Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 720
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 38: 315-340, 2020 04 26.
Article in English | MEDLINE | ID: mdl-31986068

ABSTRACT

The age-associated B cell subset has been the focus of increasing interest over the last decade. These cells have a unique cell surface phenotype and transcriptional signature, and they rely on TLR7 or TLR9 signals in the context of Th1 cytokines for their formation and activation. Most are antigen-experienced memory B cells that arise during responses to microbial infections and are key to pathogen clearance and control. Their increasing prevalence with age contributes to several well-established features of immunosenescence, including reduced B cell genesis and damped immune responses. In addition, they are elevated in autoimmune and autoinflammatory diseases, and in these settings they are enriched for characteristic autoantibody specificities. Together, these features identify age-associated B cells as a subset with pivotal roles in immunological health, disease, and aging. Accordingly, a detailed understanding of their origins, functions, and physiology should make them tractable translational targets in each of these settings.


Subject(s)
Aging/physiology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Animals , Autoimmunity , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Biomarkers , Cytokines/metabolism , Disease Susceptibility , Homeostasis , Humans , Immunologic Memory , Immunosenescence , Lymphocyte Activation/immunology
2.
Cell ; 187(15): 3885-3887, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39059365

ABSTRACT

Immunosenescence poses a significant challenge to tumor immunotherapy in elderly individuals. In this issue of Cell, Zhivaki et al. elucidate that dendritic cells "hyperactivated" by specific adjuvants elicit TH1-skewed CD4+ T cell responses in a manner contingent on the NLRP3 inflammasome, which can eliminate tumors in aged mice.


Subject(s)
Dendritic Cells , Animals , Dendritic Cells/immunology , Mice , Neoplasms/immunology , Neoplasms/therapy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Inflammasomes/immunology , Immunotherapy/methods , CD4-Positive T-Lymphocytes/immunology , Humans , Aging/immunology , Th1 Cells/immunology , Immunosenescence
3.
Annu Rev Cell Dev Biol ; 36: 551-574, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33021823

ABSTRACT

Innate and adaptive immune responses decline with age, leading to greater susceptibility to infectious diseases and reduced responses to vaccines. Diseases are more severe in old than in young individuals and have a greater impact on health outcomes such as morbidity, disability, and mortality. Aging is characterized by increased low-grade chronic inflammation, so-called inflammaging, that represents a link between changes in immune cells and a number of diseases and syndromes typical of old age. In this review we summarize current knowledge on age-associated changes in immune cells with special emphasis on B cells, which are more inflammatory and less responsive to infections and vaccines in the elderly. We highlight recent findings on factors and pathways contributing to inflammaging and how these lead to dysfunctional immune responses. We summarize recent published studies showing that adipose tissue, which increases in size with aging, contributes to inflammaging and dysregulated B cell function.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/immunology , Immunosenescence , Animals , Antibody Formation/immunology , Gastrointestinal Microbiome/immunology , Humans , Inflammation/genetics , Inflammation/immunology , Polymorphism, Single Nucleotide/genetics
4.
Nat Immunol ; 21(12): 1517-1527, 2020 12.
Article in English | MEDLINE | ID: mdl-33169013

ABSTRACT

CRELD1 is a pivotal factor for heart development, the function of which is unknown in adult life. We here provide evidence that CRELD1 is an important gatekeeper of immune system homeostasis. Exploiting expression variance in large human cohorts contrasting individuals with the lowest and highest CRELD1 expression levels revealed strong phenotypic, functional and transcriptional differences, including reduced CD4+ T cell numbers. These findings were validated in T cell-specific Creld1-deficient mice. Loss of Creld1 was associated with simultaneous overactivation and increased apoptosis, resulting in a net loss of T cells with age. Creld1 was transcriptionally and functionally linked to Wnt signaling. Collectively, gene expression variance in large human cohorts combined with murine genetic models, transcriptomics and functional testing defines CRELD1 as an important modulator of immune homeostasis.


Subject(s)
Cell Adhesion Molecules/metabolism , Extracellular Matrix Proteins/metabolism , Homeostasis , Immune System/immunology , Immune System/metabolism , Immunomodulation , Animals , Cell Adhesion Molecules/genetics , Cell Survival/genetics , Cell Survival/immunology , Extracellular Matrix Proteins/genetics , Gene Expression , Gene Knockout Techniques , Homeostasis/immunology , Humans , Immunosenescence , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphocyte Count , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Wnt Signaling Pathway
5.
Nat Immunol ; 18(3): 354-363, 2017 03.
Article in English | MEDLINE | ID: mdl-28114291

ABSTRACT

Mitogen-activated protein kinases (MAPKs) including Erk, Jnk and p38 regulate diverse cellular functions and are thought to be controlled by independent upstream activation cascades. Here we show that the sestrins bind to and coordinate simultaneous Erk, Jnk and p38 MAPK activation in T lymphocytes within a new immune-inhibitory complex (sestrin-MAPK activation complex (sMAC)). Whereas sestrin ablation resulted in broad reconstitution of immune function in stressed T cells, inhibition of individual MAPKs allowed only partial functional recovery. T cells from old humans (>65 years old) or mice (16-20 months old) were more likely to form the sMAC, and disruption of this complex restored antigen-specific functional responses in these cells. Correspondingly, sestrin deficiency or simultaneous inhibition of all three MAPKs enhanced vaccine responsiveness in old mice. Thus, disruption of sMAC provides a foundation for rejuvenating immunity during aging.


Subject(s)
Aging/immunology , CD4-Positive T-Lymphocytes/physiology , Heat-Shock Proteins/metabolism , Immunity , Immunosenescence , Adult , Aged , Aged, 80 and over , Animals , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Heat-Shock Proteins/genetics , Humans , Immunity/genetics , Immunosenescence/genetics , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , Male , Mice , Middle Aged , RNA, Small Interfering/genetics , Signal Transduction , Young Adult
6.
Nat Immunol ; 17(8): 966-75, 2016 08.
Article in English | MEDLINE | ID: mdl-27270402

ABSTRACT

The number of naive T cells decreases and susceptibility to new microbial infections increases with age. Here we describe a previously unknown subset of phenotypically naive human CD8(+) T cells that rapidly secreted multiple cytokines in response to persistent viral antigens but differed transcriptionally from memory and effector T cells. The frequency of these CD8(+) T cells, called 'memory T cells with a naive phenotype' (TMNP cells), increased with age and after severe acute infection and inversely correlated with the residual capacity of the immune system to respond to new infections with age. CD8(+) TMNP cells represent a potential new target for the immunotherapy of persistent infections and should be accounted for and subtracted from the naive pool if truly naive T cells are needed to respond to antigens.


Subject(s)
Aging/immunology , CD8-Positive T-Lymphocytes/physiology , Immunologic Memory , Immunosenescence , T-Lymphocyte Subsets/physiology , Virus Diseases/immunology , Acute Disease , Adult , Aged , Aged, 80 and over , Cells, Cultured , Humans , Immunophenotyping , Lymphocyte Activation , Middle Aged , Phenotype , Transcriptome , Young Adult
7.
Nature ; 594(7861): 100-105, 2021 06.
Article in English | MEDLINE | ID: mdl-33981041

ABSTRACT

Ageing of the immune system, or immunosenescence, contributes to the morbidity and mortality of the elderly1,2. To define the contribution of immune system ageing to organism ageing, here we selectively deleted Ercc1, which encodes a crucial DNA repair protein3,4, in mouse haematopoietic cells to increase the burden of endogenous DNA damage and thereby senescence5-7 in the immune system only. We show that Vav-iCre+/-;Ercc1-/fl mice were healthy into adulthood, then displayed premature onset of immunosenescence characterized by attrition and senescence of specific immune cell populations and impaired immune function, similar to changes that occur during ageing in wild-type mice8-10. Notably, non-lymphoid organs also showed increased senescence and damage, which suggests that senescent, aged immune cells can promote systemic ageing. The transplantation of splenocytes from Vav-iCre+/-;Ercc1-/fl or aged wild-type mice into young mice induced senescence in trans, whereas the transplantation of young immune cells attenuated senescence. The treatment of Vav-iCre+/-;Ercc1-/fl mice with rapamycin reduced markers of senescence in immune cells and improved immune function11,12. These data demonstrate that an aged, senescent immune system has a causal role in driving systemic ageing and therefore represents a key therapeutic target to extend healthy ageing.


Subject(s)
Aging/immunology , Aging/physiology , Immune System/immunology , Immune System/physiology , Immunosenescence/immunology , Immunosenescence/physiology , Organ Specificity/immunology , Organ Specificity/physiology , Aging/drug effects , Aging/pathology , Animals , DNA Damage/immunology , DNA Damage/physiology , DNA Repair/immunology , DNA Repair/physiology , DNA-Binding Proteins/genetics , Endonucleases/genetics , Female , Healthy Aging/immunology , Healthy Aging/physiology , Homeostasis/immunology , Homeostasis/physiology , Immune System/drug effects , Immunosenescence/drug effects , Male , Mice , Organ Specificity/drug effects , Rejuvenation , Sirolimus/pharmacology , Spleen/cytology , Spleen/transplantation
8.
Mol Cell ; 76(1): 110-125.e9, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31474573

ABSTRACT

Failure to make adaptive immune responses is a hallmark of aging. Reduced B cell function leads to poor vaccination efficacy and a high prevalence of infections in the elderly. Here we show that reduced autophagy is a central molecular mechanism underlying immune senescence. Autophagy levels are specifically reduced in mature lymphocytes, leading to compromised memory B cell responses in old individuals. Spermidine, an endogenous polyamine metabolite, induces autophagy in vivo and rejuvenates memory B cell responses. Mechanistically, spermidine post-translationally modifies the translation factor eIF5A, which is essential for the synthesis of the autophagy transcription factor TFEB. Spermidine is depleted in the elderly, leading to reduced TFEB expression and autophagy. Spermidine supplementation restored this pathway and improved the responses of old human B cells. Taken together, our results reveal an unexpected autophagy regulatory mechanism mediated by eIF5A at the translational level, which can be harnessed to reverse immune senescence in humans.


Subject(s)
Autophagy/drug effects , B-Lymphocytes/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cellular Senescence/drug effects , Immunosenescence/drug effects , Peptide Initiation Factors/metabolism , Protein Processing, Post-Translational/drug effects , RNA-Binding Proteins/metabolism , Spermidine/pharmacology , Adaptive Immunity/drug effects , Age Factors , Aging , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/deficiency , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , HEK293 Cells , Humans , Immunologic Memory/drug effects , Jurkat Cells , Mice , Mice, Inbred C57BL , Mice, Knockout , NIH 3T3 Cells , Peptide Initiation Factors/genetics , RNA-Binding Proteins/genetics , Signal Transduction , Eukaryotic Translation Initiation Factor 5A
9.
Trends Genet ; 38(2): 120-123, 2022 02.
Article in English | MEDLINE | ID: mdl-34561103

ABSTRACT

The aging process is associated with the accumulation of epigenetic alterations in immune cells, although the origin of these changes is not clear. Understanding this epigenetic drift in the immune system can provide essential information about the progression of the aging process and the immune history of each individual.


Subject(s)
Immunosenescence , Epigenesis, Genetic , Epigenomics , Immunosenescence/genetics , T-Lymphocytes
10.
PLoS Pathog ; 19(6): e1011139, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37289655

ABSTRACT

Immunosenescence refers to the development of weakened and/or dysfunctional immune responses associated with aging. Several commensal bacteria can be pathogenic in immunosuppressed individuals. Although Klebsiella pneumoniae is a commensal bacterium that colonizes human mucosal surfaces, the gastrointestinal tract, and the oropharynx, it can cause serious infectious diseases, such as pneumonia, urinary tract infections, and liver abscesses, primarily in elderly patients. However, the reason why K. pneumoniae is a more prevalent cause of infection in the elderly population remains unclear. This study aimed to determine how the host's intestinal immune response to K. pneumoniae varies with age. To this end, the study analyzed an in vivo K. pneumoniae infection model using aged mice, as well as an in vitro K. pneumoniae infection model using a Transwell insert co-culture system comprising epithelial cells and macrophages. In this study, we demonstrate that growth arrest-specific 6 (Gas6), released by intestinal macrophages that recognize K. pneumoniae, inhibits bacterial translocation from the gastrointestinal tract by enhancing tight-junction barriers in the intestinal epithelium. However, in aging mice, Gas6 was hardly secreted under K. pneumoniae infection due to decreasing intestinal mucosal macrophages; therefore, K. pneumoniae can easily invade the intestinal epithelium and subsequently translocate to the liver. Moreover, the administration of Gas6 recombinant protein to elderly mice prevented the translocation of K. pneumoniae from the gastrointestinal tract and significantly prolonged their survival. From these findings, we conclude that the age-related decrease in Gas6 secretion in the intestinal mucosa is the reason why K. pneumoniae can be pathogenic in the elderly, thereby indicating that Gas6 could be effective in protecting the elderly against infectious diseases caused by gut pathogens.


Subject(s)
Communicable Diseases , Immunosenescence , Klebsiella Infections , Aged , Animals , Humans , Mice , Communicable Diseases/metabolism , Intestinal Mucosa/microbiology , Klebsiella Infections/microbiology , Klebsiella pneumoniae , Liver/pathology
11.
Rev Med Virol ; 34(4): e2560, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866595

ABSTRACT

Immunosenescence (IS) occurs as a natural outcome of ageing and may be described as a decline in immune system flexibility and adaptability to sufficiently respond to new, foreign antigens. Potential factors that may precipitate IS include persistent herpesvirus infections, such as cytomegalovirus (CMV). Here, we conducted a review of the literature evaluating the potential association between CMV and IS. Twenty-seven epidemiologic studies that included direct comparisons between CMV-seropositive and CMV-seronegative immunocompetent individuals were analysed. The majority of these studies (n = 20) were conducted in European populations. The strength of evidence supporting a relationship between CMV, and various IS-associated immunologic endpoints was assessed. T-cell population restructuring was the most prominently studied endpoint, described in 21 studies, most of which reported a relationship between CMV and reduced CD4:CD8 T-cell ratio or modified CD8+ T-cell levels. Telomere length (n = 4) and inflammageing (n = 3) were less frequently described in the primary literature, and the association of these endpoints with CMV and IS was less pronounced. An emergent trend from our review is the potential effect modification of the CMV-IS relationship with both sex and age, indicating the importance of considering various effector variables when evaluating associations between CMV and IS. Our analysis revealed plausible mechanisms that may underlie the larger epidemiologic trends seen in the literature that support the indirect effect of CMV on IS. Future studies are needed to clarify CMV-associated and IS-associated immunologic endpoints, as well as in more diverse global and immunocompromised populations.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Immunosenescence , Humans , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Cytomegalovirus/immunology , Observational Studies as Topic
12.
Genes Immun ; 25(3): 219-231, 2024 06.
Article in English | MEDLINE | ID: mdl-38811681

ABSTRACT

The functions of immunosenescence are closely related to skin cutaneous melanoma (SKCM). The aim of this study is to uncover the characteristics of immunosenescence index (ISI) to identify novel biomarkers and potential targets for treatment. Firstly, integrated bioinformatics analysis was carried out to identify risk prognostic genes, and their expression and prognostic value were evaluated. Then, we used the computational algorithm to estimate ISI. Finally, the distribution characteristics and clinical significance of ISI in SKCM by using multi-omics analysis. Patients with a lower ISI had a favorable survival rate, lower chromosomal instability, lower somatic copy-number alterations, lower somatic mutations, higher immune infiltration, and sensitive to immunotherapy. The ISI exhibited robust, which was validated in multiple datasets. Besides, the ISI is more effective than other published signatures in predicting survival outcomes for patients with SKCM. Single-cell analysis revealed higher ISI was specifically expressed in monocytes, and correlates with the differentiation fate of monocytes in SKCM. Besides, individuals exhibiting elevated ISI levels could potentially receive advantages from chemotherapy, and promising compounds with the potential to target high ISI were recognized. The ISI model is a valuable tool in categorizing SKCM patients based on their prognosis, gene mutation signatures, and response to immunotherapy.


Subject(s)
Machine Learning , Melanoma, Cutaneous Malignant , Melanoma , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/immunology , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Immunosenescence , Prognosis , Biomarkers, Tumor/genetics , Computational Biology/methods , Immunotherapy/methods
13.
J Med Virol ; 96(1): e29350, 2024 01.
Article in English | MEDLINE | ID: mdl-38180233

ABSTRACT

Chronic viral infection induces immunosenescence and systemic low-grade inflammation, leading to worsened long-term outcomes. We sought to explore the short- and long-term effects of chronic viral infection on cardiovascular disease (CVD). Based on UK Biobank data, exposed group was identified as individuals who had chronic virus infection-related hospitalization (IRH). Unexposed group was randomly selected, matched by 5-year age interval, sex, and Charlson comorbidity index at a ratio up to 1:10. Restricted cubic splines were used to model time-varying effects of IRH in nonproportional Cox models. A cut-off value of 5 years was recorded and used in piecewise Cox proportional hazards models as we estimated short- and long-term effects of IRH on CVD. A total of 2826 exposed participants and 28 212 matched unexposed participants were included. Chronic viral IRH was associated with increased risk of CVD (0-5 years: hazard ratio, 1.57 [95% confidence interval: 1.32, 1.87] and 5+ years: 1.31 [1.06, 1.61]). Elevated risk of stroke was only observed within the initial 5-year follow-up (0-5 years: 1.91 [1.30, 2.81]). The short- and long-term associations were observed in herpes or hepatitis virus IRH with risk of CVD (all p < 0.05). Subgroup analysis revealed long-term association between chronic viral IRH and CVD among female (5+ years: 1.68 [1.27, 2.22]) but not among male. The association between chronic viral infection and elevated CVD risk appeared to be stronger among individuals who did not take cholesterol-lowering medication, antithrombotic medication, or certain antihypertensive medications (all p for interaction < 0.05). The risk of CVD event remained persistently higher within and over 5 years following chronic viral IRH, especially in individuals infected with herpes and hepatitis virus.


Subject(s)
Cardiovascular Diseases , Immunosenescence , Humans , Female , Male , Cardiovascular Diseases/epidemiology , Cohort Studies , Antihypertensive Agents , Hospitalization , Persistent Infection
14.
Brain Behav Immun ; 115: 101-108, 2024 01.
Article in English | MEDLINE | ID: mdl-37820972

ABSTRACT

BACKGROUND: Socioeconomic status (SES) gradients in health are well-documented, and while biological pathways are incompletely understood, chronic inflammation and accelerated immune aging (immunosenescence) among lower SES individuals have been implicated. However, previous findings have come from samples in higher income countries, and it is unclear how generalizable they are to lower- and middle-income countries (LMIC) with different infectious exposures and where adiposity-an important contributor to chronic inflammation-might show different SES patterning. To address this gap, we explored associations between SES and inflammation and immunosenescence in a sample of women in Cebu, Philippines. METHODS: Data came from the mothers of the Cebu Longitudinal Health and Nutrition Survey birth cohort (mean age: 47.7, range: 35-69 years). SES was measured as a combination of annual household income, education level, and assets. Chronic inflammation was measured using C-reactive protein (CRP) in plasma samples from 1,834 women. Immunosenescence was measured by the abundance of exhausted CD8T (CD8 + CD28-CD45RA-) and naïve CD8T and CD4T cells, estimated from DNA methylation in whole blood in a random subsample of 1,028. Possible mediators included waist circumference and a collection of proxy measures of pathogen exposure. RESULTS: SES was negatively associated with the measures of immunosenescence, with slight evidence for mediation by a proxy measure for pathogen exposure from the household's drinking water source. In contrast, SES was positively associated with CRP, which was explained by the positive association with waist circumference. CONCLUSIONS: Similar to higher income populations, in Cebu there is an SES-gradient in pathogen exposures and immunosenescence. However, lifestyle changes occurring more rapidly among higher SES individuals is contributing to a positive association between SES and adiposity and inflammation. Our results suggest more studies are needed to clarify the relationship between SES and inflammation and immunosenescence across LMIC.


Subject(s)
Immunosenescence , Social Class , Middle Aged , Humans , Female , Philippines/epidemiology , Inflammation , Socioeconomic Factors , C-Reactive Protein/analysis , Obesity
15.
Aging Male ; 27(1): 2310308, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38317318

ABSTRACT

OBJECTIVE: As people get older, the innate and acquired immunity of the elderly are affected, resulting in immunosenescence. Prealbumin (PAB), transferrin (TRF), and albumin (ALB) are commonly used markers to monitor protein energy malnutrition (PEM). However, their relationship with the immune system has not been fully explored. METHODS: In our study, a total of 93 subjects (≥65 years) were recruited from Tongji Hospital between January 2015 and February 2017. According to the serum levels of these proteins (PAB, TRF, and ALB), we divided the patients into the high serum protein group and the low serum protein group. Then, we compared the percent expression of lymphocyte subsets between two groups. RESULTS: All the low serum protein groups (PAB, TRF, and ALB) had significant decreases in the percentage of CD4+ cells, CD3+CD28+ cells, CD4+CD28+ cells and significant increases in the percentage of CD8+ cells, CD8+CD28- cells. PAB, TRF, and ALB levels revealed positive correlations with CD4/CD8 ratio, proportions of CD4+ cells, CD3+CD28+ cells, CD4+CD28+ cells, and negative correlation with proportions of CD8+ cells, CD8+CD28- cells. CONCLUSIONS: This study suggested PAB, TRF, and ALB could be used as immunosenescence indicators. PEM might accelerate the process of immunosenescence in elderly males.


Subject(s)
Immunosenescence , Prealbumin , Male , Humans , Aged , Transferrin , CD28 Antigens , Blood Proteins
16.
Curr Neurol Neurosci Rep ; 24(4): 83-93, 2024 04.
Article in English | MEDLINE | ID: mdl-38416310

ABSTRACT

PURPOSE OF REVIEW: Multiple sclerosis (MS) is a chronic, immune-mediated demyelinating disorder of the central nervous system. Age is one of the most important factors in determining MS phenotype. This review provides an overview of how age influences MS clinical characteristics, pathology, and treatment. RECENT FINDINGS: New methods for measuring aging have improved our understanding of the aging process in MS. New studies have characterized the molecular and cellular composition of chronic active or smoldering plaques in MS. These lesions are important contributors to disability progression in MS. These studies highlight the important role of immunosenescence and the innate immune system in sustaining chronic inflammation. Given these changes in immune function, several studies have assessed optimal treatment strategies in aging individuals with MS. MS phenotype is intimately linked with chronologic age and immunosenescence. While there are many unanswered questions, there has been much progress in understanding this relationship which may lead to more effective treatments for progressive disease.


Subject(s)
Immunosenescence , Multiple Sclerosis , Humans , Multiple Sclerosis/drug therapy , Aging , Inflammation , Central Nervous System
17.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34385315

ABSTRACT

Sex and aging influence the human immune system, resulting in disparate responses to infection, autoimmunity, and cancer. However, the impact of sex and aging on the immune system is not yet fully elucidated. Using small conditional RNA sequencing, we found that females had a lower percentage of natural killer (NK) cells and a higher percentage of plasma cells in peripheral blood compared with males. Bioinformatics revealed that young females exhibited an overrepresentation of pathways that relate to T and B cell activation. Moreover, cell-cell communication analysis revealed evidence of increased activity of the BAFF/APRIL systems in females. Notably, aging increased the percentage of monocytes and reduced the percentage of naïve T cells in the blood and the number of differentially expressed genes between the sexes. Aged males expressed higher levels of inflammatory genes. Collectively, the results suggest that females have more plasma cells in the circulation and a stronger BAFF/APRIL system, which is consistent with a stronger adaptive immune response. In contrast, males have a higher percentage of NK cells in blood and a higher expression of certain proinflammatory genes. Overall, this work expands our knowledge of sex differences in the immune system in humans.


Subject(s)
Aging/physiology , Single-Cell Analysis , Adult , Aged , Cell Communication/immunology , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression Regulation/immunology , Humans , Immunosenescence , Male , Middle Aged , Sex Factors , T-Lymphocytes/metabolism , Transcriptome , Young Adult
18.
Int J Mol Sci ; 25(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38255826

ABSTRACT

Aging induces numerous physiological alterations, with immunosenescence emerging as a pivotal factor. This phenomenon has attracted both researchers and clinicians, prompting profound questions about its implications for health and disease. Among the contributing factors, one intriguing actor in this complex interplay is human cytomegalovirus (CMV), a member of the herpesvirus family. Latent CMV infection exerts a profound influence on the aging immune system, potentially contributing to age-related diseases. This review delves into the intricate relationship between immunosenescence and CMV, revealing how chronic viral infection impacts the aging immune landscape. We explore the mechanisms through which CMV can impact both the composition and functionality of immune cell populations and induce shifts in inflammatory profiles with aging. Moreover, we examine the potential role of CMV in pathologies such as cardiovascular diseases, cancer, neurodegenerative disorders, COVID-19, and Long COVID. This review underlines the importance of understanding the complex interplay between immunosenescence and CMV. It offers insights into the pathophysiology of aging and age-associated diseases, as well as COVID-19 outcomes among the elderly. By unraveling the connections between immunosenescence and CMV, we gain a deeper understanding of aging's remarkable journey and the profound role that viral infections play in transforming the human immune system.


Subject(s)
COVID-19 , Cytomegalovirus Infections , Immunosenescence , Latent Infection , Aged , Humans , Cytomegalovirus , Post-Acute COVID-19 Syndrome , Aging
19.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928150

ABSTRACT

Cancer represents a significant threat to human health, and traditional chemotherapy or cytotoxic therapy is no longer the sole or preferred approach for managing malignant tumors. With advanced research into the immunogenicity of tumor cells and the growing elderly population, tumor immunotherapy has emerged as a prominent therapeutic option. Its significance in treating elderly cancer patients is increasingly recognized. In this study, we review the conceptual classifications and benefits of immunotherapy, and discuss recent developments in new drugs and clinical progress in cancer treatment through various immunotherapeutic modalities with different mechanisms. Additionally, we explore the impact of immunosenescence on the effectiveness of cancer immunotherapy and propose innovative and effective strategies to rejuvenate senescent T cells.


Subject(s)
Drug Development , Immunotherapy , Neoplasms , Humans , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Immunotherapy/methods , Animals , Immunosenescence , T-Lymphocytes/immunology
20.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(2): 178-182, 2024 Feb 12.
Article in Zh | MEDLINE | ID: mdl-38309971

ABSTRACT

The world's population is ageing at a rate unprecedented in human history. As the number of older people increases, so does the prevalence of lung disease in the elderly, making it essential to understand the pathophysiology of elderly patients with lung disease. Age-related changes in immune system function and lung parenchyma occur throughout a person's life. Immunosenescence refers to the tendency for innate and adaptive immunity to decline in the elderly. As we age, changes in the innate and adaptive immune systems can lead to dysregulation and reduced immune function. A low-level chronic inflammatory state is known as inflamm-aging and is driven by immunosenescence. This review discusses the role of immunosenescence and inflamm-aging in pulmonary diseases such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, asthma, and lung infections. Understanding the different manifestations of lung diseases between the elderly and the young, finding new therapeutic sites, or improving clinical outcomes in hospitalized patients will provide clinicians with new ideas.


Subject(s)
Immunosenescence , Lung Diseases , Humans , Aged , Immunity, Innate , Immunosenescence/physiology , Inflammation , Aging/physiology
SELECTION OF CITATIONS
SEARCH DETAIL