerotia formation, and antagonise in oxidative stress responses. The molecular function of Som1 is conserved between the plant pathogen V. dahliae and the opportunistic human pathogen Aspergillus fumigatus. Som1 controls genes for initial steps of plant root penetration, adhesion, oxidative stress response and VTA3 expression to allow subsequent root colonisation. Both Som1 and Vta3 regulate developmental genetic networks required for conidiation, microsclerotia formation and pathogenicity of V. dahliae.
Subject(s)
Fungal Proteins/metabolism , Plant Roots/microbiology , Transcription Factors/metabolism , Verticillium/growth & development , Amino Acid Sequence , Biomass , DNA, Fungal/metabolism , Fungal Proteins/chemistry , Genetic Loci , Humans , Hyphae/physiology , Hyphae/ultrastructure , Models, Biological , Mutation/genetics , Nuclear Proteins/metabolism , Oxidative Stress , Phenotype , Plant Roots/ultrastructure , Protein Domains , Saccharomyces cerevisiae/metabolism , Stress, Physiological , Vacuoles/metabolism , Verticillium/genetics , Verticillium/pathogenicity , Verticillium/ultrastructure , VirulenceABSTRACT
We tested the hypothesis that reduced root secondary growth of dicotyledonous species improves phosphorus acquisition. Functional-structural modeling in SimRoot indicates that, in common bean (Phaseolus vulgaris), reduced root secondary growth reduces root metabolic costs, increases root length, improves phosphorus capture, and increases shoot biomass in low-phosphorus soil. Observations from the field and greenhouse confirm that, under phosphorus stress, resource allocation is shifted from secondary to primary root growth, genetic variation exists for this response, and reduced secondary growth improves phosphorus capture from low-phosphorus soil. Under low phosphorus in greenhouse mesocosms, genotypes with reduced secondary growth had 39% smaller root cross-sectional area, 60% less root respiration, 27% greater root length, 78% greater shoot phosphorus content, and 68% greater shoot mass than genotypes with advanced secondary growth. In the field under low phosphorus, these genotypes had 43% smaller root cross-sectional area, 32% greater root length, 58% greater shoot phosphorus content, and 80% greater shoot mass than genotypes with advanced secondary growth. Secondary growth eliminated arbuscular mycorrhizal associations as cortical tissue was destroyed. These results support the hypothesis that reduced root secondary growth is an adaptive response to low phosphorus availability and merits investigation as a potential breeding target.
Subject(s)
Phaseolus/growth & development , Phaseolus/metabolism , Phosphorus/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Biomass , Cell Respiration , Computer Simulation , Hyphae/physiology , Mycorrhizae/physiology , Phaseolus/physiology , Phenotype , Plant Development , Plant Leaves/anatomy & histology , Plant Roots/anatomy & histology , Plant Shoots/growth & developmentABSTRACT
Benjaminiella poitrasii, a zygomycete, shows glucose- and temperature-dependent yeast (Y)-hypha (H) dimorphic transition. Earlier, we reported the biochemical correlation of relative proportion of NAD- and NADP-glutamate dehydrogenases (GDHs) with Y-H transition. Further, we observed the presence of one NAD-GDH and two form-specific NADP-GDH isoenzymes in B. poitrasii. However, molecular studies are necessary to elucidate the explicit role of GDHs in regulating Y-H reversible transition. Here, we report the isolation and characterization of one NAD (BpNADGDH, 2.643 kb) and two separate genes, BpNADPGDH I (Y-form specific, 1.365 kb) and BpNADPGDH II (H-form specific, 1.368 kb) coding for NADP-GDH isoenzymes in B. poitrasii. The transcriptional profiling during Y-H transition showed higher BpNADPGDH I expression in Y cells while expression of BpNADPGDH II was higher in H cells. Moreover, the yeast-form monomorphic mutant (Y-5) did not show BpNADPGDH II expression under normal dimorphism triggering conditions. Transformation with H-form specific BpNADPGDH II induced the germ tube formation in Y-5, which confirmed the cause-effect relationship between BpNADPGDH genes and morphological outcome in B. poitrasii. Interestingly, expression of H-form specific BpNADPGDH II also induced germ tube formation in human pathogenic, non-dimorphic yeast Candida glabrata, which further corroborated our findings.