Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 552
Filter
Add more filters

Publication year range
1.
Cell ; 186(19): 4003-4004, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37714131

ABSTRACT

Avian influenza viruses continue to cross the species barrier and infect mammals. In this issue of Cell, Sun and colleagues demonstrate that viruses obtained from humans infected with an emergent avian H3N8 viruses exhibit increasing accumulation of mutations that promote respiratory droplet transmission and disease in mammals.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza A virus , Animals , Humans , Influenza A virus/genetics , Mutation , Mammals
2.
Cell ; 186(19): 4074-4084.e11, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37669665

ABSTRACT

H3N8 avian influenza viruses (AIVs) in China caused two confirmed human infections in 2022, followed by a fatal case reported in 2023. H3N8 viruses are widespread in chicken flocks; however, the zoonotic features of H3N8 viruses are poorly understood. Here, we demonstrate that H3N8 viruses were able to infect and replicate efficiently in organotypic normal human bronchial epithelial (NHBE) cells and lung epithelial (Calu-3) cells. Human isolates of H3N8 virus were more virulent and caused severe pathology in mice and ferrets, relative to chicken isolates. Importantly, H3N8 virus isolated from a patient with severe pneumonia was transmissible between ferrets through respiratory droplets; it had acquired human-receptor-binding preference and amino acid substitution PB2-E627K necessary for airborne transmission. Human populations, even when vaccinated against human H3N2 virus, appear immunologically naive to emerging mammalian-adapted H3N8 AIVs and could be vulnerable to infection at epidemic or pandemic proportion.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza, Human , Animals , Humans , Mice , Chickens , Ferrets , Influenza A Virus, H3N2 Subtype , Respiratory Aerosols and Droplets
3.
Clin Infect Dis ; 78(3): 646-650, 2024 03 20.
Article in English | MEDLINE | ID: mdl-37555762

ABSTRACT

Here, we report on a case of human infection with the H3N8 avian influenza virus. The patient had multiple myeloma and died of severe infection. Genome analysis showed multiple gene mutations and reassortments without mammalian-adaptive mutations. This suggests that avian influenza (A/H3N8) virus infection could be lethal for immunocompromised persons.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza, Human , Humans , China , Influenza A Virus, H3N8 Subtype/genetics
4.
J Virol ; 97(6): e0043423, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37289052

ABSTRACT

Although influenza A viruses of several subtypes have occasionally infected humans, to date only those of the H1, H2, and H3 subtypes have led to pandemics and become established in humans. The detection of two human infections by avian H3N8 viruses in April and May of 2022 raised pandemic concerns. Recent studies have shown the H3N8 viruses were introduced into humans from poultry, although their genesis, prevalence, and transmissibility in mammals have not been fully elucidated. Findings generated from our systematic influenza surveillance showed that this H3N8 influenza virus was first detected in chickens in July 2021 and then disseminated and became established in chickens over wider regions of China. Phylogenetic analyses revealed that the H3 HA and N8 NA were derived from avian viruses prevalent in domestic ducks in the Guangxi-Guangdong region, while all internal genes were from enzootic poultry H9N2 viruses. The novel H3N8 viruses form independent lineages in the glycoprotein gene trees, but their internal genes are mixed with those of H9N2 viruses, indicating continuous gene exchange among these viruses. Experimental infection of ferrets with three chicken H3N8 viruses showed transmission through direct contact and inefficient transmission by airborne exposure. Examination of contemporary human sera detected only very limited antibody cross-reaction to these viruses. The continuing evolution of these viruses in poultry could pose an ongoing pandemic threat. IMPORTANCE A novel H3N8 virus with demonstrated zoonotic potential has emerged and disseminated in chickens in China. It was generated by reassortment between avian H3 and N8 virus(es) and long-term enzootic H9N2 viruses present in southern China. This H3N8 virus has maintained independent H3 and N8 gene lineages but continues to exchange internal genes with other H9N2 viruses to form novel variants. Our experimental studies showed that these H3N8 viruses were transmissible in ferrets, and serological data suggest that the human population lacks effective immunological protection against it. With its wide geographical distribution and continuing evolution in chickens, other spillovers to humans can be expected and might lead to more efficient transmission in humans.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Animals , Humans , Influenza, Human/epidemiology , Chickens , Public Health , Influenza A Virus, H9N2 Subtype/genetics , Phylogeny , Ferrets , China/epidemiology , Poultry
5.
Vet Res ; 55(1): 36, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38520035

ABSTRACT

Equine influenza virus (EIV) remains a threat to horses, despite the availability of vaccines. Strategies to monitor the virus and prevent potential vaccine failure revolve around serological assays, RT-qPCR amplification, and sequencing the viral hemagglutinin (HA) and neuraminidase (NA) genes. These approaches overlook the contribution of other viral proteins in driving virulence. This study assesses the potential of long-read nanopore sequencing for fast and precise sequencing of circulating equine influenza viruses. Therefore, two French Florida Clade 1 strains, including the one circulating in winter 2018-2019 exhibiting more pronounced pathogenicity than usual, as well as the two currently OIE-recommended vaccine strains, were sequenced. Our results demonstrated the reliability of this sequencing method in generating accurate sequences. Sequence analysis of HA revealed a subtle antigenic drift in the French EIV strains, with specific substitutions, such as T163I in A/equine/Paris/1/2018 and the N188T mutation in post-2015 strains; both substitutions were in antigenic site B. Antigenic site E exhibited modifications in post-2018 strains, with the N63D substitution. Segment 2 sequencing also revealed that the A/equine/Paris/1/2018 strain encodes a longer variant of the PB1-F2 protein when compared to other Florida clade 1 strains (90 amino acids long versus 81 amino acids long). Further biological and biochemistry assays demonstrated that this PB1-F2 variant has enhanced abilities to abolish the mitochondrial membrane potential ΔΨm and permeabilize synthetic membranes. Altogether, our results highlight the interest in rapidly characterizing the complete genome of circulating strains with next-generation sequencing technologies to adapt vaccines and identify specific virulence markers of EIV.


Subject(s)
Horse Diseases , Influenza A Virus, H3N8 Subtype , Orthomyxoviridae Infections , Vaccines , Animals , Amino Acids/genetics , Genomics , Horses , Influenza A Virus, H3N8 Subtype/genetics , Orthomyxoviridae Infections/veterinary , Reproducibility of Results , Sequence Analysis/veterinary , Virulence Factors
6.
Arch Virol ; 169(5): 95, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594485

ABSTRACT

The first detection of a human infection with avian influenza A/H6N1 virus in Taiwan in 2013 has raised concerns about this virus. During our routine surveillance of avian influenza viruses (AIVs) in live-bird markets in Egypt, an H6N1 virus was isolated from a garganey duck and was characterized. Phylogenetic analysis indicated that the Egyptian H6N1 strain A/Garganey/Egypt/20869C/2022(H6N1) has a unique genomic constellation, with gene segments inherited from different subtypes (H5N1, H3N8, H7N3, H6N1, and H10N1) that have been detected previously in AIVs from Egypt and some Eurasian countries. We examined the replication of kinetics of this virus in different mammalian cell lines (A549, MDCK, and Vero cells) and compared its pathogenicity to that of the ancestral H6N1 virus A/Quail/HK/421/2002(H6N1). The Egyptian H6N1 virus replicated efficiently in C57BL/6 mice without prior adaptation and grew faster and reached higher titers than in A549 cells than the ancestral strain. These results show that reassortant H6 AIVs might pose a potential threat to human health and highlight the need to continue surveillance of H6 AIVs circulating in nature.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Animals , Mice , Chlorocebus aethiops , Humans , Influenza in Birds/epidemiology , Egypt/epidemiology , Phylogeny , Vero Cells , Influenza A Virus, H7N3 Subtype , Mice, Inbred C57BL , Animals, Wild , Ducks , Mammals
7.
Emerg Infect Dis ; 29(6): 1210-1214, 2023 06.
Article in English | MEDLINE | ID: mdl-37095078

ABSTRACT

Human infection with avian influenza A(H3N8) virus is uncommon but can lead to acute respiratory distress syndrome. In explant cultures of the human bronchus and lung, novel H3N8 virus showed limited replication efficiency in bronchial and lung tissue but had a higher replication than avian H3N8 virus in lung tissue.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza, Human , Orthomyxoviridae Infections , Animals , Humans , Lung/diagnostic imaging , Bronchi , Virus Replication
8.
Emerg Infect Dis ; 29(6): 1191-1201, 2023 06.
Article in English | MEDLINE | ID: mdl-37069608

ABSTRACT

The continuous evolution of avian influenza viruses (AIVs) of subtype H3 in China and the emergence of human infection with AIV subtype H3N8 highlight their threat to public health. Through surveillance in poultry-associated environments during 2009-2022, we isolated and sequenced 188 H3 AIVs across China. Performing large-scale sequence analysis with publicly available data, we identified 4 sublineages of H3 AIVs established in domestic ducks in China via multiple introductions from wild birds from Eurasia. Using full-genome analysis, we identified 126 distinct genotypes, of which the H3N2 G23 genotype predominated recently. H3N8 G25 viruses, which spilled over from birds to humans, might have been generated by reassortment between H3N2 G23, wild bird H3N8, and poultry H9N2 before February 2021. Mammal-adapted and drug-resistance substitutions occasionally occurred in H3 AIVs. Ongoing surveillance for H3 AIVs and risk assessment are imperative for potential pandemic preparedness.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Humans , Animals , Influenza A Virus, H3N8 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/genetics , Genome, Viral , Phylogeny , Birds , Poultry , China/epidemiology , Mammals
9.
J Gen Virol ; 104(6)2023 06.
Article in English | MEDLINE | ID: mdl-37351928

ABSTRACT

During the 2020/21 winter season, 29 and 10 H5N8 high pathogenicity avian influenza viruses (HPAIVs) were isolated from environmental water and wild birds, respectively, in Kagoshima prefecture, Japan. Furthermore, seven subtypes of low pathogenicity avian influenza viruses (LPAIVs) were also isolated; H1N1, H2N9, H3N2, H3N6, H3N8, H4N6, and H6N6 subtypes. While the H5 hemagglutinin (HA) genes of the G1 cluster were isolated throughout the winter season, those of the G2 cluster were also detected in late winter, suggesting that H5 HPAIVs possessing H5 HA genes from the two different clusters were individually introduced into Kagoshima prefecture. Intriguingly, genetic constellations revealed that the H5N8 HPAIVs could be classified into six genotypes, including four previously reported genotypes (E1, E2, E3, and E7), and two new genotypes (tentatively named E8 and E9). The PB1 and PA gene segments of genotypes E8 and E9 shared high similarity with those of LPAIVs, whereas the remaining gene segments were close to those of genotype E1. Furthermore, LPAIVs whose PA gene segment was close to that of genotype E9 were isolated from the environmental water. Overall, we revealed that various HPAIV genotypes circulated in Kagoshima prefecture during the 2020/21 winter season. This study highlights the importance of monitoring both HPAIV and LPAIV to better understand AIV ecology in migratory waterfowl populations.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N8 Subtype , Influenza A Virus, H5N8 Subtype , Influenza A virus , Influenza in Birds , Animals , Japan , Seasons , Influenza A Virus, H3N2 Subtype , Animals, Wild , Influenza in Birds/epidemiology , Influenza A virus/genetics , Genotype , Phylogeny
10.
PLoS Pathog ; 17(12): e1010174, 2021 12.
Article in English | MEDLINE | ID: mdl-34919598

ABSTRACT

The mechanisms and consequences of genome evolution on viral fitness following host shifts are poorly understood. In addition, viral fitness -the ability of an organism to reproduce and survive- is multifactorial and thus difficult to quantify. Influenza A viruses (IAVs) circulate broadly among wild birds and have jumped into and become endemic in multiple mammalian hosts, including humans, pigs, dogs, seals, and horses. H3N8 equine influenza virus (EIV) is an endemic virus of horses that originated in birds and has been circulating uninterruptedly in equine populations since the early 1960s. Here, we used EIV to quantify changes in infection phenotype associated to viral fitness due to genome-wide changes acquired during long-term adaptation. We performed experimental infections of two mammalian cell lines and equine tracheal explants using the earliest H3N8 EIV isolated (A/equine/Uruguay/63 [EIV/63]), and A/equine/Ohio/2003 (EIV/2003), a monophyletic descendant of EIV/63 isolated 40 years after the emergence of H3N8 EIV. We show that EIV/2003 exhibits increased resistance to interferon, enhanced viral replication, and a more efficient cell-to-cell spread in cells and tissues. Transcriptomics analyses revealed virus-specific responses to each virus, mainly affecting host immunity and inflammation. Image analyses of infected equine respiratory explants showed that despite replicating at higher levels and spreading over larger areas of the respiratory epithelium, EIV/2003 induced milder lesions compared to EIV/63, suggesting that adaptation led to reduced tissue pathogenicity. Our results reveal previously unknown links between virus genotype and the host response to infection, providing new insights on the relationship between virus evolution and fitness.


Subject(s)
Adaptation, Physiological/physiology , Host-Pathogen Interactions/physiology , Influenza A Virus, H3N8 Subtype/physiology , Influenza A Virus, H3N8 Subtype/pathogenicity , Orthomyxoviridae Infections/virology , Animals , Genetic Fitness/physiology , Horses
11.
J Med Virol ; 95(7): e28912, 2023 07.
Article in English | MEDLINE | ID: mdl-37403888

ABSTRACT

Influenza A(H3N8) viruses first emerged in humans in 2022, but their public health risk has not been evaluated. Here, we systematically investigated the biological features of avian and human isolated H3N8 viruses. The human-origin H3N8 viruses exhibited dual receptor binding profiles but avian-origin H3N8 viruses bound to avian type (sialic acid α2, 3) receptors only. All H3N8 viruses were sensitive to the antiviral drug oseltamivir. Although H3N8 viruses showed lower virulence than the 2009 pandemic H1N1 (09pdmH1N1) viruses, they induced comparable infectivity in mice. More importantly, the human population is naïve to H3N8 virus infection and current seasonal vaccination is not protective. Therefore, the threat of influenza A(H3N8) viruses should not be underestimated. Any variations should be monitored closely and their effect should be studied in time for the pandemic potential preparedness purpose.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N8 Subtype , Influenza, Human , Orthomyxoviridae Infections , Humans , Animals , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Birds , China/epidemiology
12.
Arch Virol ; 168(3): 94, 2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36806782

ABSTRACT

Equine influenza virus strains of Florida sublineage clade 1 (Fc1) have been circulating in North America. In this study, virus neutralization assays were performed to evaluate antigenic differences between Fc1 vaccine strains and North American Fc1 strains isolated in 2021-2022, using equine antisera against A/equine/South Africa/4/2003 (a vaccine strain recommended by the World Organisation for Animal Health) and A/equine/Ibaraki/1/2007 (a Japanese vaccine strain). Antibody titers against four North American Fc1 strains isolated in 2021-2022 were comparable to those against the homologous vaccine strains. These results suggest that current Fc1 vaccine strains are effective against North American strains from 2021-2022.


Subject(s)
Horse Diseases , Influenza A Virus, H3N8 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , Vaccines , Animals , Horses , Florida , North America
13.
Virus Genes ; 59(4): 604-612, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37266848

ABSTRACT

H11N9 viruses in wild birds might have provided the NA gene of human H7N9 virus in early 2013 in China, which evolved with highly pathogenic strains in 2017 and caused severe fatalities. To investigate the prevalence and evolution of the H11N9 influenza viruses, 16,781 samples were collected and analyzed during 2016-2020. As a result, a novel strain of influenza A (H11N9) virus with several characteristics that increase virulence was isolated. This strain had reduced pathogenicity in chicken and mice and was able to replicate in mice without prior adaptation. Phylogenetic analyses showed that it was a sextuple-reassortant virus of H11N9, H3N8, H3N6, H7N9, H9N2, and H6N8 viruses present in China, similar to the H11N9 strains in Japan and Korea during the same period. This was the H11N9 strain isolated from China most recently, which add a record to viruses in wild birds. This study identified a new H11N9 reassortant in a wild bird with key mutation contributing to virulence. Therefore, comprehensive surveillance and enhanced biosecurity precautions are particularly important for the prediction and prevention of potential pandemics resulting from reassortant viruses with continuous evolution and expanding geographic distributions.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza A Virus, H7N9 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Mice , Humans , Ducks , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H9N2 Subtype/genetics , Phylogeny , Animals, Wild , Chickens , Reassortant Viruses/genetics
14.
Euro Surveill ; 28(41)2023 10.
Article in English | MEDLINE | ID: mdl-37824247

ABSTRACT

BackgroundTwo human cases of avian influenza A (H3N8) virus infection were reported in China in 2022.AimTo characterise H3N8 viruses circulating in China in September 2021-May 2022.MethodsWe sampled poultry and poultry-related environments in 25 Chinese provinces. After isolating H3N8 viruses, whole genome sequences were obtained for molecular and phylogenetic analyses. The specificity of H3N8 viruses towards human or avian receptors was assessed in vitro. Their ability to replicate in chicken and mice, and to transmit between guinea pigs was also investigated.ResultsIn total, 98 H3N8 avian influenza virus isolates were retrieved from 38,639 samples; genetic analysis of 31 representative isolates revealed 17 genotypes. Viruses belonging to 10 of these genotypes had six internal genes originating from influenza A (H9N2) viruses. These reassorted viruses could be found in live poultry markets and comprised the strains responsible for the two human infections. A subset of nine H3N8 viruses (including six reassorted) that replicated efficiently in mice bound to both avian-type and human-type receptors in vitro. Three reassorted viruses were shed by chickens for up to 9 days, replicating efficiently in their upper respiratory tract. Five reassorted viruses tested on guinea pigs were transmissible among these by respiratory droplets.ConclusionAvian H3N8 viruses with H9N2 virus internal genes, causing two human infections, occurred in live poultry markets in China. The low pathogenicity of H3N8 viruses in poultry allows their continuous circulation with potential for reassortment. Careful monitoring of spill-over infections in humans is important to strengthen early-warning systems and maintain influenza pandemic preparedness.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Poultry Diseases , Animals , Humans , Mice , Guinea Pigs , Influenza, Human/epidemiology , Poultry , Influenza in Birds/epidemiology , Influenza A Virus, H9N2 Subtype/genetics , Phylogeny , Chickens , China/epidemiology , Poultry Diseases/epidemiology
15.
Emerg Infect Dis ; 28(10): 2009-2015, 2022 10.
Article in English | MEDLINE | ID: mdl-36037827

ABSTRACT

Zoonotic and pandemic influenza continue to pose threats to global public health. Pandemics arise when novel influenza A viruses, derived in whole or in part from animal or avian influenza viruses, adapt to transmit efficiently in a human population that has little population immunity to contain its onward transmission. Viruses of previous pandemic concern, such as influenza A(H7N9), arose from influenza A(H9N2) viruses established in domestic poultry acquiring a hemagglutinin and neuraminidase from influenza A viruses of aquatic waterfowl. We report a novel influenza A(H3N8) virus in chicken that has emerged in a similar manner and that has been recently reported to cause zoonotic disease. Although they are H3 subtype, these avian viruses are antigenically distant from contemporary human influenza A(H3N2) viruses, and there is little cross-reactive immunity in the human population. It is essential to heighten surveillance for these avian A(H3N8) viruses in poultry and in humans.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza A Virus, H7N9 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Animals , Chickens , China/epidemiology , Hemagglutinins , Hong Kong/epidemiology , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H9N2 Subtype/genetics , Influenza, Human/epidemiology , Neuraminidase/genetics , Phylogeny , Poultry
16.
PLoS Pathog ; 16(4): e1008409, 2020 04.
Article in English | MEDLINE | ID: mdl-32287326

ABSTRACT

The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk. In these studies, the National Institutes of Allergy and Infectious Diseases (NIAID) Centers of Excellence for Influenza Research and Surveillance (CEIRS) network collaboratively demonstrated that CIVs replicated in some primary human cells and transmitted effectively in mammalian models. While people born after 1970 had little or no pre-existing humoral immunity against CIVs, the viruses were sensitive to existing antivirals and we identified a panel of H3 cross-reactive human monoclonal antibodies (hmAbs) that could have prophylactic and/or therapeutic value. Our data predict these CIVs posed a low risk to humans. Importantly, we showed that the CEIRS network could work together to provide basic research information important for characterizing emerging influenza viruses, although there were valuable lessons learned.


Subject(s)
Communicable Diseases, Emerging/veterinary , Dog Diseases/virology , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H3N8 Subtype/isolation & purification , Influenza A virus/isolation & purification , Zoonoses/virology , Animals , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Dog Diseases/transmission , Dogs , Ferrets , Guinea Pigs , Humans , Influenza A Virus, H3N2 Subtype/classification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N8 Subtype/classification , Influenza A Virus, H3N8 Subtype/genetics , Influenza A virus/classification , Influenza A virus/genetics , Influenza, Human/transmission , Influenza, Human/virology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , United States , Zoonoses/transmission
17.
Genetica ; 150(2): 97-115, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35396627

ABSTRACT

Molecular mechanisms of the non-structural protein 1 (NS1) in influenza A-induced pathological changes remain ambiguous. This study explored the pathogenesis of human infection by influenza A viruses (IAVs) through identifying human genes with codon usage bias (CUB) similar to NS1 gene of these viruses based on the relative synonymous codon usage (RSCU). CUB of the IAV subtypes H1N1, H3N2, H3N8, H5N1, H5N2, H5N8, H7N9 and H9N2 was analyzed and the correlation of RSCU values of NS1 sequences with those of the human genes was calculated. The CUB of NS1 was uneven and codons ending with A/U were preferred. The ENC-GC3 and neutrality plots suggested natural selection as the main determinant for CUB. The RCDI, CAI and SiD values showed that the viruses had a high degree of adaptability to human. A total of 2155 human genes showed significant RSCU-based correlation (p < 0.05 and r > 0.5) with NS1 coding sequences and was considered as human genes with CUB similar to NS1 gene of IAV subtypes. Differences and similarities in the subtype-specific human protein-protein interaction (PPI) networks and their functions were recorded among IAVs subtypes, indicating that NS1 of each IAV subtype has a specific pathogenic mechanism. Processes and pathways involved in influenza, transcription, immune response and cell cycle were enriched in human gene sets retrieved based on the CUB of NS1 gene of IAV subtypes. The present work may advance our understanding on the mechanism of NS1 in human infections of IAV subtypes and shed light on the therapeutic options.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N8 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N2 Subtype , Influenza A Virus, H7N9 Subtype , Influenza A Virus, H9N2 Subtype , Influenza, Human , Orthomyxoviridae Infections , Codon Usage , Host-Pathogen Interactions/genetics , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Influenza A Virus, H3N8 Subtype/genetics , Influenza A Virus, H3N8 Subtype/metabolism , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/metabolism , Influenza A Virus, H5N2 Subtype/genetics , Influenza A Virus, H5N2 Subtype/metabolism , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/metabolism , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/metabolism , Influenza, Human/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
18.
Virol J ; 19(1): 185, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36371185

ABSTRACT

BACKGROUND: Equine influenza is an important cause of respiratory disease in equids. The causative virus; EIV, is highly variable and can evolve by accumulation of mutations, particularly in the haemagglutinin (HA) gene. Currently, H3N8 is the sole subtype circulating worldwide with Florida clade 1 (FC1) is most prevalent in the Americas and FC2 in Asia and Europe. In Egypt, EIV was detected in two occasions: subtype H7N7 in 1989 and subtype H3N8 (FC1) in 2008. No data is available on the circulation pattern of EIV during the last decade despite frequent observation of suspected cases. METHODS: Twenty-two nasal swabs were collected from vaccinated and non-vaccinated horses showing respiratory signs suggestive of EIV infection in 2017-18. Three additional swabs were retrieved during a national race event in January 2018 from Arabian mares with high fever, gait stiffness and dry cough. Samples were screened by RT-qPCR and HA1 domain of the hemagglutinin gene was amplified and sequenced for sequence and phylogenetic analysis. RESULTS: RT-qPCR screening revealed that only the 3 samples from the race were positive with cycle thresholds ranging from 16 to 21 indicating high viral load. Isolation attempts in hen's eggs were unsuccessful. Sequence analysis of the HA1 domain gene has revealed two identical nucleotide sequences, while the third contained 3 synonymous mutations. Phylogenetic analysis clustered study sequences with recent FC2 sequences from Europe. Amino acid alignments revealed 14 and 13 amino acid differences in the study sequences compared to A/equine/Egypt/6066NANRU-VSVRI/08 (H3N8) and A/equine/Kentucky/1997 (H3N8), respectively, available as EIV vaccines in Egypt. Nine amino acids were different from A/equine/Richmond/1/2007 (H3N8), the recommended FC2 vaccine strain by the world organization of animal health expert surveillance panel (OIE-ESP), two of which were unique to the Egyptian sequences while the remaining 7 changes were shared with the FC2-144V subgroup detected in the United Kingdom from late 2015 to 2016. CONCLUSIONS: The study represents the first reported detection of FC2-144V related EIV from Arabian mares in Egypt, and probably from the entire middle east region. The presented information about EIV epidemiology and spread may require reconsideration of the vaccine strains used in the national vaccination programs.


Subject(s)
Horse Diseases , Influenza A Virus, H3N8 Subtype , Influenza A Virus, H7N7 Subtype , Orthomyxoviridae Infections , Horses , Animals , Female , Influenza A Virus, H3N8 Subtype/genetics , Egypt/epidemiology , Phylogeny , Chickens , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/prevention & control , Hemagglutinins , Amino Acids/genetics
19.
J Virol ; 94(15)2020 07 16.
Article in English | MEDLINE | ID: mdl-32461313

ABSTRACT

Equine-origin H3N8 and avian-origin H3N2 canine influenza viruses (CIVs) prevalent in dogs are thought to pose a public health threat arising from intimate contact between dogs and humans. However, our understanding of CIV virulence is still limited. Influenza A virus PA-X is a fusion protein encoded in part by a +1 frameshifted open reading frame (X-ORF) in segment 3. The X-ORF can be translated in full-length (61-amino-acid) or truncated (41-amino-acid) form. Genetic analysis indicated that the X-ORFs of equine H3N8 and avian H3N2 influenza viruses encoded 61 amino acids but were truncated after introduction into dogs. To determine the effect of PA-X truncation on the biological characteristics of CIVs, we constructed four recombinant viruses on H3N8 and H3N2 CIV backgrounds bearing truncated or full-length PA-Xs. We observed that truncation of PA-X increased growth of both H3N8 and H3N2 CIVs in MDCK cells and suppressed expression from cotransfected plasmids in MDCK cells. Furthermore, truncation of PA-X enhanced viral pathogenicity in dogs, as shown by aggravated clinical symptoms and histopathological changes, increased viral replication in the respiratory system, and prolonged virus shedding. Additionally, CIVs with truncated PA-Xs were transmitted more efficiently in dogs. Global gene expression profiling of the lungs of infected dogs revealed that differentially expressed genes were mainly associated with inflammatory responses, which might contribute to the pathogenicity of PA-X-truncated CIVs. Our findings revealed that truncation of PA-X might be important for the adaptation of influenza viruses to dogs.IMPORTANCE Epidemics of equine-origin H3N8 and avian-origin H3N2 influenza viruses in canine populations are examples of successful cross-species transmission of influenza A viruses. Genetic analysis showed that the PA-X genes of equine H3N8 or avian H3N2 influenza viruses were full-length, with X-ORFs encoding 61 amino acids; however, those of equine-origin H3N8 or avian-origin H3N2 CIVs were truncated, suggesting that PA-X truncation occurred after transmission to dogs. In this study, we extended the PA-X genes of H3N8 and H3N2 CIVs and compared the biological characteristics of CIVs bearing different lengths of PA-X. We demonstrated that for both H3N8 and H3N2 viruses, truncation of PA-X increased virus yields in MDCK cells and enhanced viral replication, pathogenicity, and transmission in dogs. These results might reflect enhanced suppression of host gene expression and upregulation of genes related to inflammatory responses. Collectively, our data partially explain the conservation of truncated PA-X in CIVs.


Subject(s)
Influenza A Virus, H3N2 Subtype , Influenza A Virus, H3N8 Subtype , Orthomyxoviridae Infections , Repressor Proteins/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication , Virus Shedding , Animals , Dogs , HEK293 Cells , Humans , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza A Virus, H3N2 Subtype/physiology , Influenza A Virus, H3N8 Subtype/pathogenicity , Influenza A Virus, H3N8 Subtype/physiology , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/transmission
20.
J Virol ; 94(5)2020 02 14.
Article in English | MEDLINE | ID: mdl-31826991

ABSTRACT

Seasonal influenza carrying key hemagglutinin (HA) head region glycosylation sites can be removed from the lung by pulmonary surfactant protein D (SP-D). Little is known about HA head glycosylation of low-pathogenicity avian influenza virus (LPAIV) subtypes. These can pose a pandemic threat through reassortment and emergence in human populations. Since the presence of head region high-mannose glycosites dictates SP-D activity, the ability to predict these glycosite glycan subtypes may be of value. Here, we investigate the activities of two recombinant human SP-D forms against representative LPAIV strains, including H2N1, H5N1, H6N1, H11N9, an avian H3N8, and a human seasonal H3N2 subtype. Using mass spectrometry, we determined the glycan subclasses and heterogeneities at each head glycosylation site. Sequence alignment and molecular structure analysis of the HAs were performed for LPAIV strains in comparison to seasonal H3N2 and avian H3N8. Intramolecular contacts were determined between the protein backbone and glycosite glycan based on available three-dimensional structure data. We found that glycosite "N165" (H3 numbering) is occupied by high-mannose glycans in H3 HA but by complex glycans in all LPAIV HAs. SP-D was not active on LPAIV but was on H3 HAs. Since SP-D affinity for influenza HA depends on the presence of high-mannose glycan on the head region, our data demonstrate that SP-D may not protect against virus containing these HA subtypes. Our results also demonstrate that glycan subtype can be predicted at some glycosites based on sequence comparisons and three-dimensional structural analysis.IMPORTANCE Low-pathogenicity avian influenza virus (LPAIV) subtypes can reassort with circulating human strains and pandemic viruses can emerge in human populations, as was seen in the 1957 pandemic, in which an H2 virus reassorted with the circulating H1N1 to create a novel H2N2 genotype. Lung surfactant protein D (SP-D), a key factor in first-line innate immunity defense, removes influenza type A virus (IAV) through interaction with hemagglutinin (HA) head region high-mannose glycan(s). While it is known that both H1 and H3 HAs have one or more key high-mannose glycosites in the head region, little is known about similar glycosylation of LPAIV strains H2N1, H5N1, H6N1, or H11N9, which may pose future health risks. Here, we demonstrate that the hemagglutinins of LPAIV strains do not have the required high-mannose glycans and do not interact with SP-D, and that sequence analysis can predict glycan subtype, thus predicting the presence or absence of this virulence marker.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Host-Pathogen Interactions/physiology , Influenza A virus/metabolism , Polysaccharides/metabolism , Pulmonary Surfactant-Associated Protein D/metabolism , Amino Acid Sequence , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza A Virus, H3N8 Subtype , Influenza A Virus, H5N1 Subtype , Models, Molecular , Polysaccharides/chemistry , Protein Conformation , Sequence Analysis, Protein , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL