Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.186
Filter
Add more filters

Publication year range
1.
Cell ; 187(14): 3602-3618.e20, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38823389

ABSTRACT

Purine nucleotides are vital for RNA and DNA synthesis, signaling, metabolism, and energy homeostasis. To synthesize purines, cells use two principal routes: the de novo and salvage pathways. Traditionally, it is believed that proliferating cells predominantly rely on de novo synthesis, whereas differentiated tissues favor the salvage pathway. Unexpectedly, we find that adenine and inosine are the most effective circulating precursors for supplying purine nucleotides to tissues and tumors, while hypoxanthine is rapidly catabolized and poorly salvaged in vivo. Quantitative metabolic analysis demonstrates comparative contribution from de novo synthesis and salvage pathways in maintaining purine nucleotide pools in tumors. Notably, feeding mice nucleotides accelerates tumor growth, while inhibiting purine salvage slows down tumor progression, revealing a crucial role of the salvage pathway in tumor metabolism. These findings provide fundamental insights into how normal tissues and tumors maintain purine nucleotides and highlight the significance of purine salvage in cancer.


Subject(s)
Neoplasms , Purine Nucleotides , Purines , Animals , Mice , Purines/metabolism , Purines/biosynthesis , Neoplasms/metabolism , Neoplasms/pathology , Purine Nucleotides/metabolism , Humans , Inosine/metabolism , Hypoxanthine/metabolism , Mice, Inbred C57BL , Adenine/metabolism , Cell Line, Tumor , Female
2.
Immunity ; 54(9): 1961-1975.e5, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34525337

ABSTRACT

Nucleic acids are powerful triggers of innate immunity and can adopt the Z-conformation, an unusual left-handed double helix. Here, we studied the biological function(s) of Z-RNA recognition by the adenosine deaminase ADAR1, mutations in which cause Aicardi-Goutières syndrome. Adar1mZα/mZα mice, bearing two point mutations in the Z-nucleic acid binding (Zα) domain that abolish Z-RNA binding, displayed spontaneous induction of type I interferons (IFNs) in multiple organs, including in the lung, where both stromal and hematopoietic cells showed IFN-stimulated gene (ISG) induction. Lung neutrophils expressed ISGs induced by the transcription factor IRF3, indicating an initiating role for neutrophils in this IFN response. The IFN response in Adar1mZα/mZα mice required the adaptor MAVS, implicating cytosolic RNA sensing. Adenosine-to-inosine changes were enriched in transposable elements and revealed a specific requirement of ADAR1's Zα domain in editing of a subset of RNAs. Thus, endogenous RNAs in Z-conformation have immunostimulatory potential curtailed by ADAR1, with relevance to autoinflammatory disease in humans.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Adenosine Deaminase/genetics , Interferon Type I/immunology , RNA, Double-Stranded/genetics , Adenosine/genetics , Adenosine/metabolism , Animals , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/immunology , Inosine/genetics , Inosine/metabolism , Interferon Type I/genetics , Mice , Mutation , Nervous System Malformations/genetics , Nervous System Malformations/immunology , RNA Editing/genetics , RNA, Double-Stranded/metabolism
3.
Mol Cell ; 81(11): 2374-2387.e3, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33905683

ABSTRACT

Adenosine-to-inosine editing is catalyzed by ADAR1 at thousands of sites transcriptome-wide. Despite intense interest in ADAR1 from physiological, bioengineering, and therapeutic perspectives, the rules of ADAR1 substrate selection are poorly understood. Here, we used large-scale systematic probing of ∼2,000 synthetic constructs to explore the structure and sequence context determining editability. We uncover two structural layers determining the formation and propagation of A-to-I editing, independent of sequence. First, editing is robustly induced at fixed intervals of 35 bp upstream and 30 bp downstream of structural disruptions. Second, editing is symmetrically introduced on opposite sites on a double-stranded structure. Our findings suggest a recursive model for RNA editing, whereby the structural alteration induced by the editing at one site iteratively gives rise to the formation of an additional editing site at a fixed periodicity, serving as a basis for the propagation of editing along and across both strands of double-stranded RNA structures.


Subject(s)
Adenosine Deaminase/genetics , Adenosine/metabolism , Inosine/metabolism , RNA Editing , RNA, Double-Stranded/genetics , RNA-Binding Proteins/genetics , A549 Cells , Adenosine/genetics , Adenosine Deaminase/metabolism , Animals , Base Pairing , HEK293 Cells , Humans , Inosine/genetics , MCF-7 Cells , Mice , NIH 3T3 Cells , Nucleic Acid Conformation , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/metabolism
4.
Mol Cell ; 81(20): 4116-4136, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34480848

ABSTRACT

Enzyme-mediated chemical modifications of nucleic acids are indispensable regulators of gene expression. Our understanding of the biochemistry and biological significance of these modifications has largely been driven by an ever-evolving landscape of technologies that enable accurate detection, mapping, and manipulation of these marks. Here we provide a summary of recent technical advances in the study of nucleic acid modifications with a focus on techniques that allow accurate detection and mapping of these modifications. For each modification discussed (N6-methyladenosine, 5-methylcytidine, inosine, pseudouridine, and N4-acetylcytidine), we begin by introducing the "gold standard" technique for its mapping and detection, followed by a discussion of techniques developed to address any shortcomings of the gold standard. By highlighting the commonalities and differences of these techniques, we hope to provide a perspective on the current state of the field and to lay out a guideline for development of future technologies.


Subject(s)
DNA Methylation , DNA/metabolism , Genetic Techniques , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , RNA/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Cytidine/analogs & derivatives , Cytidine/metabolism , DNA/genetics , Epigenesis, Genetic , Humans , Inosine/metabolism , Pseudouridine/metabolism , RNA/genetics , RNA, Messenger/genetics
5.
Nat Rev Mol Cell Biol ; 17(2): 83-96, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26648264

ABSTRACT

Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. This A-to-I editing occurs not only in protein-coding regions of mRNAs, but also frequently in non-coding regions that contain inverted Alu repeats. Editing of coding sequences can result in the expression of functionally altered proteins that are not encoded in the genome, whereas the significance of Alu editing remains largely unknown. Certain microRNA (miRNA) precursors are also edited, leading to reduced expression or altered function of mature miRNAs. Conversely, recent studies indicate that ADAR1 forms a complex with Dicer to promote miRNA processing, revealing a new function of ADAR1 in the regulation of RNA interference.


Subject(s)
Adenosine Deaminase/genetics , Adenosine/metabolism , Genome , Inosine/metabolism , RNA Editing , RNA, Messenger/genetics , Adenosine Deaminase/metabolism , Alu Elements , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Signal Transduction
6.
Nature ; 607(7920): 784-789, 2022 07.
Article in English | MEDLINE | ID: mdl-35859175

ABSTRACT

The RNA-editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) limits the accumulation of endogenous immunostimulatory double-stranded RNA (dsRNA)1. In humans, reduced ADAR1 activity causes the severe inflammatory disease Aicardi-Goutières syndrome (AGS)2. In mice, complete loss of ADAR1 activity is embryonically lethal3-6, and mutations similar to those found in patients with AGS cause autoinflammation7-12. Mechanistically, adenosine-to-inosine (A-to-I) base modification of endogenous dsRNA by ADAR1 prevents chronic overactivation of the dsRNA sensors MDA5 and PKR3,7-10,13,14. Here we show that ADAR1 also inhibits the spontaneous activation of the left-handed Z-nucleic acid sensor ZBP1. Activation of ZBP1 elicits caspase-8-dependent apoptosis and MLKL-mediated necroptosis of ADAR1-deficient cells. ZBP1 contributes to the embryonic lethality of Adar-knockout mice, and it drives early mortality and intestinal cell death in mice deficient in the expression of both ADAR and MAVS. The Z-nucleic-acid-binding Zα domain of ADAR1 is necessary to prevent ZBP1-mediated intestinal cell death and skin inflammation. The Zα domain of ADAR1 promotes A-to-I editing of endogenous Alu elements to prevent dsRNA formation through the pairing of inverted Alu repeats, which can otherwise induce ZBP1 activation. This shows that recognition of Alu duplex RNA by ZBP1 may contribute to the pathological features of AGS that result from the loss of ADAR1 function.


Subject(s)
Adenosine Deaminase , Inflammation , RNA-Binding Proteins , Adaptor Proteins, Signal Transducing/deficiency , Adenosine/metabolism , Adenosine Deaminase/chemistry , Adenosine Deaminase/deficiency , Adenosine Deaminase/metabolism , Animals , Apoptosis , Autoimmune Diseases of the Nervous System , Caspase 8/metabolism , Humans , Inflammation/metabolism , Inflammation/prevention & control , Inosine/metabolism , Intestines/pathology , Mice , Necroptosis , Nervous System Malformations , RNA Editing , RNA, Double-Stranded , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Skin/pathology
7.
Nature ; 608(7923): 569-577, 2022 08.
Article in English | MEDLINE | ID: mdl-35922514

ABSTRACT

A major challenge in human genetics is to identify the molecular mechanisms of trait-associated and disease-associated variants. To achieve this, quantitative trait locus (QTL) mapping of genetic variants with intermediate molecular phenotypes such as gene expression and splicing have been widely adopted1,2. However, despite successes, the molecular basis for a considerable fraction of trait-associated and disease-associated variants remains unclear3,4. Here we show that ADAR-mediated adenosine-to-inosine RNA editing, a post-transcriptional event vital for suppressing cellular double-stranded RNA (dsRNA)-mediated innate immune interferon responses5-11, is an important potential mechanism underlying genetic variants associated with common inflammatory diseases. We identified and characterized 30,319 cis-RNA editing QTLs (edQTLs) across 49 human tissues. These edQTLs were significantly enriched in genome-wide association study signals for autoimmune and immune-mediated diseases. Colocalization analysis of edQTLs with disease risk loci further pinpointed key, putatively immunogenic dsRNAs formed by expected inverted repeat Alu elements as well as unexpected, highly over-represented cis-natural antisense transcripts. Furthermore, inflammatory disease risk variants, in aggregate, were associated with reduced editing of nearby dsRNAs and induced interferon responses in inflammatory diseases. This unique directional effect agrees with the established mechanism that lack of RNA editing by ADAR1 leads to the specific activation of the dsRNA sensor MDA5 and subsequent interferon responses and inflammation7-9. Our findings implicate cellular dsRNA editing and sensing as a previously underappreciated mechanism of common inflammatory diseases.


Subject(s)
Adenosine Deaminase , Genetic Predisposition to Disease , Immune System Diseases , Inflammation , RNA Editing , RNA, Double-Stranded , Adenosine/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Alu Elements/genetics , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Genome-Wide Association Study , Humans , Immune System Diseases/genetics , Immune System Diseases/immunology , Immune System Diseases/pathology , Immunity, Innate , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Inosine/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Interferons/genetics , Interferons/immunology , Quantitative Trait Loci/genetics , RNA Editing/genetics , RNA, Double-Stranded/genetics , RNA-Binding Proteins/metabolism
8.
Nature ; 609(7926): 361-368, 2022 09.
Article in English | MEDLINE | ID: mdl-35790189

ABSTRACT

Brown adipose tissue (BAT) dissipates energy1,2 and promotes cardiometabolic health3. Loss of BAT during obesity and ageing is a principal hurdle for BAT-centred obesity therapies, but not much is known about BAT apoptosis. Here, untargeted metabolomics demonstrated that apoptotic brown adipocytes release a specific pattern of metabolites with purine metabolites being highly enriched. This apoptotic secretome enhances expression of the thermogenic programme in healthy adipocytes. This effect is mediated by the purine inosine that stimulates energy expenditure in brown adipocytes by the cyclic adenosine monophosphate-protein kinase A signalling pathway. Treatment of mice with inosine increased BAT-dependent energy expenditure and induced 'browning' of white adipose tissue. Mechanistically, the equilibrative nucleoside transporter 1 (ENT1, SLC29A1) regulates inosine levels in BAT: ENT1-deficiency increases extracellular inosine levels and consequently enhances thermogenic adipocyte differentiation. In mice, pharmacological inhibition of ENT1 as well as global and adipose-specific ablation enhanced BAT activity and counteracted diet-induced obesity, respectively. In human brown adipocytes, knockdown or blockade of ENT1 increased extracellular inosine, which enhanced thermogenic capacity. Conversely, high ENT1 levels correlated with lower expression of the thermogenic marker UCP1 in human adipose tissues. Finally, the Ile216Thr loss of function mutation in human ENT1 was associated with significantly lower body mass index and 59% lower odds of obesity for individuals carrying the Thr variant. Our data identify inosine as a metabolite released during apoptosis with a 'replace me' signalling function that regulates thermogenic fat and counteracts obesity.


Subject(s)
Adipocytes, Brown , Adipose Tissue, Brown , Energy Metabolism , Inosine , Adipocytes, Brown/drug effects , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Energy Metabolism/drug effects , Equilibrative Nucleoside Transporter 1/antagonists & inhibitors , Equilibrative Nucleoside Transporter 1/metabolism , Humans , Inosine/metabolism , Inosine/pharmacology , Mice , Obesity/genetics , Obesity/metabolism , Thermogenesis/genetics , Uncoupling Protein 1/metabolism
9.
Mol Cell ; 76(1): 44-56.e3, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31444105

ABSTRACT

Endonuclease V (EndoV) cleaves the second phosphodiester bond 3' to a deaminated adenosine (inosine). Although highly conserved, EndoV homologs change substrate preference from DNA in bacteria to RNA in eukaryotes. We have characterized EndoV from six different species and determined crystal structures of human EndoV and three EndoV homologs from bacteria to mouse in complex with inosine-containing DNA/RNA hybrid or double-stranded RNA (dsRNA). Inosine recognition is conserved, but changes in several connecting loops in eukaryotic EndoV confer recognition of 3 ribonucleotides upstream and 7 or 8 bp of dsRNA downstream of the cleavage site, and bacterial EndoV binds only 2 or 3 nt flanking the scissile phosphate. In addition to the two canonical metal ions in the active site, a third Mn2+ that coordinates the nucleophilic water appears necessary for product formation. Comparison of EndoV with its homologs RNase H1 and Argonaute reveals the principles by which these enzymes recognize RNA versus DNA.


Subject(s)
Bacterial Proteins/metabolism , DNA Repair , DNA, Bacterial/metabolism , Deoxyribonuclease (Pyrimidine Dimer)/metabolism , Evolution, Molecular , Inosine/metabolism , RNA/metabolism , Ribonuclease H/metabolism , Animals , Argonaute Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Deoxyribonuclease (Pyrimidine Dimer)/chemistry , Deoxyribonuclease (Pyrimidine Dimer)/genetics , Humans , Magnesium/metabolism , Manganese/metabolism , Mice , Nucleic Acid Conformation , Protein Conformation , RNA/chemistry , RNA/genetics , Ribonuclease H/chemistry , Ribonuclease H/genetics , Structure-Activity Relationship , Substrate Specificity
10.
RNA ; 30(5): 512-520, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38531652

ABSTRACT

Inosine (I), resulting from the deamination of adenosine (A), is a prominent modification in the human transcriptome. The enzymes responsible for the conversion of adenosine to inosine in human mRNAs are the ADARs (adenosine deaminases acting on RNA). Inosine modification introduces a layer of complexity to mRNA processing and function, as it can impact various aspects of RNA biology, including mRNA stability, splicing, translation, and protein binding. The relevance of this process is emphasized in the growing number of human disorders associated with dysregulated A-to-I editing pathways. Here, we describe the impact of the A-to-I conversion on the structure and stability of duplex RNA and on the consequences of this modification at different locations in mRNAs. Furthermore, we highlight specific open questions regarding the interplay between inosine formation in duplex RNA and the innate immune response.


Subject(s)
RNA Editing , RNA , Humans , RNA, Messenger/metabolism , RNA/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Inosine/metabolism , Adenosine/genetics , Adenosine/metabolism
11.
RNA ; 30(5): 521-529, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38531651

ABSTRACT

In this article, I recount my memories of key experiments that led to my entry into the RNA editing/modification field. I highlight initial observations made by the pioneers in the ADAR field, and how they fit into our current understanding of this family of enzymes. I discuss early mysteries that have now been solved, as well as those that still linger. Finally, I discuss important, outstanding questions and acknowledge my hope for the future of the RNA editing/modification field.


Subject(s)
Adenosine Deaminase , RNA , RNA/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , RNA Editing , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Inosine/metabolism , RNA, Double-Stranded
12.
PLoS Pathog ; 20(6): e1012238, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843141

ABSTRACT

Although lack of ADAR (adenosine deaminase acting on RNA) orthologs, genome-wide A-to-I editing occurs specifically during sexual reproduction in a number of filamentous ascomycetes, including Fusarium graminearum and Neurospora crassa. Unlike ADAR-mediated editing in animals, fungal A-to-I editing has a strong preference for hairpin loops and U at -1 position, which leads to frequent editing of UAG and UAA stop codons. Majority of RNA editing events in fungi are in the coding region and cause amino acid changes. Some of these editing events have been experimentally characterized for providing heterozygote and adaptive advantages in F. graminearum. Recent studies showed that FgTad2 and FgTad3, 2 ADAT (adenosine deaminase acting on tRNA) enzymes that normally catalyze the editing of A34 in the anticodon of tRNA during vegetative growth mediate A-to-I mRNA editing during sexual reproduction. Stage specificity of RNA editing is conferred by stage-specific expression of short transcript isoforms of FgTAD2 and FgTAD3 as well as cofactors such as AME1 and FIP5 that facilitate the editing of mRNA in perithecia. Taken together, fungal A-to-I RNA editing during sexual reproduction is catalyzed by ADATs and it has the same sequence and structural preferences with editing of A34 in tRNA.


Subject(s)
Adenosine Deaminase , RNA Editing , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Ascomycota/genetics , RNA, Fungal/genetics , RNA, Fungal/metabolism , Adenosine/metabolism , Adenosine/genetics , Inosine/metabolism , Inosine/genetics , Fusarium/genetics , Neurospora crassa/genetics
13.
Plant Cell ; 35(1): 510-528, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36342213

ABSTRACT

In nucleotide metabolism, nucleoside kinases recycle nucleosides into nucleotides-a process called nucleoside salvage. Nucleoside kinases for adenosine, uridine, and cytidine have been characterized from many organisms, but kinases for inosine and guanosine salvage are not yet known in eukaryotes and only a few such enzymes have been described from bacteria. Here we identified Arabidopsis thaliana PLASTID NUCLEOSIDE KINASE 1 (PNK1), an enzyme highly conserved in plants and green algae belonging to the Phosphofructokinase B family. We demonstrate that PNK1 from A. thaliana is located in plastids and catalyzes the phosphorylation of inosine, 5-aminoimidazole-4-carboxamide-1-ß-d-ribose (AICA ribonucleoside), and uridine but not guanosine in vitro, and is involved in inosine salvage in vivo. PNK1 mutation leads to increased flux into purine nucleotide catabolism and, especially in the context of defective uridine degradation, to over-accumulation of uridine and UTP as well as growth depression. The data suggest that PNK1 is involved in feedback regulation of purine nucleotide biosynthesis and possibly also pyrimidine nucleotide biosynthesis. We additionally report that cold stress leads to accumulation of purine nucleotides, probably by inducing nucleotide biosynthesis, but that this adjustment of nucleotide homeostasis to environmental conditions is not controlled by PNK1.


Subject(s)
Inosine , Nucleosides , Inosine/metabolism , Inosine/pharmacology , Nucleosides/metabolism , Nucleotides , Purine Nucleotides/genetics , Purine Nucleotides/metabolism , Uridine
14.
Nucleic Acids Res ; 52(12): 6733-6747, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38828787

ABSTRACT

Adenosine Deaminases Acting on RNA (ADARs) are enzymes that catalyze the conversion of adenosine to inosine in RNA duplexes. These enzymes can be harnessed to correct disease-causing G-to-A mutations in the transcriptome because inosine is translated as guanosine. Guide RNAs (gRNAs) can be used to direct the ADAR reaction to specific sites. Chemical modification of ADAR guide strands is required to facilitate delivery, increase metabolic stability, and increase the efficiency and selectivity of the editing reaction. Here, we show the ADAR reaction is highly sensitive to ribose modifications (e.g. 4'-C-methylation and Locked Nucleic Acid (LNA) substitution) at specific positions within the guide strand. Our studies were enabled by the synthesis of RNA containing a new, ribose-modified nucleoside analog (4'-C-methyladenosine). Importantly, the ADAR reaction is potently inhibited by LNA or 4'-C-methylation at different positions in the ADAR guide. While LNA at guide strand positions -1 and -2 block the ADAR reaction, 4'-C-methylation only inhibits at the -2 position. These effects are rationalized using high-resolution structures of ADAR-RNA complexes. This work sheds additional light on the mechanism of ADAR deamination and aids in the design of highly selective ADAR guide strands for therapeutic editing using chemically modified RNA.


Subject(s)
Adenosine Deaminase , RNA Editing , Ribose , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/chemistry , Ribose/chemistry , Ribose/metabolism , Humans , Oligonucleotides/chemistry , Oligonucleotides/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/chemistry , Methylation , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/chemistry , Nucleosides/chemistry , Nucleosides/metabolism , RNA/metabolism , RNA/chemistry , Inosine/metabolism , Inosine/chemistry
15.
PLoS Genet ; 19(3): e1010661, 2023 03.
Article in English | MEDLINE | ID: mdl-36877730

ABSTRACT

The most abundant form of RNA editing in metazoa is the deamination of adenosines into inosines (A-to-I), catalyzed by ADAR enzymes. Inosines are read as guanosines by the translation machinery, and thus A-to-I may lead to protein recoding. The ability of ADARs to recode at the mRNA level makes them attractive therapeutic tools. Several approaches for Site-Directed RNA Editing (SDRE) are currently under development. A major challenge in this field is achieving high on-target editing efficiency, and thus it is of much interest to identify highly potent ADARs. To address this, we used the baker yeast Saccharomyces cerevisiae as an editing-naïve system. We exogenously expressed a range of heterologous ADARs and identified the hummingbird and primarily mallard-duck ADARs, which evolved at 40-42°C, as two exceptionally potent editors. ADARs bind to double-stranded RNA structures (dsRNAs), which in turn are temperature sensitive. Our results indicate that species evolved to live with higher core body temperatures have developed ADAR enzymes that target weaker dsRNA structures and would therefore be more effective than other ADARs. Further studies may use this approach to isolate additional ADARs with an editing profile of choice to meet specific requirements, thus broadening the applicability of SDRE.


Subject(s)
Adenosine Deaminase , Body Temperature , Adenosine Deaminase/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA, Double-Stranded/genetics , RNA, Messenger/genetics , Inosine/genetics , Inosine/metabolism
16.
Genes Dev ; 32(3-4): 271-282, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29483152

ABSTRACT

Cellular dsRNAs are edited by adenosine deaminases that act on RNA (ADARs). While editing can alter mRNA-coding potential, most editing occurs in noncoding sequences, the function of which is poorly understood. Using dsRNA immunoprecipitation (dsRIP) and RNA sequencing (RNA-seq), we identified 1523 regions of clustered A-to-I editing, termed editing-enriched regions (EERs), in four stages of Caenorhabditis elegans development, often with highest expression in embryos. Analyses of small RNA-seq data revealed 22- to 23-nucleotide (nt) siRNAs, reminiscent of viral siRNAs, that mapped to EERs and were abundant in adr-1;adr-2 mutant animals. Consistent with roles for these siRNAs in silencing, EER-associated genes (EAGs) were down-regulated in adr-1;adr-2 embryos, and this was dependent on associated EERs and the RNAi factor RDE-4. We observed that ADARs genetically interact with the 26G endogenous siRNA (endo-siRNA) pathway, which likely competes for RNAi components; deletion of factors required for this pathway (rrf-3 or ergo-1) in adr-1;adr-2 mutant strains caused a synthetic phenotype that was rescued by deleting antiviral RNAi factors. Poly(A)+ RNA-seq revealed EAG down-regulation and antiviral gene induction in adr-1;adr-2;rrf-3 embryos, and these expression changes were dependent on rde-1 and rde-4 Our data suggest that ADARs restrict antiviral silencing of cellular dsRNAs.


Subject(s)
Adenosine Deaminase/genetics , Caenorhabditis elegans Proteins/genetics , RNA Editing , RNA Interference , RNA, Double-Stranded/metabolism , Adenosine/metabolism , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Inosine/metabolism , Mutation , RNA, Small Interfering/metabolism , RNA-Dependent RNA Polymerase/genetics , Ribonuclease III/metabolism
17.
RNA ; 29(10): 1509-1519, 2023 10.
Article in English | MEDLINE | ID: mdl-37451866

ABSTRACT

As one of the most prevalent RNA modifications in animals, adenosine-to-inosine (A-to-I) RNA editing facilitates the environmental adaptation of organisms by diversifying the proteome in a temporal-spatial manner. In flies and bees, the editing enzyme Adar has independently gained two different autorecoding sites that form an autofeedback loop, stabilizing the overall editing efficiency. This ensures cellular homeostasis by keeping the normal function of target genes. However, in a broader range of insects, the evolutionary dynamics and significance of this Adar autoregulatory mechanism are unclear. We retrieved the genomes of 377 arthropod species covering the five major insect orders (Hemiptera, Hymenoptera, Coleoptera, Diptera, and Lepidoptera) and aligned the Adar autorecoding sites across all genomes. We found that the two autorecoding sites underwent compensatory gains and losses during the evolution of two orders with the most sequenced species (Diptera and Hymenoptera), and that the two editing sites were mutually exclusive among them: One editable site is significantly linked to another uneditable site. This autorecoding mechanism of Adar could flexibly diversify the proteome and stabilize global editing activity. Many insects independently selected different autorecoding sites to achieve a feedback loop and regulate the global RNA editome, revealing an interesting phenomenon during evolution. Our study reveals the evolutionary force acting on accurate regulation of RNA editing activity in insects and thus deepens our understanding of the functional importance of RNA editing in environmental adaptation and evolution.


Subject(s)
RNA Editing , RNA , Animals , RNA/genetics , RNA Editing/genetics , Proteome/genetics , Base Sequence , Insecta/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Inosine/genetics , Inosine/metabolism
18.
Brief Bioinform ; 24(3)2023 05 19.
Article in English | MEDLINE | ID: mdl-37150785

ABSTRACT

A-to-I editing is the most prevalent RNA editing event, which refers to the change of adenosine (A) bases to inosine (I) bases in double-stranded RNAs. Several studies have revealed that A-to-I editing can regulate cellular processes and is associated with various human diseases. Therefore, accurate identification of A-to-I editing sites is crucial for understanding RNA-level (i.e. transcriptional) modifications and their potential roles in molecular functions. To date, various computational approaches for A-to-I editing site identification have been developed; however, their performance is still unsatisfactory and needs further improvement. In this study, we developed a novel stacked-ensemble learning model, ATTIC (A-To-I ediTing predICtor), to accurately identify A-to-I editing sites across three species, including Homo sapiens, Mus musculus and Drosophila melanogaster. We first comprehensively evaluated 37 RNA sequence-derived features combined with 14 popular machine learning algorithms. Then, we selected the optimal base models to build a series of stacked ensemble models. The final ATTIC framework was developed based on the optimal models improved by the feature selection strategy for specific species. Extensive cross-validation and independent tests illustrate that ATTIC outperforms state-of-the-art tools for predicting A-to-I editing sites. We also developed a web server for ATTIC, which is publicly available at http://web.unimelb-bioinfortools.cloud.edu.au/ATTIC/. We anticipate that ATTIC can be utilized as a useful tool to accelerate the identification of A-to-I RNA editing events and help characterize their roles in post-transcriptional regulation.


Subject(s)
Drosophila melanogaster , RNA Editing , Animals , Mice , Humans , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , RNA/genetics , Adenosine/genetics , Adenosine/metabolism , Inosine/genetics , Inosine/metabolism
19.
Nucleic Acids Res ; 51(16): e87, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37470992

ABSTRACT

Adenosine-to-inosine (A-to-I) RNA editing is a post-transcriptional processing event involved in diversifying the transcriptome and is responsible for various biological processes. In this context, we developed a new method based on the highly selective cleavage activity of Endonuclease V against Inosine and the universal activity of sodium periodate against all RNAs to enrich the inosine-containing RNA and accurately identify the editing sites. We validated the reliability of our method in human brain in both Alu and non-Alu elements. The conserved sites of A-to-I editing in human cells (HEK293T, HeLa, HepG2, K562 and MCF-7) primarily occurs in the 3'UTR of the RNA, which are highly correlated with RNA binding and protein binding. Analysis of the editing sites between the human brain and mouse brain revealed that the editing of exons is more conserved than that in other regions. This method was applied to three neurological diseases (Alzheimer's, epilepsy and ageing) of mouse brain, reflecting that A-to-I editing sites significantly decreased in neuronal activity genes.


Subject(s)
RNA Editing , Transcriptome , Animals , Humans , Mice , Inosine/genetics , Inosine/metabolism , Reproducibility of Results , RNA Editing/genetics , Transcriptome/genetics , Exons , Cell Line
20.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35017296

ABSTRACT

The 2'-5'-oligoadenylate synthetases (OAS) are innate immune sensors of cytosolic double-stranded RNA (dsRNA) that play a critical role in limiting viral infection. How these proteins are able to avoid aberrant activation by cellular RNAs is not fully understood, but adenosine-to-inosine (A-to-I) editing has been proposed to limit accumulation of endogenous RNAs that might otherwise cause stimulation of the OAS/RNase L pathway. Here, we aim to uncover whether and how such sequence modifications can restrict the ability of short, defined dsRNAs to activate the single-domain form of OAS, OAS1. Unexpectedly, we find that all tested inosine-containing dsRNAs have an increased capacity to activate OAS1, whether in a destabilizing (I•U) or standard Watson-Crick-like base pairing (I-C) context. Additional variants with strongly destabilizing A•C mismatches or stabilizing G-C pairs also exhibit increased capacity to activate OAS1, eliminating helical stability as a factor in the relative ability of the dsRNAs to activate OAS1. Using thermal difference spectra and molecular dynamics simulations, we identify both increased helical dynamics and specific local changes in helical structure as important factors in the capacity of short dsRNAs to activate OAS1. These helical features may facilitate more ready adoption of the distorted OAS1-bound conformation or stabilize important structures to predispose the dsRNA for optimal binding and activation of OAS1. These studies thus reveal the molecular basis for the greater capacity of some short dsRNAs to activate OAS1 in a sequence-independent manner.


Subject(s)
2',5'-Oligoadenylate Synthetase/chemistry , 2',5'-Oligoadenylate Synthetase/metabolism , Base Pair Mismatch , RNA, Double-Stranded/metabolism , Base Sequence , Endoribonucleases/metabolism , Enzyme Activation , Humans , Inosine/metabolism , Molecular Dynamics Simulation , Protein Structure, Secondary , RNA Editing , RNA Stability , Structure-Activity Relationship , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL