ABSTRACT
Pathogenic autoantibodies arise in many autoimmune diseases, but it is not understood how the cells making them evade immune checkpoints. Here, single-cell multi-omics analysis demonstrates a shared mechanism with lymphoid malignancy in the formation of public rheumatoid factor autoantibodies responsible for mixed cryoglobulinemic vasculitis. By combining single-cell DNA and RNA sequencing with serum antibody peptide sequencing and antibody synthesis, rare circulating B lymphocytes making pathogenic autoantibodies were found to comprise clonal trees accumulating mutations. Lymphoma driver mutations in genes regulating B cell proliferation and V(D)J mutation (CARD11, TNFAIP3, CCND3, ID3, BTG2, and KLHL6) were present in rogue B cells producing the pathogenic autoantibody. Antibody V(D)J mutations conferred pathogenicity by causing the antigen-bound autoantibodies to undergo phase transition to insoluble aggregates at lower temperatures. These results reveal a pre-neoplastic stage in human lymphomagenesis and a cascade of somatic mutations leading to an iconic pathogenic autoantibody.
Subject(s)
Autoantibodies/genetics , Autoimmune Diseases/genetics , B-Lymphocytes/immunology , Lymphoma/genetics , Animals , Autoantibodies/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , B-Lymphocytes/pathology , CARD Signaling Adaptor Proteins/genetics , Carrier Proteins/genetics , Clonal Evolution/genetics , Clonal Evolution/immunology , Cyclin D3/genetics , Guanylate Cyclase/genetics , Humans , Immediate-Early Proteins/genetics , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Inhibitor of Differentiation Proteins/genetics , Lymphoma/immunology , Lymphoma/pathology , Mice , Mutation/genetics , Mutation/immunology , Neoplasm Proteins/genetics , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Suppressor Proteins/genetics , V(D)J Recombination/geneticsABSTRACT
Developing pre-B cells in the bone marrow alternate between proliferation and differentiation phases. We found that protein arginine methyl transferase 1 (PRMT1) and B cell translocation gene 2 (BTG2) are critical components of the pre-B cell differentiation program. The BTG2-PRMT1 module induced a cell-cycle arrest of pre-B cells that was accompanied by re-expression of Rag1 and Rag2 and the onset of immunoglobulin light chain gene rearrangements. We found that PRMT1 methylated cyclin-dependent kinase 4 (CDK4), thereby preventing the formation of a CDK4-Cyclin-D3 complex and cell cycle progression. Moreover, BTG2 in concert with PRMT1 efficiently blocked the proliferation of BCR-ABL1-transformed pre-B cells in vitro and in vivo. Our results identify a key molecular mechanism by which the BTG2-PRMT1 module regulates pre-B cell differentiation and inhibits pre-B cell leukemogenesis.
Subject(s)
Cell Proliferation/genetics , Cyclin D3/metabolism , Cyclin-Dependent Kinase 4/metabolism , Immediate-Early Proteins/genetics , Lymphopoiesis/genetics , Precursor Cells, B-Lymphoid/metabolism , Protein-Arginine N-Methyltransferases/genetics , Tumor Suppressor Proteins/genetics , Animals , Cell Cycle Checkpoints , Cell Differentiation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Flow Cytometry , Gene Knockdown Techniques , Gene Rearrangement, B-Lymphocyte/genetics , Genes, abl/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Immediate-Early Proteins/metabolism , Immunoglobulin Light Chains/genetics , Mass Spectrometry , Mice , Precursor Cells, B-Lymphoid/cytology , Protein-Arginine N-Methyltransferases/metabolism , RNA, Small Interfering , Real-Time Polymerase Chain Reaction , Tumor Suppressor Proteins/metabolismABSTRACT
Deregulation of oncogenic signals in cancer triggers replication stress. Immediate early genes (IEGs) are rapidly and transiently expressed following stressful signals, contributing to an integrated response. Here, we find that the orphan nuclear receptor NR4A1 localizes across the gene body and 3' UTR of IEGs, where it inhibits transcriptional elongation by RNA Pol II, generating R-loops and accessible chromatin domains. Acute replication stress causes immediate dissociation of NR4A1 and a burst of transcriptionally poised IEG expression. Ectopic expression of NR4A1 enhances tumorigenesis by breast cancer cells, while its deletion leads to massive chromosomal instability and proliferative failure, driven by deregulated expression of its IEG target, FOS. Approximately half of breast and other primary cancers exhibit accessible chromatin domains at IEG gene bodies, consistent with this stress-regulatory pathway. Cancers that have retained this mechanism in adapting to oncogenic replication stress may be dependent on NR4A1 for their proliferation.
Subject(s)
Breast Neoplasms/metabolism , Cell Proliferation , Immediate-Early Proteins/metabolism , Mitosis , Neoplastic Cells, Circulating/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , 3' Untranslated Regions , Animals , Antineoplastic Agents/pharmacology , Binding Sites , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Chromatin Assembly and Disassembly , Female , Gene Expression Regulation, Neoplastic , Genomic Instability , HEK293 Cells , Humans , Immediate-Early Proteins/genetics , Indoles/pharmacology , MCF-7 Cells , Mice, Inbred NOD , Mice, SCID , Mitosis/drug effects , Neoplastic Cells, Circulating/drug effects , Neoplastic Cells, Circulating/pathology , Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Phenylacetates/pharmacology , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , R-Loop Structures , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Signal Transduction , Transcription Elongation, Genetic , Tumor Cells, Cultured , Xenograft Model Antitumor AssaysABSTRACT
Many signaling circuits face a fundamental tradeoff between accelerating their response speed while maintaining final levels below a cytotoxic threshold. Here, we describe a transcriptional circuitry that dynamically converts signaling inputs into faster rates without amplifying final equilibrium levels. Using time-lapse microscopy, we find that transcriptional activators accelerate human cytomegalovirus (CMV) gene expression in single cells without amplifying steady-state expression levels, and this acceleration generates a significant replication advantage. We map the accelerator to a highly self-cooperative transcriptional negative-feedback loop (Hill coefficient â¼7) generated by homomultimerization of the virus's essential transactivator protein IE2 at nuclear PML bodies. Eliminating the IE2-accelerator circuit reduces transcriptional strength through mislocalization of incoming viral genomes away from PML bodies and carries a heavy fitness cost. In general, accelerators may provide a mechanism for signal-transduction circuits to respond quickly to external signals without increasing steady-state levels of potentially cytotoxic molecules.
Subject(s)
Cytomegalovirus Infections/virology , Cytomegalovirus/genetics , Gene Regulatory Networks , Genetic Fitness , Cytomegalovirus/physiology , Feedback, Physiological , Fibroblasts/virology , Gene Expression Regulation, Viral , Humans , Immediate-Early Proteins/metabolism , Inclusion Bodies, Viral/metabolism , Time-Lapse Imaging , Trans-Activators/metabolism , Transcriptional Activation , Virus ReplicationABSTRACT
Pathogens use virulence factors to inhibit the immune system1. The guard hypothesis2,3 postulates that hosts monitor (or 'guard') critical innate immune pathways such that their disruption by virulence factors provokes a secondary immune response1. Here we describe a 'self-guarded' immune pathway in human monocytes, in which guarding and guarded functions are combined in one protein. We find that this pathway is triggered by ICP0, a key virulence factor of herpes simplex virus type 1, resulting in robust induction of anti-viral type I interferon (IFN). Notably, induction of IFN by ICP0 is independent of canonical immune pathways and the IRF3 and IRF7 transcription factors. A CRISPR screen identified the ICP0 target MORC34 as an essential negative regulator of IFN. Loss of MORC3 recapitulates the IRF3- and IRF7-independent IFN response induced by ICP0. Mechanistically, ICP0 degrades MORC3, which leads to de-repression of a MORC3-regulated DNA element (MRE) adjacent to the IFNB1 locus. The MRE is required in cis for IFNB1 induction by the MORC3 pathway, but is not required for canonical IFN-inducing pathways. As well as repressing the MRE to regulate IFNB1, MORC3 is also a direct restriction factor of HSV-15. Our results thus suggest a model in which the primary anti-viral function of MORC3 is self-guarded by its secondary IFN-repressing function-thus, a virus that degrades MORC3 to avoid its primary anti-viral function will unleash the secondary anti-viral IFN response.
Subject(s)
Adenosine Triphosphatases/immunology , DNA-Binding Proteins/immunology , Models, Immunological , Virulence Factors/immunology , Adenosine Triphosphatases/deficiency , Adenosine Triphosphatases/metabolism , CRISPR-Cas Systems , Cell Line , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/metabolism , Gene Editing , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/pathogenicity , Humans , Immediate-Early Proteins/immunology , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/metabolism , Interferon Type I/antagonists & inhibitors , Interferon Type I/genetics , Interferon Type I/immunology , Monocytes/immunology , Receptor, Interferon alpha-beta , Repressor Proteins/deficiency , Repressor Proteins/immunology , Repressor Proteins/metabolism , Response Elements/genetics , Ubiquitin-Protein Ligases/immunologyABSTRACT
The Pentamer complex of Human Cytomegalovirus (HCMV) consists of the viral glycoproteins gH, gL, UL128, UL130, and UL131 and is incorporated into infectious virions. HCMV strains propagated extensively in vitro in fibroblasts carry UL128, UL130, or UL131 alleles that do not make a functional complex and thus lack Pentamer function. Adding functional Pentamer to such strains decreases virus growth in fibroblasts. Here, we show that the Pentamer inhibits productive HCMV replication in fibroblasts by repressing viral Immediate Early (IE) transcription. We show that ectopic expression of the viral IE1 protein, a target of Pentamer-mediated transcriptional repression, complements the growth defect of a Pentamer-positive virus. Furthermore, we show that the Pentamer also represses viral IE transcription in cell types where HCMV in vitro latency is studied. Finally, we identify UL130 as a functional subunit of the Pentamer for IE transcriptional repression and demonstrate that cyclic AMP Response Element (CRE) and NFkB sites within the Major Immediate Early Promoter that drives IE1 transcription contribute to this repression. We conclude that the HCMV Pentamer represses viral IE transcription.
Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Fibroblasts , Immediate-Early Proteins , Transcription, Genetic , Viral Envelope Proteins , Humans , Cytomegalovirus/genetics , Cytomegalovirus/physiology , Cytomegalovirus/metabolism , Cytomegalovirus Infections/virology , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/metabolism , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Fibroblasts/virology , Fibroblasts/metabolism , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Gene Expression Regulation, Viral , Virus Replication/genetics , Glycoproteins/metabolism , Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Genes, Immediate-Early , Promoter Regions, GeneticABSTRACT
Deubiquitinases (DUBs) remove ubiquitin from substrates and play crucial roles in diverse biological processes. However, our understanding of deubiquitination in viral replication remains limited. Employing an oncogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) to probe the role of protein deubiquitination, we found that Ovarian tumor family deubiquitinase 4 (OTUD4) promotes KSHV reactivation. OTUD4 interacts with the replication and transcription activator (K-RTA), a key transcription factor that controls KSHV reactivation, and enhances K-RTA stability by promoting its deubiquitination. Notably, the DUB activity of OTUD4 is not required for K-RTA stabilization; instead, OTUD4 functions as an adaptor protein to recruit another DUB, USP7, to deubiquitinate K-RTA and facilitate KSHV lytic reactivation. Our study has revealed a novel mechanism whereby KSHV hijacks OTUD4-USP7 deubiquitinases to promote lytic reactivation, which could be potentially harnessed for the development of new antiviral therapies.
Subject(s)
Herpesvirus 8, Human , Immediate-Early Proteins , Sarcoma, Kaposi , Humans , Immediate-Early Proteins/metabolism , Ubiquitin-Specific Peptidase 7/genetics , Ubiquitin-Specific Peptidase 7/metabolism , Trans-Activators/genetics , Herpesvirus 8, Human/genetics , Virus Replication , Gene Expression Regulation, Viral , Virus Activation , Ubiquitin-Specific Proteases/metabolismABSTRACT
SGK1 is an AGC kinase that regulates the expression of membrane sodium channels in renal tubular cells in a manner dependent on the metabolic checkpoint kinase complex mTORC2. We hypothesized that SGK1 might represent an additional mTORC2-dependent regulator of the differentiation and function of T cells. Here we found that after activation by mTORC2, SGK1 promoted T helper type 2 (TH2) differentiation by negatively regulating degradation of the transcription factor JunB mediated by the E3 ligase Nedd4-2. Simultaneously, SGK1 repressed the production of interferon-γ (IFN-γ) by controlling expression of the long isoform of the transcription factor TCF-1. Consistent with those findings, mice with selective deletion of SGK1 in T cells were resistant to experimentally induced asthma, generated substantial IFN-γ in response to viral infection and more readily rejected tumors.
Subject(s)
Asthma/immunology , Immediate-Early Proteins/metabolism , Melanoma, Experimental/immunology , Multiprotein Complexes/immunology , Poxviridae Infections/immunology , Protein Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Vaccinia virus/immunology , Adaptive Immunity/genetics , Animals , Cell Differentiation/genetics , Cells, Cultured , Endosomal Sorting Complexes Required for Transport/metabolism , Gene Expression Regulation/genetics , Hepatocyte Nuclear Factor 1-alpha , Immediate-Early Proteins/genetics , Interferon-gamma/genetics , Interferon-gamma/metabolism , Mechanistic Target of Rapamycin Complex 2 , Mice , Mice, Inbred C57BL , Mice, Knockout , Nedd4 Ubiquitin Protein Ligases , Protein Serine-Threonine Kinases/genetics , T Cell Transcription Factor 1/genetics , T Cell Transcription Factor 1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Burden/genetics , Ubiquitin-Protein Ligases/metabolismABSTRACT
Viral infection often trigger an ATM serine/threonine kinase (ATM)-dependent DNA damage response in host cells that suppresses viral replication. Viruses evolved different strategies to counteract this antiviral surveillance system. Here, we report that human herpesvirus 6B (HHV-6B) infection causes genomic instability by suppressing ATM signaling in host cells. Expression of immediate-early protein 1 (IE1) phenocopies this phenotype and blocks homology-directed double-strand break repair. Mechanistically, IE1 interacts with NBS1, and inhibits ATM signaling through two distinct domains. HHV-6B seems to efficiently inhibit ATM signaling as further depletion of either NBS1 or ATM do not significantly boost viral replication in infected cells. Interestingly, viral integration of HHV-6B into the host's telomeres is not strictly dependent on NBS1, challenging current models where integration occurs through homology-directed repair. Given that spontaneous IE1 expression has been detected in cells of subjects with inherited chromosomally-integrated form of HHV-6B (iciHHV-6B), a condition associated with several health conditions, our results raise the possibility of a link between genomic instability and the development of iciHHV-6-associated diseases.
Subject(s)
Herpesvirus 6, Human , Immediate-Early Proteins , Roseolovirus Infections , Humans , Herpesvirus 6, Human/genetics , Herpesvirus 6, Human/metabolism , Roseolovirus Infections/genetics , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Virus Integration , Genomic Instability , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolismABSTRACT
Interferons (IFNs) and the products of interferon-stimulated genes (ISGs) play crucial roles in host defense against virus infections. Although many ISGs have been characterized with respect to their antiviral activity, their target specificities and mechanisms of action remain largely unknown. Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that is linked to several human malignancies. Here, we used the genetically and biologically related virus, murine gammaherpesvirus 68 (MHV-68) and screened for ISGs with anti-gammaherpesvirus activities. We found that overexpression of RNF213 dramatically inhibited MHV-68 infection, whereas knockdown of endogenous RNF213 significantly promoted MHV-68 proliferation. Importantly, RNF213 also inhibited KSHV de novo infection, and depletion of RNF213 in the latently KSHV-infected iSLK-219 cell line significantly enhanced lytic reactivation. Mechanistically, we demonstrated that RNF213 targeted the Replication and Transcription Activator (RTA) of both KSHV and MHV-68, and promoted the degradation of RTA protein through the proteasome-dependent pathway. RNF213 directly interacted with RTA and functioned as an E3 ligase to ubiquitinate RTA via K48 linkage. Taken together, we conclude that RNF213 serves as an E3 ligase and inhibits the de novo infection and lytic reactivation of gammaherpesviruses by degrading RTA through the ubiquitin-proteasome pathway.
Subject(s)
Gammaherpesvirinae , Herpesviridae Infections , Herpesvirus 8, Human , Immediate-Early Proteins , Humans , Adenosine Triphosphatases/metabolism , Gammaherpesvirinae/genetics , Gene Expression Regulation, Viral , Herpesviridae Infections/genetics , Herpesvirus 8, Human/metabolism , Immediate-Early Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Virus Latency/genetics , Virus ReplicationABSTRACT
Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that can cause several cancers, such as Kaposi sarcoma and primary effusion lymphoma (PEL). We and others have recently demonstrated that Forkhead box (FOX) transcription factors can be dysregulated by KSHV, and they can affect KSHV infection. Herein, we focus on dissecting the role of two FOXK subfamily members, FOXK1 and FOXK2, in the KSHV life cycle. FOXK proteins are key host regulators of cellular functions, yet their role in KSHV infection remains unknown. Here, we demonstrated that both FOXK proteins are essential for efficient KSHV lytic reactivation in PEL cells. FOXK1 and FOXK2 are unique as they are the only FOX proteins that contain a Forkhead-associated (FHA) domain. The FHA domain is a specialized protein binding domain that recognizes a short linear serine/threonine-rich (S/T) motif. Through an unbiased motif survey, we found that KSHV viral protein ORF45 and its gammaherpesvirus homologs contain a putative FHA-binding motif. ORF45 is an immediate early tegument protein, vital for lytic reactivation and virus production. We demonstrated that ORF45 uses its novel conserved motif to interact with the FHA domain containing FOXK factors in the nucleus of infected cells. A single-point mutation of the conserved threonine residue in the motif within ORF45 abolished the ORF45-FOXK1/2 interaction. Our data indicates that FOXK proteins interact with ORF45 homologs encoded by murine gammaherpesvirus 68 (MHV68) and Rhesus macaque rhadinovirus (RRV), and that the FHA domains of FOXK proteins are sufficient for their interactions, highlighting a conserved mechanism.IMPORTANCEThe dysregulation of Forkhead transcription factors contributes to many different human diseases, including cancers, but their impact on herpesvirus lifecycle and pathogenesis is less understood. Our study uncovers a critical pro-lytic function of the FOXK subfamily and its requirement for KSHV lytic reactivation in PEL. We found that FOXK proteins bind to a key immediate early KSHV protein ORF45 using its novel short linear S/T motif. Notably, even though ORF45 homologs in gammaherpesviruses are highly diverse, we identified a similar S/T short linear motif in ORF45 homologs and also showed an evolutionary conserved interaction between FOXK proteins and ORF45 homologs of MHV68 and RRV. Our study provides a basis for future studies in animal models to evaluate the role of FOXK proteins and the impact of their interactions with ORF45 in gammaherpesvirus infection and pathogenesis. Targeting these interactions could allow a novel way to limit gammaherpesvirus infections.
Subject(s)
Forkhead Transcription Factors , Herpesvirus 8, Human , Immediate-Early Proteins , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/metabolism , Herpesvirus 8, Human/physiology , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Humans , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Amino Acid Motifs , Virus Activation , HEK293 Cells , Animals , Host-Pathogen Interactions , Protein BindingABSTRACT
The Kaposi's sarcoma-associated herpesvirus (KSHV) genome consists of an approximately 140-kb unique coding region flanked by 30-40 copies of a 0.8-kb terminal repeat (TR) sequence. A gene enhancer recruits transcription-related enzymes by having arrays of transcription factor binding sites. Here, we show that KSHV TR possesses transcription regulatory function with latency-associated nuclear antigen (LANA). Cleavage under targets and release using nuclease demonstrated that TR fragments were occupied by LANA-interacting histone-modifying enzymes in naturally infected cells. The TR was enriched with histone H3K27 acetylation (H3K27Ac) and H3K4 tri-methylation (H3K4me3) modifications and also expressed nascent RNAs. The sites of H3K27Ac and H3K4me3 modifications were also conserved in the KSHV unique region among naturally infected primary effusion lymphoma cells. KSHV origin of lytic replication (Ori-Lyt) showed similar protein and histone modification occupancies with that of TR. In the Ori-Lyt region, the LANA and LANA-interacting proteins colocalized with an H3K27Ac-modified nucleosome along with paused RNA polymerase II. The KSHV transactivator KSHV replication and transcription activator (K-Rta) recruitment sites franked the LANA-bound nucleosome, and reactivation evicted the LANA-bound nucleosome. Including TR fragments in reporter plasmid enhanced inducible viral gene promoter activities independent of the orientations. In the presence of TR in reporter plasmids, K-Rta transactivation was drastically increased, while LANA acquired the promoter repression function. KSHV TR, therefore, functions as an enhancer for KSHV inducible genes. However, in contrast to cellular enhancers bound by multiple transcription factors, perhaps the KSHV enhancer is predominantly regulated by the LANA nuclear body.IMPORTANCEEnhancers are a crucial regulator of differential gene expression programs. Enhancers are the cis-regulatory sequences determining target genes' spatiotemporal and quantitative expression. Here, we show that Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeats fulfill the enhancer definition for KSHV inducible gene promoters. The KSHV enhancer is occupied by latency-associated nuclear antigen (LANA) and its interacting proteins, such as CHD4. Neighboring terminal repeat (TR) fragments to lytic gene promoters drastically enhanced KSHV replication and transcription activator and LANA transcription regulatory functions. This study, thus, proposes a new latency-lytic switch model in which TR accessibility to the KSHV gene promoters regulates viral inducible gene expression.
Subject(s)
Herpesvirus 8, Human , Immediate-Early Proteins , Sarcoma, Kaposi , Humans , Herpesvirus 8, Human/physiology , Histones/genetics , Histones/metabolism , Nucleosomes , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Virus Latency/genetics , Antigens, Viral/genetics , Antigens, Viral/metabolism , Terminal Repeat Sequences/genetics , Gene Expression Regulation, ViralABSTRACT
Transcriptional activity of RNA polymerase II (Pol II) is influenced by post-translational modifications of the C-terminal domain (CTD) of the largest Pol II subunit, RPB1. Herpes simplex virus type 1 (HSV-1) usurps the cellular transcriptional machinery during lytic infection to efficiently express viral mRNA and shut down host gene expression. The viral immediate-early protein ICP22 interferes with serine 2 phosphorylation (pS2) by targeting CDK9 and other CDKs, but the full functional implications of this are not well understood. Using Western blotting, we report that HSV-1 also induces a loss of serine 7 phosphorylation (pS7) of the CTD during lytic infection, requiring expression of the two immediate-early proteins ICP22 and ICP27. ICP27 has also been proposed to target RPB1 for degradation, but we show that pS2/S7 loss precedes the drop in total protein levels. Cells with the RPB1 polyubiquitination site mutation K1268R, preventing proteasomal degradation during transcription-coupled DNA repair, displayed loss of pS2/S7 but retained higher overall RPB1 protein levels later in infection, indicating this pathway is not involved in early CTD dysregulation but may mediate bulk protein loss later. Using α-amanitin-resistant CTD mutants, we observed differential requirements for Ser2 and Ser7 for the production of viral proteins, with Ser2 facilitating viral immediate-early genes and Ser7 appearing dispensable. Despite dysregulation of CTD phosphorylation and different requirements for Ser2/7, all CTD modifications tested could be visualized in viral replication compartments with immunofluorescence. These data expand the known means that HSV employs to create pro-viral transcriptional environments at the expense of host responses.IMPORTANCECells rapidly induce changes in the transcription of RNA in response to stress and pathogens. Herpes simplex virus (HSV) disrupts many processes of host mRNA transcription, and it is necessary to separate the actions of viral proteins from cellular responses. Here, we demonstrate that viral proteins inhibit two key phosphorylation patterns on the C-terminal domain (CTD) of cellular RNA polymerase II and that this is separate from the degradation of polymerases later in infection. Furthermore, we show that viral genes do not require the full "CTD code." Together, these data distinguish multiple steps in the remodeling of RNA polymerase during infection and suggest that shared transcriptional phenotypes during stress responses do not revolve around a core disruption of CTD modifications.
Subject(s)
Herpesvirus 1, Human , Immediate-Early Proteins , RNA Polymerase II , Serine , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Phosphorylation , Herpesvirus 1, Human/physiology , Herpesvirus 1, Human/metabolism , Serine/metabolism , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Humans , Virus Replication , Protein Processing, Post-Translational , Animals , Chlorocebus aethiops , Cyclin-Dependent Kinase 9/metabolism , Vero Cells , Transcription, Genetic , Viral Proteins/metabolism , Viral Proteins/genetics , Herpes Simplex/metabolism , Herpes Simplex/virology , Herpes Simplex/geneticsABSTRACT
Facilitates chromatin transcription (FACT) interacts with nucleosomes to promote gene transcription by regulating the dissociation and reassembly of nucleosomes downstream and upstream of RNA polymerase II (Pol II). A previous study reported that herpes simplex virus 1 (HSV-1) regulatory protein ICP22 interacted with FACT and was required for its recruitment to the viral DNA genome in HSV-1-infected cells. However, the biological importance of interactions between ICP22 and FACT in relation to HSV-1 infection is unclear. Here, we mapped the minimal domain of ICP22 required for its efficient interaction with FACT to a cluster of five basic amino acids in ICP22. A recombinant virus harboring alanine substitutions in this identified cluster led to the decreased accumulation of viral mRNAs from UL54, UL38, and UL44 genes, reduced Pol II occupancy of these genes in MRC-5 cells, and impaired HSV-1 virulence in mice following ocular or intracranial infection. Furthermore, the treatment of mice infected with wild-type HSV-1 with CBL0137, a FACT inhibitor currently being investigated in clinical trials, significantly improved the survival rate of mice. These results suggested that the interaction between ICP22 and FACT was required for efficient HSV-1 gene expression and pathogenicity. Therefore, FACT might be a potential therapeutic target for HSV-1 infection.IMPORTANCEICP22 is a well-known regulatory factor of HSV-1 gene expression, but its mechanism(s) are poorly understood. Although the interaction of FACT with ICP22 was reported previously, its significance in HSV-1 infection is unknown. Given that FACT is involved in gene transcription, it is of interest to investigate this interaction as it relates to HSV-1 gene expression. To determine a direct link between the interaction and HSV-1 infection, we mapped a minimal domain of ICP22 required for its efficient interaction with FACT and generated a recombinant virus carrying mutations in the identified domain. Using the recombinant virus, we obtained evidence suggesting that the interaction between ICP22 and FACT promoted Pol II transcription from HSV-1 genes and viral virulence in mice. In addition, CBL0137, an inhibitor of FACT, effectively protected mice from lethal HSV-1 infection, suggesting FACT might be a potential target for the development of novel anti-HSV drugs.
Subject(s)
Gene Expression Regulation, Viral , Herpes Simplex , Herpesvirus 1, Human , Immediate-Early Proteins , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/physiology , Animals , Mice , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Herpes Simplex/virology , Herpes Simplex/metabolism , Humans , Vero Cells , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Chlorocebus aethiops , Virus Replication , Virulence , Cell Line , Female , Mice, Inbred BALB C , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Transcription, GeneticABSTRACT
The cellular Notch signal transduction pathway is intimately associated with infections by Kaposi's sarcoma-associated herpesvirus (KSHV) and other gamma-herpesviruses. RBP-Jk, the cellular DNA binding component of the canonical Notch pathway, is the key Notch downstream effector protein in virus-infected and uninfected animal cells. Reactivation of KSHV from latency requires the viral lytic switch protein, Rta, to form complexes with RBP-Jk on numerous sites within the viral DNA. Constitutive Notch activity is essential for KSHV pathophysiology in models of Kaposi's sarcoma (KS) and Primary Effusion Lymphoma (PEL), and we demonstrate that Notch1 is also constitutively active in infected Vero cells. Although the KSHV genome contains >100 RBP-Jk DNA motifs, we show that none of the four isoforms of activated Notch can productively reactivate the virus from latency in a highly quantitative trans-complementing reporter virus system. Nevertheless, Notch contributed positively to reactivation because broad inhibition of Notch1-4 with gamma-secretase inhibitor (GSI) or expression of dominant negative mastermind-like1 (dnMAML1) coactivators severely reduced production of infectious KSHV from Vero cells. Reduction of KSHV production is associated with gene-specific reduction of viral transcription in both Vero and PEL cells. Specific inhibition of Notch1 by siRNA partially reduces the production of infectious KSHV, and NICD1 forms promoter-specific complexes with viral DNA during reactivation. We conclude that constitutive Notch activity is required for the robust production of infectious KSHV, and our results implicate activated Notch1 as a pro-viral member of a MAML1/RBP-Jk/DNA complex during viral reactivation. IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) manipulates the host cell oncogenic Notch signaling pathway for viral reactivation from latency and cell pathogenesis. KSHV reactivation requires that the viral protein Rta functionally interacts with RBP-Jk, the DNA-binding component of the Notch pathway, and with promoter DNA to drive transcription of productive cycle genes. We show that the Notch pathway is constitutively active during KSHV reactivation and is essential for robust production of infectious virus progeny. Inhibiting Notch during reactivation reduces the expression of specific viral genes yet does not affect the growth of the host cells. Although Notch cannot reactivate KSHV alone, the requisite expression of Rta reveals a previously unappreciated role for Notch in reactivation. We propose that activated Notch cooperates with Rta in a promoter-specific manner that is partially programmed by Rta's ability to redistribute RBP-Jk DNA binding to the virus during reactivation.
Subject(s)
Herpesvirus 8, Human , Immediate-Early Proteins , Immunoglobulin J Recombination Signal Sequence-Binding Protein , Receptor, Notch1 , Trans-Activators , Virus Activation , Virus Latency , Herpesvirus 8, Human/physiology , Herpesvirus 8, Human/metabolism , Herpesvirus 8, Human/genetics , Humans , Animals , Trans-Activators/metabolism , Trans-Activators/genetics , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Vero Cells , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Chlorocebus aethiops , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Viral , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , DNA-Binding ProteinsABSTRACT
Within the first 15 minutes of infection, herpes simplex virus 1 immediate early proteins repurpose cellular RNA polymerase (Pol II) for viral transcription. An important role of the viral-infected cell protein 27 (ICP27) is to facilitate viral pre-mRNA processing and export viral mRNA to the cytoplasm. Here, we use precision nuclear run-on followed by deep sequencing (PRO-seq) to characterize transcription of a viral ICP27 null mutant. At 1.5 and 3 hours post infection (hpi), we observed increased total levels of Pol II on the mutant viral genome and accumulation of Pol II downstream of poly A sites indicating increased levels of initiation and processivity. By 6 hpi, Pol II accumulation on specific mutant viral genes was higher than that on wild-type virus either at or upstream of poly A signals, depending on the gene. The PRO-seq profile of the ICP27 mutant on late genes at 6 hpi was similar but not identical to that caused by treatment with flavopiridol, a known inhibitor of RNA processivity. This pattern was different from PRO-seq profiles of other α gene mutants and upon inhibition of viral DNA replication with PAA. Together, these results indicate that ICP27 contributes to the repression of aberrant viral transcription at 1.5 and 3 hpi by inhibiting initiation and decreasing RNA processivity. However, ICP27 is needed to enhance processivity on most late genes by 6 hpi in a mechanism distinguishable from its role in viral DNA replication.IMPORTANCEWe developed and validated the use of a processivity index for precision nuclear run-on followed by deep sequencing data. The processivity index calculations confirm infected cell protein 27 (ICP27) induces downstream of transcription termination on certain host genes. The processivity indices and whole gene probe data implicate ICP27 in transient immediate early gene-mediated repression, a process that also requires ICP4, ICP22, and ICP0. The data indicate that ICP27 directly or indirectly regulates RNA polymerase (Pol II) initiation and processivity on specific genes at specific times post infection. These observations support specific and varied roles for ICP27 in regulating Pol II activity on viral genes in addition to its known roles in post transcriptional mRNA processing and export.
Subject(s)
Genome, Viral , Herpesvirus 1, Human , Immediate-Early Proteins , Mutation , RNA Polymerase II , Viral Transcription , Animals , Humans , Cell Line , Chlorocebus aethiops , Gene Expression Regulation, Viral/drug effects , Genes, Viral/genetics , Genome, Viral/genetics , Herpes Simplex/virology , Herpes Simplex/genetics , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/physiology , Immediate-Early Proteins/deficiency , Immediate-Early Proteins/genetics , Poly A/genetics , Poly A/metabolism , RNA Polymerase II/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Vero Cells , Viral Transcription/drug effects , Viral Transcription/genetics , Virus Replication/geneticsABSTRACT
TRIM32 is often aberrantly expressed in many types of cancers. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with several human malignancies, including Kaposi's sarcoma and primary effusion lymphomas (PELs). Increasing evidence has demonstrated the crucial role of KSHV lytic replication in viral tumorigenesis. However, the role of TRIM32 in herpesvirus lytic replication remains unclear. Here, we reveal that the expression of TRIM32 is upregulated by KSHV in latency, and reactivation of KSHV lytic replication leads to the inhibition of TRIM32 in PEL cells. Strikingly, RTA, the master regulator of lytic replication, interacts with TRIM32 and dramatically promotes TRIM32 for degradation via the proteasome systems. Inhibition of TRIM32 induces cell apoptosis and in turn inhibits the proliferation and colony formation of KSHV-infected PEL cells and facilitates the reactivation of KSHV lytic replication and virion production. Thus, our data imply that the degradation of TRIM32 is vital for the lytic activation of KSHV and is a potential therapeutic target for KSHV-associated cancers. IMPORTANCE: TRIM32 is associated with many cancers and viral infections; however, the role of TRIM32 in viral oncogenesis remains largely unknown. In this study, we found that the expression of TRIM32 is elevated by Kaposi's sarcoma-associated herpesvirus (KSHV) in latency, and RTA (the master regulator of lytic replication) induces TRIM32 for proteasome degradation upon viral lytic reactivation. This finding provides a potential therapeutic target for KSHV-associated cancers.
Subject(s)
Herpesvirus 8, Human , Immediate-Early Proteins , Proteolysis , Trans-Activators , Transcription Factors , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Virus Activation , Virus Replication , Humans , Apoptosis , Cell Line , Herpesvirus 8, Human/growth & development , Herpesvirus 8, Human/metabolism , Herpesvirus 8, Human/pathogenicity , Herpesvirus 8, Human/physiology , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Lymphoma, Primary Effusion/virology , Lymphoma, Primary Effusion/metabolism , Proteasome Endopeptidase Complex/metabolism , Sarcoma, Kaposi/virology , Sarcoma, Kaposi/metabolism , Trans-Activators/metabolism , Trans-Activators/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Virus LatencyABSTRACT
Placental infection plays a central role in the pathogenesis of congenital human cytomegalovirus (HCMV) infections and is a cause of fetal growth restriction and pregnancy loss. HCMV can replicate in some trophoblast cell types, but it remains unclear how the virus evades antiviral immunity in the placenta and how infection compromises placental development and function. Human trophoblast stem cells (TSCs) can be differentiated into extravillous trophoblasts (EVTs), syncytiotrophoblasts (STBs), and organoids, and this study assessed the utility of TSCs as a model of HCMV infection in the first-trimester placenta. HCMV was found to non-productively infect TSCs, EVTs, and STBs. Immunofluorescence assays and flow cytometry experiments further revealed that infected TSCs frequently only express immediate early viral gene products. Similarly, RNA sequencing found that viral gene expression in TSCs does not follow the kinetic patterns observed during lytic infection in fibroblasts. Canonical antiviral responses were largely not observed in HCMV-infected TSCs and TSC-derived trophoblasts. Rather, infection dysregulated factors involved in cell identity, differentiation, and Wingless/Integrated signaling. Thus, while HCMV does not replicate in TSCs, infection may perturb trophoblast differentiation in ways that could interfere with placental function. IMPORTANCE: Placental infection plays a central role in human cytomegalovirus (HCMV) pathogenesis during pregnancy, but the species specificity of HCMV and the limited availability and lifespan of primary trophoblasts have been persistent barriers to understanding how infection impacts this vital organ. Human trophoblast stem cells (TSCs) represent a new approach to modeling viral infection early in placental development. This study reveals that TSCs, like other stem cell types, restrict HCMV replication. However, infection perturbs the expression of genes involved in differentiation and cell fate determination, pointing to a mechanism by which HCMV could cause placental injury.
Subject(s)
Cytomegalovirus , Stem Cells , Trophoblasts , Virus Replication , Female , Humans , Pregnancy , Cell Differentiation/genetics , Cell Lineage/genetics , Cytomegalovirus/growth & development , Cytomegalovirus/pathogenicity , Cytomegalovirus/physiology , Cytomegalovirus Infections/pathology , Cytomegalovirus Infections/physiopathology , Cytomegalovirus Infections/virology , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Placenta/cytology , Placenta/pathology , Placenta/physiopathology , Placenta/virology , Pregnancy Trimester, First , Stem Cells/cytology , Stem Cells/virology , Trophoblasts/cytology , Trophoblasts/virologyABSTRACT
Bovine alphaherpesvirus 1 (BoHV-1) infection causes respiratory tract disorders and immune suppression and may induce bacterial pneumonia. BoHV-1 establishes lifelong latency in sensory neurons after acute infection. Reactivation from latency consistently occurs following stress or intravenous injection of the synthetic corticosteroid dexamethasone (DEX), which mimics stress. The immediate early transcription unit 1 (IEtu1) promoter drives expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators necessary for productive infection and reactivation from latency. The IEtu1 promoter contains two glucocorticoid receptor (GR) responsive elements (GREs) that are transactivated by activated GR. GC-rich motifs, including consensus binding sites for specificity protein 1 (Sp1), are in the IEtu1 promoter sequences. E2F family members bind a consensus sequence (TTTCCCGC) and certain specificity protein 1 (Sp1) sites. Consequently, we hypothesized that certain E2F family members activate IEtu1 promoter activity. DEX treatment of latently infected calves increased the number of E2F2+ TG neurons. GR and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivate a 436-bp cis-regulatory module in the IEtu1 promoter that contains both GREs. A luciferase reporter construct containing a 222-bp fragment downstream of the GREs was transactivated by E2F2 unless two adjacent Sp1 binding sites were mutated. Chromatin immunoprecipitation studies revealed that E2F2 occupied IEtu1 promoter sequences when the BoHV-1 genome was transfected into mouse neuroblastoma (Neuro-2A) or monkey kidney (CV-1) cells. In summary, these findings revealed that GR and E2F2 cooperatively transactivate IEtu1 promoter activity, which is predicted to influence the early stages of BoHV-1 reactivation from latency. IMPORTANCE: Bovine alpha-herpesvirus 1 (BoHV-1) acute infection in cattle leads to establishment of latency in sensory neurons in the trigeminal ganglia (TG). A synthetic corticosteroid dexamethasone consistently initiates BoHV-1 reactivation in latently infected calves. The BoHV-1 immediate early transcription unit 1 (IEtu1) promoter regulates expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators. Hence, the IEtu1 promoter must be activated for the reactivation to occur. The number of TG neurons expressing E2F2, a transcription factor and cell cycle regulator, increased during early stages of reactivation from latency. The glucocorticoid receptor (GR) and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivated a 436-bp cis-regulatory module (CRM) in the IEtu1 promoter that contains two GR responsive elements. Chromatin immunoprecipitation studies revealed that E2F2 occupies IEtu1 promoter sequences in cultured cells. GR and E2F2 mediate cooperative transactivation of IEtu1 promoter activity, which is predicted to stimulate viral replication following stressful stimuli.
Subject(s)
Cell Cycle , E2F2 Transcription Factor , Gene Expression Regulation, Viral , Herpesvirus 1, Bovine , Immediate-Early Proteins , Promoter Regions, Genetic , Receptors, Glucocorticoid , Transcriptional Activation , Animals , Cattle , Mice , Binding Sites , Cell Line , Dexamethasone/pharmacology , E2F2 Transcription Factor/metabolism , Gene Expression Regulation, Viral/drug effects , Gene Expression Regulation, Viral/genetics , Herpesviridae Infections/virology , Herpesviridae Infections/metabolism , Herpesviridae Infections/veterinary , Herpesviridae Infections/genetics , Herpesvirus 1, Bovine/genetics , Herpesvirus 1, Bovine/physiology , Immediate-Early Proteins/genetics , Neurons/virology , Receptors, Glucocorticoid/metabolism , Response Elements/genetics , Sp1 Transcription Factor/metabolism , Trans-Activators/metabolism , Trigeminal Ganglion/cytology , Trigeminal Ganglion/virology , Virus Activation , Virus LatencyABSTRACT
Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma-herpesvirus family and is a well-known human oncogenic virus. In infected cells, the viral genome of 165 kbp is circular DNA wrapped in chromatin. The tight control of gene expression is critical for latency, the transition into the lytic phase, and the development of viral-associated malignancies. Distal cis-regulatory elements, such as enhancers and silencers, can regulate gene expression in a position- and orientation-independent manner. Open chromatin is another characteristic feature of enhancers. To systematically search for enhancers, we cloned all the open chromatin regions in the KSHV genome downstream of the luciferase gene and tested their enhancer activity in infected and uninfected cells. A silencer was detected upstream of the latency-associated nuclear antigen promoter. Two constitutive enhancers were identified in the K12p-OriLyt-R and ORF29 Intron regions, where ORF29 Intron is a tissue-specific enhancer. The following promoters: OriLyt-L, PANp, ALTp, and the terminal repeats (TRs) acted as lytically induced enhancers. The expression of the replication and transcription activator (RTA), the master regulator of the lytic cycle, was sufficient to induce the activity of lytic enhancers in uninfected cells. We propose that the TRs that span about 24 kbp region serve as a "viral super-enhancer" that integrates the repressive effect of the latency-associated nuclear antigen (LANA) with the activating effect of RTA. Utilizing CRISPR activation and interference techniques, we determined the connections between these enhancers and their regulated genes. The silencer and enhancers described here provide an additional layer to the complex gene regulation of herpesviruses.IMPORTANCEIn this study, we performed a systematic functional assay to identify cis-regulatory elements within the genome of the oncogenic herpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV). Similar to other herpesviruses, KSHV presents both latent and lytic phases. Therefore, our assays were performed in uninfected cells, during latent infection, and under lytic conditions. We identified two constitutive enhancers, one of which seems to be a tissue-specific enhancer. In addition, four lytically induced enhancers, which are all responsive to the replication and transcription activator (RTA), were identified. Furthermore, a silencer was identified between the major latency promoter and the lytic gene locus. Utilizing CRISPR activation and interference techniques, we determined the connections between these enhancers and their regulated genes. The terminal repeats, spanning a region of about 24 kbp, seem like a "viral super-enhancer" that integrates the repressive effect of the latency-associated nuclear antigen (LANA) with the activating effect of RTA to regulate latency to lytic transition.