Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.136
Filter
Add more filters

Publication year range
1.
N Engl J Med ; 384(14): 1301-1311, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33471452

ABSTRACT

BACKGROUND: Patients with acute hypoxemic respiratory failure in the intensive care unit (ICU) are treated with supplemental oxygen, but the benefits and harms of different oxygenation targets are unclear. We hypothesized that using a lower target for partial pressure of arterial oxygen (Pao2) would result in lower mortality than using a higher target. METHODS: In this multicenter trial, we randomly assigned 2928 adult patients who had recently been admitted to the ICU (≤12 hours before randomization) and who were receiving at least 10 liters of oxygen per minute in an open system or had a fraction of inspired oxygen of at least 0.50 in a closed system to receive oxygen therapy targeting a Pao2 of either 60 mm Hg (lower-oxygenation group) or 90 mm Hg (higher-oxygenation group) for a maximum of 90 days. The primary outcome was death within 90 days. RESULTS: At 90 days, 618 of 1441 patients (42.9%) in the lower-oxygenation group and 613 of 1447 patients (42.4%) in the higher-oxygenation group had died (adjusted risk ratio, 1.02; 95% confidence interval, 0.94 to 1.11; P = 0.64). At 90 days, there was no significant between-group difference in the percentage of days that patients were alive without life support or in the percentage of days they were alive after hospital discharge. The percentages of patients who had new episodes of shock, myocardial ischemia, ischemic stroke, or intestinal ischemia were similar in the two groups (P = 0.24). CONCLUSIONS: Among adult patients with acute hypoxemic respiratory failure in the ICU, a lower oxygenation target did not result in lower mortality than a higher target at 90 days. (Funded by the Innovation Fund Denmark and others; HOT-ICU ClinicalTrials.gov number, NCT03174002.).


Subject(s)
Oxygen Inhalation Therapy/methods , Oxygen/administration & dosage , Oxygen/blood , Respiratory Insufficiency/therapy , Aged , Female , Humans , Hypoxia/blood , Hypoxia/etiology , Hypoxia/therapy , Intensive Care Units , Kaplan-Meier Estimate , Male , Middle Aged , Respiration, Artificial/methods , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/blood , Respiratory Insufficiency/complications , Respiratory Insufficiency/mortality
2.
Am J Physiol Regul Integr Comp Physiol ; 327(2): R195-R207, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38842515

ABSTRACT

We sought to determine the effects of acute simulated altitude on the maximal lactate steady state (MLSS) and physiological responses to cycling at and 10 W above the MLSS-associated power output (PO) (MLSSp and MLSSp+10, respectively). Eleven (4 females) participants (means [SD]; 28 [4] yr; V̇o2max: 54.3 [6.9] mL·kg-1·min-1) acclimatized to ∼1,100 m performed 30-min constant PO trials in simulated altitudes of 0 m sea level (SL), 1,111 m mild altitude (MILD), and 2,222 m moderate altitude (MOD). MLSSp, defined as the highest PO with stable (<1 mM change) blood lactate concentration ([BLa]) between 10 and 30 min, was significantly lower in MOD (209 [54] W) compared with SL (230 [56] W; P < 0.001) and MILD (225 [58] W; P = 0.001), but MILD and SL were not different (P = 0.12). V̇o2 and V̇co2 decreased at higher simulated altitudes due to lower POs (P < 0.05), but other end-exercise physiological responses (e.g., [BLa], ventilation [V̇e], heart rate [HR]) were not different between conditions at MLSSp or MLSSp + 10 (P > 0.05). At the same absolute intensity (MLSSp for MILD), [BLa], HR, and V̇E and all perceptual variables were exacerbated in MOD compared with SL and MILD (P < 0.05). Maximum voluntary contraction, voluntary activation, and potentiated twitch forces were exacerbated at MLSSp + 10 relative to MLSSp within conditions (P < 0.05); however, condition did not affect performance fatiguability at the same relative or absolute intensity (P > 0.05). As MLSSp decreased in hypoxia, adjustments in PO are needed to ensure the same relative intensity across altitudes, but common indices of exercise intensity may facilitate exercise prescription and monitoring in hypoxia.NEW & NOTEWORTHY This study demonstrates the power output and metabolic rate associated with the maximal lactate steady-state (MLSS) decline in response to simulated altitude; however, common indices of exercise intensity remained unchanged when cycling was performed at the work rate associated with MLSS at each simulated altitude. These results support previous studies that investigated the effects of hypoxia on alternative measures of the critical intensity of exercise and will inform exercise prescription/monitoring across altitudes.


Subject(s)
Altitude , Lactic Acid , Oxygen Consumption , Humans , Lactic Acid/blood , Female , Adult , Male , Oxygen Consumption/physiology , Acclimatization/physiology , Bicycling , Hypoxia/physiopathology , Hypoxia/blood , Young Adult , Muscle, Skeletal/metabolism , Biomarkers/blood
3.
Cardiovasc Diabetol ; 23(1): 195, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844945

ABSTRACT

BACKGROUND: Micro- and macrovascular diseases are common in patients with type 2 diabetes mellitus (T2D) and may be partly caused by nocturnal hypoxemia. The study aimed to characterize the composition of nocturnal hypoxemic burden and to assess its association with micro- and macrovascular disease in patients with T2D. METHODS: This cross-sectional analysis includes overnight oximetry from 1247 patients with T2D enrolled in the DIACORE (DIAbetes COhoRtE) study. Night-time spent below a peripheral oxygen saturation of 90% (T90) as well as T90 associated with non-specific drifts in oxygen saturation (T90non - specific), T90 associated with acute oxygen desaturation (T90desaturation) and desaturation depths were assessed. Binary logistic regression analyses adjusted for known risk factors (age, sex, smoking status, waist-hip ratio, duration of T2D, HbA1c, pulse pressure, low-density lipoprotein, use of statins, and use of renin-angiotensin-aldosterone system inhibitors) were used to assess the associations of such parameters of hypoxemic burden with chronic kidney disease (CKD) as a manifestation of microvascular disease and a composite of cardiovascular diseases (CVD) reflecting macrovascular disease. RESULTS: Patients with long T90 were significantly more often affected by CKD and CVD than patients with a lower hypoxemic burden (CKD 38% vs. 28%, p < 0.001; CVD 30% vs. 21%, p < 0.001). Continuous T90desaturation and desaturation depth were associated with CKD (adjusted OR 1.01 per unit, 95% CI [1.00; 1.01], p = 0.008 and OR 1.30, 95% CI [1.06; 1.61], p = 0.013, respectively) independently of other known risk factors for CKD. For CVD there was a thresholdeffect, and only severly and very severly increased T90non-specific was associated with CVD ([Q3;Q4] versus [Q1;Q2], adjusted OR 1.51, 95% CI [1.12; 2.05], p = 0.008) independently of other known risk factors for CVD. CONCLUSION: While hypoxemic burden due to oxygen desaturations and the magnitude of desaturation depth were significantly associated with CKD, only severe hypoxemic burden due to non-specific drifts was associated with CVD. Specific types of hypoxemic burden may be related to micro- and macrovascular disease.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoxia , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/complications , Male , Female , Middle Aged , Cross-Sectional Studies , Aged , Hypoxia/diagnosis , Hypoxia/blood , Hypoxia/epidemiology , Hypoxia/physiopathology , Risk Factors , Oximetry , Circadian Rhythm , Oxygen Saturation , Diabetic Angiopathies/diagnosis , Diabetic Angiopathies/epidemiology , Diabetic Angiopathies/physiopathology , Diabetic Angiopathies/blood , Time Factors , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/blood
4.
Respir Res ; 25(1): 214, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762509

ABSTRACT

OBJECTIVES: Obstructive sleep apnea (OSA) is associated with abnormal glucose and lipid metabolism. However, whether there is an independent association between Sleep Apnea-Specific Hypoxic Burden (SASHB) and glycolipid metabolism disorders in patients with OSA is unknown. METHODS: We enrolled 2,173 participants with suspected OSA from January 2019 to July 2023 in this study. Polysomnographic variables, biochemical indicators, and physical measurements were collected from each participant. Multiple linear regression analyses were used to evaluate independent associations between SASHB, AHI, CT90 and glucose as well as lipid profile. Furthermore, logistic regressions were used to determine the odds ratios (ORs) for abnormal glucose and lipid metabolism across various SASHB, AHI, CT90 quartiles. RESULTS: The SASHB was independently associated with fasting blood glucose (FBG) (ß = 0.058, P = 0.016), fasting insulin (FIN) (ß = 0.073, P < 0.001), homeostasis model assessment of insulin resistance (HOMA-IR) (ß = 0.058, P = 0.011), total cholesterol (TC) (ß = 0.100, P < 0.001), total triglycerides (TG) (ß = 0.063, P = 0.011), low-density lipoprotein cholesterol (LDL-C) (ß = 0.075, P = 0.003), apolipoprotein A-I (apoA-I) (ß = 0.051, P = 0.049), apolipoprotein B (apoB) (ß = 0.136, P < 0.001), apolipoprotein E (apoE) (ß = 0.088, P < 0.001) after adjustments for confounding factors. Furthermore, the ORs for hyperinsulinemia across the higher SASHB quartiles were 1.527, 1.545, and 2.024 respectively, compared with the lowest quartile (P < 0.001 for a linear trend); the ORs for hyper-total cholesterolemia across the higher SASHB quartiles were 1.762, 1.998, and 2.708, compared with the lowest quartile (P < 0.001 for a linear trend) and the ORs for hyper-LDL cholesterolemia across the higher SASHB quartiles were 1.663, 1.695, and 2.316, compared with the lowest quartile (P < 0.001 for a linear trend). Notably, the ORs for hyper-triglyceridemia{1.471, 1.773, 2.099} and abnormal HOMA-IR{1.510, 1.492, 1.937} maintained a consistent trend across the SASHB quartiles. CONCLUSIONS: We found SASHB was independently associated with hyperinsulinemia, abnormal HOMA-IR, hyper-total cholesterolemia, hyper-triglyceridemia and hyper-LDL cholesterolemia in Chinese Han population. Further prospective studies are needed to confirm that SASHB can be used as a predictor of abnormal glycolipid metabolism disorders in patients with OSA. TRIAL REGISTRATION: ChiCTR1900025714 { http://www.chictr.org.cn/ }; Prospectively registered on 6 September 2019; China.


Subject(s)
Hypoxia , Sleep Apnea, Obstructive , Humans , Male , Female , Cross-Sectional Studies , Middle Aged , Adult , Hypoxia/blood , Hypoxia/epidemiology , Sleep Apnea, Obstructive/epidemiology , Sleep Apnea, Obstructive/blood , Sleep Apnea, Obstructive/diagnosis , Blood Glucose/metabolism , Lipid Metabolism Disorders/epidemiology , Lipid Metabolism Disorders/blood , Lipid Metabolism Disorders/diagnosis , Aged , Polysomnography , Lipid Metabolism/physiology , Insulin Resistance/physiology
5.
Crit Care ; 28(1): 132, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649920

ABSTRACT

BACKGROUND: Rapidly improving acute respiratory distress syndrome (RIARDS) is an increasingly appreciated subgroup of ARDS in which hypoxemia improves within 24 h after initiation of mechanical ventilation. Detailed clinical and biological features of RIARDS have not been clearly defined, and it is unknown whether RIARDS is associated with the hypoinflammatory or hyperinflammatory phenotype of ARDS. The purpose of this study was to define the clinical and biological features of RIARDS and its association with inflammatory subphenotypes. METHODS: We analyzed data from 215 patients who met Berlin criteria for ARDS (endotracheally intubated) and were enrolled in a prospective observational cohort conducted at two sites, one tertiary care center and one urban safety net hospital. RIARDS was defined according to previous studies as improvement of hypoxemia defined as (i) PaO2:FiO2 > 300 or (ii) SpO2: FiO2 > 315 on the day following diagnosis of ARDS (day 2) or (iii) unassisted breathing by day 2 and for the next 48 h (defined as absence of endotracheal intubation on day 2 through day 4). Plasma biomarkers were measured on samples collected on the day of study enrollment, and ARDS phenotypes were allocated as previously described. RESULTS: RIARDS accounted for 21% of all ARDS participants. Patients with RIARDS had better clinical outcomes compared to those with persistent ARDS, with lower hospital mortality (13% vs. 57%; p value < 0.001) and more ICU-free days (median 24 vs. 0; p value < 0.001). Plasma levels of interleukin-6, interleukin-8, and plasminogen activator inhibitor-1 were significantly lower among patients with RIARDS. The hypoinflammatory phenotype of ARDS was more common among patients with RIARDS (78% vs. 51% in persistent ARDS; p value = 0.001). CONCLUSIONS: This study identifies a high prevalence of RIARDS in a multicenter observational cohort and confirms the more benign clinical course of these patients. We report the novel finding that RIARDS is characterized by lower concentrations of plasma biomarkers of inflammation compared to persistent ARDS, and that hypoinflammatory ARDS is more prevalent among patients with RIARDS. Identification and exclusion of RIARDS could potentially improve prognostic and predictive enrichment in clinical trials.


Subject(s)
Biomarkers , Respiration, Artificial , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/physiopathology , Male , Female , Middle Aged , Prospective Studies , Aged , Biomarkers/blood , Biomarkers/analysis , Respiration, Artificial/methods , Respiration, Artificial/statistics & numerical data , Adult , Cohort Studies , Hypoxia/blood
6.
Eur J Pediatr ; 183(7): 2865-2869, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38592485

ABSTRACT

The aim of this study was to analyze signal loss (SL) resulting from low signal quality of pulse oximetry-derived hemoglobin oxygen saturation (SpO2) measurements during prolonged hypoxemic episodes (pHE) in very preterm infants receiving automatic oxygen control (AOC). We did a post hoc analysis of a randomized crossover study of AOC, programmed to set FiO2 to "back-up FiO2" during SL. In 24 preterm infants (median (interquartile range)) gestational age 25.3 (24.6 to 25.6) weeks, recording time 12.7 h (12.2 to 13.6 h) per infant, we identified 76 pHEs (median duration 119 s (86 to 180 s)). In 50 (66%) pHEs, SL occurred for a median duration of 51 s (33 to 85 s) and at a median frequency of 2 (1 to 2) SL-periods per pHE. SpO2 before and after SL was similar (82% (76 to 88%) vs 82% (76 to 87%), p = 0.3)).  Conclusion: SL is common during pHE and must hence be considered in AOC-algorithm designs. Administering a "backup FiO2" (which reflects FiO2-requirements during normoxemia) during SL may prolong pHE with SL.  Trial registration: The study was registered at www. CLINICALTRIALS: gov under the registration no. NCT03785899. WHAT IS KNOWN: • Previous studies examined SpO2 signal loss (SL) during routine manual oxygen control being rare, but pronounced in lower SpO2 states. • Oxygen titration during SL is unlikely to be beneficial as SpO2 may recover to a normoxic range. WHAT IS NEW: • Periods of low signal quality of SpO2 are common during pHEs and while supported with automated oxygen control (SPOC), FiO2 is set to a back-up value reflecting FiO2 requirements during normoxemia in response to SL, although SpO2 remained below target until signal recovery. • FiO2 overshoots following pHEs were rare during AOC and occurred with a delayed onset; therefore, increased FiO2 during SL does not necessarily lead to overshoots.


Subject(s)
Cross-Over Studies , Hypoxia , Infant, Premature , Oximetry , Oxygen Inhalation Therapy , Oxygen Saturation , Humans , Oximetry/methods , Infant, Newborn , Hypoxia/blood , Hypoxia/diagnosis , Female , Male , Oxygen Saturation/physiology , Oxygen Inhalation Therapy/methods , Oxygen/blood , Infant, Premature, Diseases/blood , Infant, Premature, Diseases/diagnosis , Algorithms
7.
Pediatr Crit Care Med ; 25(6): 512-517, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38465952

ABSTRACT

OBJECTIVES: Identification of children with sepsis-associated multiple organ dysfunction syndrome (MODS) at risk for poor outcomes remains a challenge. We sought to the determine reproducibility of the data-driven "persistent hypoxemia, encephalopathy, and shock" (PHES) phenotype and determine its association with inflammatory and endothelial biomarkers, as well as biomarker-based pediatric risk strata. DESIGN: We retrained and validated a random forest classifier using organ dysfunction subscores in the 2012-2018 electronic health record (EHR) dataset used to derive the PHES phenotype. We used this classifier to assign phenotype membership in a test set consisting of prospectively (2003-2023) enrolled pediatric septic shock patients. We compared profiles of the PERSEVERE family of biomarkers among those with and without the PHES phenotype and determined the association with established biomarker-based mortality and MODS risk strata. SETTING: Twenty-five PICUs across the United States. PATIENTS: EHR data from 15,246 critically ill patients with sepsis-associated MODS split into derivation and validation sets and 1,270 pediatric septic shock patients in the test set of whom 615 had complete biomarker data. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The area under the receiver operator characteristic curve of the modified classifier to predict PHES phenotype membership was 0.91 (95% CI, 0.90-0.92) in the EHR validation set. In the test set, PHES phenotype membership was associated with both increased adjusted odds of complicated course (adjusted odds ratio [aOR] 4.1; 95% CI, 3.2-5.4) and 28-day mortality (aOR of 4.8; 95% CI, 3.11-7.25) after controlling for age, severity of illness, and immunocompromised status. Patients belonging to the PHES phenotype were characterized by greater degree of systemic inflammation and endothelial activation, and were more likely to be stratified as high risk based on PERSEVERE biomarkers predictive of death and persistent MODS. CONCLUSIONS: The PHES trajectory-based phenotype is reproducible, independently associated with poor clinical outcomes, and overlapped with higher risk strata based on prospectively validated biomarker approaches.


Subject(s)
Biomarkers , Hypoxia , Phenotype , Shock, Septic , Humans , Biomarkers/blood , Female , Male , Child , Child, Preschool , Infant , Shock, Septic/blood , Shock, Septic/mortality , Shock, Septic/diagnosis , Hypoxia/diagnosis , Hypoxia/blood , Intensive Care Units, Pediatric , Multiple Organ Failure/diagnosis , Multiple Organ Failure/mortality , Multiple Organ Failure/blood , Adolescent , Sepsis/diagnosis , Sepsis/complications , Sepsis/blood , Sepsis/mortality , Reproducibility of Results , Risk Assessment/methods , Prospective Studies , Sepsis-Associated Encephalopathy/blood , Sepsis-Associated Encephalopathy/diagnosis , ROC Curve , Organ Dysfunction Scores
8.
Lung ; 202(4): 471-481, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38856932

ABSTRACT

PURPOSE: Skin pigmentation influences peripheral oxygen saturation (SpO2) compared to arterial saturation of oxygen (SaO2). Occult hypoxemia (SaO2 ≤ 88% with SpO2 ≥ 92%) is associated with increased in-hospital mortality in venovenous-extracorporeal membrane oxygenation (VV-ECMO) patients. We hypothesized VV-ECMO cannulation, in addition to race/ethnicity, accentuates the SpO2-SaO2 discrepancy due to significant hemolysis. METHODS: Adults (≥ 18 years) supported with VV-ECMO with concurrently measured SpO2 and SaO2 measurements from over 500 centers in the Extracorporeal Life Support Organization Registry (1/2018-5/2023) were included. Multivariable logistic regressions were performed to examine whether race/ethnicity was associated with occult hypoxemia in pre-ECMO and on-ECMO SpO2-SaO2 calculations. RESULTS: Of 13,171 VV-ECMO patients, there were 7772 (59%) White, 2114 (16%) Hispanic, 1777 (14%) Black, and 1508 (11%) Asian patients. The frequency of on-ECMO occult hypoxemia was 2.0% (N = 233). Occult hypoxemia was more common in Black and Hispanic patients versus White patients (3.1% versus 1.7%, P < 0.001 and 2.5% versus 1.7%, P = 0.025, respectively). In multivariable logistic regression, Black patients were at higher risk of pre-ECMO occult hypoxemia versus White patients (adjusted odds ratio [aOR] = 1.55, 95% confidence interval [CI] = 1.18-2.02, P = 0.001). For on-ECMO occult hypoxemia, Black patients (aOR = 1.79, 95% CI = 1.16-2.75, P = 0.008) and Hispanic patients (aOR = 1.71, 95% CI = 1.15-2.55, P = 0.008) had higher risk versus White patients. Higher pump flow rates (aOR = 1.29, 95% CI = 1.08-1.55, P = 0.005) and on-ECMO 24-h lactate (aOR = 1.06, 95% CI = 1.03-1.10, P < 0.001) significantly increased the risk of on-ECMO occult hypoxemia. CONCLUSION: SaO2 should be carefully monitored if using SpO2 during ECMO support for Black and Hispanic patients especially for those with high pump flow and lactate values at risk for occult hypoxemia.


Subject(s)
Extracorporeal Membrane Oxygenation , Hypoxia , Registries , Humans , Extracorporeal Membrane Oxygenation/adverse effects , Hypoxia/therapy , Hypoxia/blood , Hypoxia/etiology , Male , Female , Middle Aged , Adult , Oxygen Saturation , Hispanic or Latino/statistics & numerical data , Hospital Mortality , White People , Aged , United States/epidemiology , Black or African American , Hemolysis
9.
BMC Pulm Med ; 24(1): 228, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730395

ABSTRACT

OBJECTIVE: To explore the association between PaCO2 and noninvasive ventilation (NIV) failure in patients with hypoxemic respiratory failure. METHODS: A retrospective study was performed in a respiratory ICU of a teaching hospital. Patients admitted to ICU between 2011 and 2019 were screened. We enrolled the patients with hypoxemic respiratory failure. However, patients who used NIV due to acute-on-chronic respiratory failure or heart failure were excluded. Data before the use of NIV were collected. Requirement of intubation was defined as NIV failure. RESULTS: A total of 1029 patients were enrolled in final analysis. The rate of NIV failure was 45% (461/1029). A nonlinear relationship between PaCO2 and NIV failure was found by restricted cubic splines (p = 0.03). The inflection point was 32 mmHg. The rate of NIV failure was 42% (224/535) in patients with PaCO2 >32 mmHg. However, it increased to 48% (237/494) in those with PaCO2 ≤ 32 mmHg. The crude and adjusted hazard ratio (HR) for NIV failure was 1.36 (95%CI:1.13-1.64) and 1.23(1.01-1.49), respectively, if the patients with PaCO2 >32 mmHg were set as reference. In patients with PaCO2 ≤ 32 mmHg, one unit increment of PaCO2 was associated with 5% reduction of NIV failure. However, it did not associate with NIV failure in patients with PaCO2 >32 mmHg. CONCLUSIONS: PaCO2 and NIV failure was nonlinear relationship. The inflection point was 32 mmHg. Below the inflection point, lower PaCO2 was associated with higher NIV failure. However, it did not associate with NIV failure above this point.


Subject(s)
Carbon Dioxide , Hypoxia , Noninvasive Ventilation , Respiratory Insufficiency , Treatment Failure , Humans , Respiratory Insufficiency/therapy , Respiratory Insufficiency/blood , Retrospective Studies , Male , Female , Aged , Middle Aged , Hypoxia/blood , Hypoxia/therapy , Carbon Dioxide/blood , Intensive Care Units , Aged, 80 and over , Blood Gas Analysis
10.
Eur J Anaesthesiol ; 41(9): 687-694, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39087414

ABSTRACT

BACKGROUND: Hypoxaemia occurs frequently during paediatric laryngeal microsurgery. OBJECTIVE: The oxygen reserve index is a noninvasive and continuous parameter to assess PaO2 levels in the range of 100 to 200 mmHg. It ranges from 0 to 1.0. We investigated whether monitoring the oxygen reserve index can reduce the incidence of SpO2 90% or less. DESIGN: Randomised controlled trial. SETTING: A tertiary care paediatric hospital. PARTICIPANTS: Paediatric patients aged 18 years or less scheduled to undergo laryngeal microsurgery. INTERVENTION: The patients were randomly allocated to the oxygen reserve index or control groups, and stratified based on the presence of a tracheostomy tube. Rescue intervention was performed when the oxygen reserve index was 0.2 or less and the SpO2 was 94% or less in the oxygen reserve index and control groups, respectively. MAIN OUTCOME MEASURE: The primary outcome was the incidence of SpO2 90% or less during the surgery. RESULTS: Data from 88 patients were analysed. The incidence of SpO2 ≤ 90% did not differ between the oxygen reserve index and control groups [P = 0.114; 11/44, 25% vs. 18/44, 40.9%; relative risk: 1.27; and 95% confidence interval (CI): 0.94 to 1.72]. Among the 128 rescue interventions, SpO2 ≤ 90% event developed in 18 out of 75 events (24%) and 42 out of 53 events (79.2%) in the oxygen reserve index and control groups, respectively (P < 0.001; difference: 55.2%; and 95% CI 38.5 to 67.2%). The number of SpO2 ≤ 90% events per patient in the oxygen reserve index group (median 0, maximum 3) was less than that in the control group (median 0, maximum 8, P = 0.031). CONCLUSION: Additional monitoring of the oxygen reserve index, with a target value of greater than 0.2 during paediatric airway surgery, alongside peripheral oxygen saturation, did not reduce the incidence of SpO2 ≤ 90%.


Subject(s)
Hypoxia , Oxygen Saturation , Humans , Male , Female , Hypoxia/prevention & control , Hypoxia/blood , Hypoxia/etiology , Child, Preschool , Oxygen/blood , Child , Infant , Microsurgery/methods , Larynx , Oximetry/methods , Monitoring, Intraoperative/methods , Adolescent
11.
Eur J Anaesthesiol ; 41(9): 641-648, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38884417

ABSTRACT

BACKGROUND: The association between the concentration of atmospheric particulate matter on the day of surgery and the occurrence of intra-operative hypoxaemia in children receiving general anaesthesia is unclear. OBJECTIVE: To investigate the association between the exposure to particulate matter on the day of surgery and the occurrence of intra-operative hypoxaemia, defined as a pulse oximetry oxygen saturation of less than 90% for more than 1 min, in children. DESIGN: Retrospective study. SETTING: Single-centre. PARTICIPANTS: Children aged 18 years or younger who received general anaesthesia between January 2019 and October 2020. INTERVENTION: Information on daily levels of particulate matter with a diameter 10 µm or less and 2.5 µm or less measured within a neighbourhood corresponding to the area defined by the hospital's zip code was obtained from publicly available air-quality data. MAIN OUTCOME MEASURES: The primary outcome was intra-operative hypoxaemia, defined as a pulse oximetry oxygen saturation of less than 90% lasting for more than 1 min, manually verified by anaesthesiologists using vital sign registry data extracted at 2 s intervals. RESULTS: Of the patients finally analysed, 3.85% (489/13 175) experienced intra-operative hypoxaemia. Higher levels of particulate matter 10 µm or less in diameter (≥81 µg m -3 , 17/275, 6.2%) were associated with an increased occurrence of intra-operative hypoxaemia compared with lower particulate matter concentrations [<81 µg m -3 , 472/12 900, 3.7%; adjusted odds ratio, 1.71; 95% confidence interval (CI), 1.04 to 2.83; P  = 0.035]. CONCLUSION: The level of particulate matter on the day of surgery pose a risk of intra-operative hypoxaemia in children receiving general anaesthesia. If the concentrations of particulate matter 10 µm or less in diameter on the day of surgery are high, children receiving general anaesthesia should be managed with increased caution.


Subject(s)
Anesthesia, General , Hypoxia , Particulate Matter , Humans , Anesthesia, General/adverse effects , Retrospective Studies , Particulate Matter/adverse effects , Hypoxia/epidemiology , Hypoxia/etiology , Hypoxia/chemically induced , Hypoxia/blood , Male , Female , Child , Child, Preschool , Infant , Republic of Korea/epidemiology , Adolescent , Oximetry , Intraoperative Complications/epidemiology , Intraoperative Complications/etiology , Intraoperative Complications/diagnosis , Intraoperative Complications/chemically induced , Infant, Newborn , Oxygen Saturation
12.
Int J Mol Sci ; 25(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39062779

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is a crucial mediator of neuronal plasticity. Here, we investigated the effects of controlled normobaric hypoxia (NH) combined with physical inactivity on BDNF blood levels and executive functions. A total of 25 healthy adults (25.8 ± 3.3 years, 15 female) were analyzed in a randomized controlled cross-over study. Each intervention began with a 30 min resting phase under normoxia (NOR), followed by a 90 min continuation of NOR or NH (peripheral oxygen saturation [SpO2] 85-80%). Serum and plasma samples were collected every 15 min. Heart rate and SpO2 were continuously measured. Before and after each exposure, cognitive tests were performed and after 24 h another follow-up blood sample was taken. NH decreased SpO2 (p < 0.001, ηp2 = 0.747) and increased heart rate (p = 0.006, ηp2 = 0.116) significantly. The 30-min resting phase under NOR led to a significant BDNF reduction in serum (p < 0.001, ηp2 = 0.581) and plasma (p < 0.001, ηp2 = 0.362). Continuation of NOR further significantly reduced BDNF after another 45 min (p = 0.018) in serum and after 30 min (p = 0.040) and 90 min (p = 0.005) in plasma. There was no significant BDNF decline under NH. A 24 h follow-up examination showed a significant decline in serum BDNF, both after NH and NOR. Our results show that NH has the potential to counteract physical inactivity-induced BDNF decline. Therefore, our study emphasizes the need for a physically active lifestyle and its positive effects on BDNF. This study also demonstrates the need for a standardized protocol for future studies to determine BDNF in serum and plasma.


Subject(s)
Brain-Derived Neurotrophic Factor , Heart Rate , Hypoxia , Sedentary Behavior , Humans , Brain-Derived Neurotrophic Factor/blood , Female , Male , Adult , Hypoxia/blood , Cross-Over Studies , Exercise , Young Adult
14.
Am J Physiol Regul Integr Comp Physiol ; 322(2): R112-R122, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34907783

ABSTRACT

The purpose of this study is to investigate exosome-like vesicle (ELV) plasma concentrations and markers of multivesicular body (MVB) biogenesis in skeletal muscle in response to acute exercise. Seventeen healthy [body mass index (BMI): 23.5 ± 0.5 kg·m-2] and 15 prediabetic (BMI: 27.3 ± 1.2 kg·m-2) men were randomly assigned to two groups performing an acute cycling bout in normoxia or hypoxia ([Formula: see text] 14.0%). Venous blood samples were taken before (T0), during (T30), and after (T60) exercise, and biopsies from m. vastus lateralis were collected before and after exercise. Plasma ELVs were isolated by size exclusion chromatography, counted by nanoparticle tracking analysis (NTA), and characterized according to international standards, followed by expression analyses of canonical ELV markers in skeletal muscle. In the healthy normoxic group, the total number of particles in the plasma increased during exercise from T0 to T30 (+313%) followed by a decrease from T30 to T60 (-53%). In the same group, an increase in TSG101, CD81, and HSP60 protein expression was measured after exercise in plasma ELVs; however, in the prediabetic group, the total number of particles in the plasma was not affected by exercise. The mRNA content of TSG101, ALIX, and CD9 was upregulated in skeletal muscle after exercise in normoxia, whereas CD9 and CD81 were downregulated in hypoxia. ELV plasma abundance increased in response to acute aerobic exercise in healthy subjects in normoxia, but not in prediabetic subjects, nor in hypoxia. Skeletal muscle analyses suggested that this tissue did not likely play a major role of the exercise-induced increase in circulating ELVs.


Subject(s)
Exercise , Extracellular Vesicles/metabolism , Hypoxia/blood , Multivesicular Bodies/metabolism , Muscle Contraction , Prediabetic State/blood , Quadriceps Muscle/metabolism , Adult , Bicycling , Calcium-Binding Proteins/blood , Case-Control Studies , Cell Cycle Proteins/blood , DNA-Binding Proteins/blood , Endosomal Sorting Complexes Required for Transport/blood , Humans , Hypoxia/diagnosis , Hypoxia/physiopathology , Male , Middle Aged , Organelle Biogenesis , Prediabetic State/diagnosis , Prediabetic State/physiopathology , Quadriceps Muscle/physiopathology , Random Allocation , Tetraspanin 29/blood , Time Factors , Transcription Factors/blood
15.
PLoS Comput Biol ; 17(12): e1009712, 2021 12.
Article in English | MEDLINE | ID: mdl-34932550

ABSTRACT

Hypoxemia is a significant driver of mortality and poor clinical outcomes in conditions such as brain injury and cardiac arrest in critically ill patients, including COVID-19 patients. Given the host of negative clinical outcomes attributed to hypoxemia, identifying patients likely to experience hypoxemia would offer valuable opportunities for early and thus more effective intervention. We present SWIFT (SpO2 Waveform ICU Forecasting Technique), a deep learning model that predicts blood oxygen saturation (SpO2) waveforms 5 and 30 minutes in the future using only prior SpO2 values as inputs. When tested on novel data, SWIFT predicts more than 80% and 60% of hypoxemic events in critically ill and COVID-19 patients, respectively. SWIFT also predicts SpO2 waveforms with average MSE below .0007. SWIFT predicts both occurrence and magnitude of potential hypoxemic events 30 minutes in the future, allowing it to be used to inform clinical interventions, patient triaging, and optimal resource allocation. SWIFT may be used in clinical decision support systems to inform the management of critically ill patients during the COVID-19 pandemic and beyond.


Subject(s)
COVID-19/physiopathology , Critical Illness , Deep Learning , Hypoxia/blood , Oxygen Saturation , COVID-19/epidemiology , COVID-19/virology , Humans , Intensive Care Units , Pandemics , SARS-CoV-2/isolation & purification
16.
Rev Med Virol ; 31(3): e2177, 2021 05.
Article in English | MEDLINE | ID: mdl-33022790

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel human respiratory viral infection that has rapidly progressed into a pandemic, causing significant morbidity and mortality. Blood clotting disorders and acute respiratory failure have surfaced as the major complications among the severe cases of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection. Remarkably, more than 70% of deaths related to COVID-19 are attributed to clotting-associated complications such as pulmonary embolism, strokes and multi-organ failure. These vascular complications have been confirmed by autopsy. This study summarizes the current understanding and explains the possible mechanisms of the blood clotting disorder, emphasizing the role of (1) hypoxia-related activation of coagulation factors like tissue factor, a significant player in triggering coagulation cascade, (2) cytokine storm and activation of neutrophils and the release of neutrophil extracellular traps and (3) immobility and ICU related risk factors.


Subject(s)
COVID-19/genetics , Cytokine Release Syndrome/genetics , Disseminated Intravascular Coagulation/genetics , Hypoxia/genetics , Pulmonary Embolism/genetics , Respiratory Insufficiency/genetics , SARS-CoV-2/pathogenicity , COVID-19/blood , COVID-19/pathology , COVID-19/virology , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Disseminated Intravascular Coagulation/blood , Disseminated Intravascular Coagulation/pathology , Disseminated Intravascular Coagulation/virology , Extracellular Traps/metabolism , Extracellular Traps/virology , Gene Expression Regulation , Humans , Hypoxia/blood , Hypoxia/pathology , Hypoxia/virology , Hypoxia-Inducible Factor 1, alpha Subunit/blood , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Interleukin-6/blood , Interleukin-6/genetics , Neutrophils/pathology , Neutrophils/virology , Pulmonary Embolism/blood , Pulmonary Embolism/pathology , Pulmonary Embolism/virology , Respiratory Insufficiency/blood , Respiratory Insufficiency/pathology , Respiratory Insufficiency/virology , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , Signal Transduction , Thromboplastin/genetics , Thromboplastin/metabolism
17.
PLoS Genet ; 15(4): e1007739, 2019 04.
Article in English | MEDLINE | ID: mdl-30990817

ABSTRACT

Sleep disordered breathing (SDB)-related overnight hypoxemia is associated with cardiometabolic disease and other comorbidities. Understanding the genetic bases for variations in nocturnal hypoxemia may help understand mechanisms influencing oxygenation and SDB-related mortality. We conducted genome-wide association tests across 10 cohorts and 4 populations to identify genetic variants associated with three correlated measures of overnight oxyhemoglobin saturation: average and minimum oxyhemoglobin saturation during sleep and the percent of sleep with oxyhemoglobin saturation under 90%. The discovery sample consisted of 8,326 individuals. Variants with p < 1 × 10(-6) were analyzed in a replication group of 14,410 individuals. We identified 3 significantly associated regions, including 2 regions in multi-ethnic analyses (2q12, 10q22). SNPs in the 2q12 region associated with minimum SpO2 (rs78136548 p = 2.70 × 10(-10)). SNPs at 10q22 were associated with all three traits including average SpO2 (rs72805692 p = 4.58 × 10(-8)). SNPs in both regions were associated in over 20,000 individuals and are supported by prior associations or functional evidence. Four additional significant regions were detected in secondary sex-stratified and combined discovery and replication analyses, including a region overlapping Reelin, a known marker of respiratory complex neurons.These are the first genome-wide significant findings reported for oxyhemoglobin saturation during sleep, a phenotype of high clinical interest. Our replicated associations with HK1 and IL18R1 suggest that variants in inflammatory pathways, such as the biologically-plausible NLRP3 inflammasome, may contribute to nocturnal hypoxemia.


Subject(s)
Hexokinase/genetics , Interleukin-18 Receptor alpha Subunit/genetics , Oxyhemoglobins/metabolism , Sleep/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cell Adhesion Molecules, Neuronal/genetics , Computational Biology , Extracellular Matrix Proteins/genetics , Female , Gene Regulatory Networks , Genetic Variation , Genome-Wide Association Study , Humans , Hypoxia/blood , Hypoxia/genetics , Male , Middle Aged , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Nerve Tissue Proteins/genetics , Oxygen/blood , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Reelin Protein , Serine Endopeptidases/genetics , Sleep Apnea Syndromes/blood , Sleep Apnea Syndromes/genetics , Young Adult
18.
Proc Natl Acad Sci U S A ; 116(26): 13016-13025, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31186362

ABSTRACT

Chronic hypoxia causes pulmonary hypertension (PH), vascular remodeling, right ventricular (RV) hypertrophy, and cardiac failure. Protein kinase G Iα (PKGIα) is susceptible to oxidation, forming an interprotein disulfide homodimer associated with kinase targeting involved in vasodilation. Here we report increased disulfide PKGIα in pulmonary arteries from mice with hypoxic PH or lungs from patients with pulmonary arterial hypertension. This oxidation is likely caused by oxidants derived from NADPH oxidase-4, superoxide dismutase 3, and cystathionine γ-lyase, enzymes that were concomitantly increased in these samples. Indeed, products that may arise from these enzymes, including hydrogen peroxide, glutathione disulfide, and protein-bound persulfides, were increased in the plasma of hypoxic mice. Furthermore, low-molecular-weight hydropersulfides, which can serve as "superreductants" were attenuated in hypoxic tissues, consistent with systemic oxidative stress and the oxidation of PKGIα observed. Inhibiting cystathionine γ-lyase resulted in decreased hypoxia-induced disulfide PKGIα and more severe PH phenotype in wild-type mice, but not in Cys42Ser PKGIα knock-in (KI) mice that are resistant to oxidation. In addition, KI mice also developed potentiated PH during hypoxia alone. Thus, oxidation of PKGIα is an adaptive mechanism that limits PH, a concept further supported by polysulfide treatment abrogating hypoxia-induced RV hypertrophy in wild-type, but not in the KI, mice. Unbiased transcriptomic analysis of hypoxic lungs before structural remodeling identified up-regulation of endothelial-to-mesenchymal transition pathways in the KI compared with wild-type mice. Thus, disulfide PKGIα is an intrinsic adaptive mechanism that attenuates PH progression not only by promoting vasodilation but also by limiting maladaptive growth and fibrosis signaling.


Subject(s)
Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Hypertension, Pulmonary/pathology , Hypoxia/complications , Pulmonary Artery/pathology , Adult , Animals , Cell Line , Cyclic GMP-Dependent Protein Kinase Type I/chemistry , Cystathionine gamma-Lyase/antagonists & inhibitors , Cystathionine gamma-Lyase/metabolism , Disease Models, Animal , Disease Progression , Disulfides/chemistry , Female , Fibrosis , Gene Knock-In Techniques , Humans , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/prevention & control , Hypoxia/blood , Hypoxia/drug therapy , Lung/blood supply , Lung/pathology , Male , Mice , Mice, Transgenic , Middle Aged , Oxidants/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Sulfides/administration & dosage , Sulfides/blood , Sulfides/metabolism , Up-Regulation , Vasoconstriction/drug effects , Vasodilation/drug effects
19.
Am J Physiol Renal Physiol ; 320(3): F249-F261, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33356957

ABSTRACT

Patients treated with hemodialysis (HD) repeatedly undergo intradialytic low arterial oxygen saturation and low central venous oxygen saturation, reflecting an imbalance between upper body systemic oxygen supply and demand, which are associated with increased mortality. Abnormalities along the entire oxygen cascade, with impaired diffusive and convective oxygen transport, contribute to the reduced tissue oxygen supply. HD treatment impairs pulmonary gas exchange and reduces ventilatory drive, whereas ultrafiltration can reduce tissue perfusion due to a decline in cardiac output. In addition to these factors, capillary rarefaction and reduced mitochondrial efficacy can further affect the balance between cellular oxygen supply and demand. Whereas it has been convincingly demonstrated that a reduced perfusion of heart and brain during HD contributes to organ damage, the significance of systemic hypoxia remains uncertain, although it may contribute to oxidative stress, systemic inflammation, and accelerated senescence. These abnormalities along the oxygen cascade of patients treated with HD appear to be diametrically opposite to the situation in Tibetan highlanders and Sherpa, whose physiology adapted to the inescapable hypobaric hypoxia of their living environment over many generations. Their adaptation includes pulmonary, vascular, and metabolic alterations with enhanced capillary density, nitric oxide production, and mitochondrial efficacy without oxidative stress. Improving the tissue oxygen supply in patients treated with HD depends primarily on preventing hemodynamic instability by increasing dialysis time/frequency or prescribing cool dialysis. Whether dietary or pharmacological interventions, such as the administration of L-arginine, fermented food, nitrate, nuclear factor erythroid 2-related factor 2 agonists, or prolyl hydroxylase 2 inhibitors, improve clinical outcome in patients treated with HD warrants future research.


Subject(s)
Acclimatization , Altitude , Hypoxia/blood , Kidney Failure, Chronic/therapy , Kidney/physiopathology , Oxygen Consumption , Oxygen/blood , Renal Dialysis , Animals , Biomarkers/blood , Hemodynamics , Humans , Hypoxia/mortality , Hypoxia/physiopathology , Hypoxia/prevention & control , Kidney/metabolism , Kidney Failure, Chronic/blood , Kidney Failure, Chronic/mortality , Kidney Failure, Chronic/physiopathology , Renal Dialysis/adverse effects , Renal Dialysis/mortality , Risk Factors , Treatment Outcome
20.
Am J Physiol Heart Circ Physiol ; 321(4): H738-H747, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34448634

ABSTRACT

Hemoconcentration can influence hypoxic pulmonary vasoconstriction (HPV) via increased frictional force and vasoactive signaling from erythrocytes, but whether the balance of these mechanism is modified by the duration of hypoxia remains to be determined. We performed three sequential studies: 1) at sea level, in normoxia and isocapnic hypoxia with and without isovolumic hemodilution (n = 10, aged 29 ± 7 yr); 2) at altitude (6 ± 2 days acclimatization at 5,050 m), before and during hypervolumic hemodilution (n = 11, aged 27 ± 5 yr) with room air and additional hypoxia [fraction of inspired oxygen ([Formula: see text])= 0.15]; and 3) at altitude (4,340 m) in Andean high-altitude natives with excessive erythrocytosis (EE; n = 6, aged 39 ± 17 yr), before and during isovolumic hemodilution with room air and hyperoxia (end-tidal Po2 = 100 mmHg). At sea level, hemodilution mildly increased pulmonary artery systolic pressure (PASP; +1.6 ± 1.5 mmHg, P = 0.01) and pulmonary vascular resistance (PVR; +0.7 ± 0.8 wu, P = 0.04). In contrast, after acclimation to 5,050 m, hemodilution did not significantly alter PASP (22.7 ± 5.2 vs. 24.5 ± 5.2 mmHg, P = 0.14) or PVR (2.2 ± 0.9 vs. 2.3 ± 1.2 wu, P = 0.77), although both remained sensitive to additional acute hypoxia. In Andeans with EE at 4,340 m, hemodilution lowered PVR in room air (2.9 ± 0.9 vs. 2.3 ± 0.8 wu, P = 0.03), but PASP remained unchanged (31.3 ± 6.7 vs. 30.9 ± 6.9 mmHg, P = 0.80) due to an increase in cardiac output. Collectively, our series of studies reveal that HPV is modified by the duration of exposure and the prevailing hematocrit level. In application, these findings emphasize the importance of accounting for hematocrit and duration of exposure when interpreting the pulmonary vascular responses to hypoxemia.NEW & NOTEWORTHY Red blood cell concentration influences the pulmonary vasculature via direct frictional force and vasoactive signaling, but whether the magnitude of the response is modified with duration of exposure is not known. By assessing the pulmonary vascular response to hemodilution in acute normobaric and prolonged hypobaric hypoxia in lowlanders and lifelong hypobaric hypoxemia in Andean natives, we demonstrated that a reduction in red cell concentration augments the vasoconstrictive effects of hypoxia in lowlanders. In high-altitude natives, hemodilution lowered pulmonary vascular resistance, but a compensatory increase in cardiac output following hemodilution rendered PASP unchanged.


Subject(s)
Acclimatization , Altitude , Arterial Pressure , Erythrocytes/metabolism , Hemodilution , Hypoxia/blood , Polycythemia/blood , Pulmonary Artery/physiopathology , Vasoconstriction , Adult , Blood Viscosity , Cardiac Output , Heart Rate , Hematocrit , Humans , Hypoxia/diagnosis , Hypoxia/physiopathology , Male , Middle Aged , Polycythemia/diagnosis , Polycythemia/physiopathology , Time Factors , Vascular Resistance , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL