Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.265
Filter
Add more filters

Publication year range
1.
Nature ; 602(7898): 632-638, 2022 02.
Article in English | MEDLINE | ID: mdl-35140404

ABSTRACT

Animals must set behavioural priority in a context-dependent manner and switch from one behaviour to another at the appropriate moment1-3. Here we probe the molecular and neuronal mechanisms that orchestrate the transition from feeding to courtship in Drosophila melanogaster. We find that feeding is prioritized over courtship in starved males, and the consumption of protein-rich food rapidly reverses this order within a few minutes. At the molecular level, a gut-derived, nutrient-specific neuropeptide hormone-Diuretic hormone 31 (Dh31)-propels a switch from feeding to courtship. We further address the underlying kinetics with calcium imaging experiments. Amino acids from food acutely activate Dh31+ enteroendocrine cells in the gut, increasing Dh31 levels in the circulation. In addition, three-photon functional imaging of intact flies shows that optogenetic stimulation of Dh31+ enteroendocrine cells rapidly excites a subset of brain neurons that express Dh31 receptor (Dh31R). Gut-derived Dh31 excites the brain neurons through the circulatory system within a few minutes, in line with the speed of the feeding-courtship behavioural switch. At the circuit level, there are two distinct populations of Dh31R+ neurons in the brain, with one population inhibiting feeding through allatostatin-C and the other promoting courtship through corazonin. Together, our findings illustrate a mechanism by which the consumption of protein-rich food triggers the release of a gut hormone, which in turn prioritizes courtship over feeding through two parallel pathways.


Subject(s)
Drosophila Proteins , Insect Hormones , Animals , Courtship , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Insect Hormones/metabolism , Male , Nutrients , Sexual Behavior, Animal/physiology
2.
Development ; 150(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37218457

ABSTRACT

Female insects can enter reproductive diapause, a state of suspended egg development, to conserve energy under adverse environments. In many insects, including the fruit fly, Drosophila melanogaster, reproductive diapause, also frequently called reproductive dormancy, is induced under low-temperature and short-day conditions by the downregulation of juvenile hormone (JH) biosynthesis in the corpus allatum (CA). In this study, we demonstrate that neuropeptide Diuretic hormone 31 (DH31) produced by brain neurons that project into the CA plays an essential role in regulating reproductive dormancy by suppressing JH biosynthesis in adult D. melanogaster. The CA expresses the gene encoding the DH31 receptor, which is required for DH31-triggered elevation of intracellular cAMP in the CA. Knocking down Dh31 in these CA-projecting neurons or DH31 receptor in the CA suppresses the decrease of JH titer, normally observed under dormancy-inducing conditions, leading to abnormal yolk accumulation in the ovaries. Our findings provide the first molecular genetic evidence demonstrating that CA-projecting peptidergic neurons play an essential role in regulating reproductive dormancy by suppressing JH biosynthesis.


Subject(s)
Drosophila melanogaster , Insect Hormones , Animals , Female , Corpora Allata , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Juvenile Hormones , Neurons , Insect Hormones/genetics , Insect Hormones/physiology , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Reproduction
3.
Genes Dev ; 32(2): 140-155, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29440246

ABSTRACT

Daily body temperature rhythm (BTR) is essential for maintaining homeostasis. BTR is regulated separately from locomotor activity rhythms, but its molecular basis is largely unknown. While mammals internally regulate BTR, ectotherms, including Drosophila, exhibit temperature preference rhythm (TPR) behavior to regulate BTR. Here, we demonstrate that the diuretic hormone 31 receptor (DH31R) mediates TPR during the active phase in Drosophila DH31R is expressed in clock cells, and its ligand, DH31, acts on clock cells to regulate TPR during the active phase. Surprisingly, the mouse homolog of DH31R, calcitonin receptor (Calcr), is expressed in the suprachiasmatic nucleus (SCN) and mediates body temperature fluctuations during the active phase in mice. Importantly, DH31R and Calcr are not required for coordinating locomotor activity rhythms. Our results represent the first molecular evidence that BTR is regulated distinctly from locomotor activity rhythms and show that DH31R/Calcr is an ancient specific mediator of BTR during the active phase in organisms ranging from ectotherms to endotherms.


Subject(s)
Body Temperature Regulation , Drosophila Proteins/physiology , Receptors, Calcitonin/physiology , Animals , Brain/metabolism , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Insect Hormones/physiology , Locomotion , Mice , Mutation , Neuropeptides/physiology , Receptors, Calcitonin/metabolism , Suprachiasmatic Nucleus/metabolism
4.
Nature ; 574(7779): 559-564, 2019 10.
Article in English | MEDLINE | ID: mdl-31645735

ABSTRACT

Although glucose-sensing neurons were identified more than 50 years ago, the physiological role of glucose sensing in metazoans remains unclear. Here we identify a pair of glucose-sensing neurons with bifurcated axons in the brain of Drosophila. One axon branch projects to insulin-producing cells to trigger the release of Drosophila insulin-like peptide 2 (dilp2) and the other extends to adipokinetic hormone (AKH)-producing cells to inhibit secretion of AKH, the fly analogue of glucagon. These axonal branches undergo synaptic remodelling in response to changes in their internal energy status. Silencing of these glucose-sensing neurons largely disabled the response of insulin-producing cells to glucose and dilp2 secretion, disinhibited AKH secretion in corpora cardiaca and caused hyperglycaemia, a hallmark feature of diabetes mellitus. We propose that these glucose-sensing neurons maintain glucose homeostasis by promoting the secretion of dilp2 and suppressing the release of AKH when haemolymph glucose levels are high.


Subject(s)
Brain/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Glucagon/metabolism , Glucose/metabolism , Insulin/metabolism , Neurons/metabolism , Animals , Axons/metabolism , Brain/anatomy & histology , Drosophila Proteins/metabolism , Drosophila melanogaster/anatomy & histology , Glucose/analysis , Insect Hormones/metabolism , Male , Neural Inhibition , Neural Pathways , Neuropeptides/chemistry , Neuropeptides/metabolism , Neurotransmitter Agents/metabolism , Oligopeptides/metabolism , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism
5.
BMC Genomics ; 25(1): 327, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565997

ABSTRACT

Food security is important for the ever-growing global population. Soybean, Glycine max (L.) Merr., is cultivated worldwide providing a key source of food, protein and oil. Hence, it is imperative to maintain or to increase its yield under different conditions including challenges caused by abiotic and biotic stresses. In recent years, the soybean pod-sucking stinkbug Riptortus pedestris has emerged as an important agricultural insect pest in East, South and Southeast Asia. Here, we present a genomics resource for R. pedestris including its genome assembly, messenger RNA (mRNA) and microRNA (miRNA) transcriptomes at different developmental stages and from different organs. As insect hormone biosynthesis genes (genes involved in metamorphosis) and their regulators such as miRNAs are potential targets for pest control, we analyzed the sesquiterpenoid (juvenile) and ecdysteroid (molting) hormone biosynthesis pathway genes including their miRNAs and relevant neuropeptides. Temporal gene expression changes of these insect hormone biosynthesis pathways were observed at different developmental stages. Similarly, a diet-specific response in gene expression was also observed in both head and salivary glands. Furthermore, we observed that microRNAs (bantam, miR-14, miR-316, and miR-263) of R. pedestris fed with different types of soybeans were differentially expressed in the salivary glands indicating a diet-specific response. Interestingly, the opposite arms of miR-281 (-5p and -3p), a miRNA involved in regulating development, were predicted to target Hmgs genes of R. pedestris and soybean, respectively. These observations among others highlight stinkbug's responses as a function of its interaction with soybean. In brief, the results of this study not only present salient findings that could be of potential use in pest management and mitigation but also provide an invaluable resource for R. pedestris as an insect model to facilitate studies on plant-pest interactions.


Subject(s)
Heteroptera , Insect Hormones , MicroRNAs , Animals , Glycine max/genetics , Heteroptera/genetics , Transcriptome , MicroRNAs/genetics , Gene Expression Profiling
6.
Biochem Biophys Res Commun ; 717: 149992, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38714013

ABSTRACT

Insects have about 50 neuropeptide genes and about 70 genes, coding for neuropeptide G protein-coupled receptors (GPCRs). An important, but small family of evolutionarily related insect neuropeptides consists of adipokinetic hormone (AKH), corazonin, and AKH/corazonin-related peptide (ACP). Normally, insects have one specific GPCR for each of these neuropeptides. The tick Ixodes scapularis is not an insect, but belongs to the subphylum Chelicerata, which comprises ticks, scorpions, mites, spiders, and horseshoe crabs. Many of the neuropeptides and neuropeptide GPCRs occurring in insects, also occur in chelicerates, illustrating that insects and chelicerates are evolutionarily closely related. The tick I. scapularis is an ectoparasite and health risk for humans, because it infects its human host with dangerous pathogens during a blood meal. Understanding the biology of ticks will help researchers to prevent tick-borne diseases. By annotating the I. scapularis genome sequence, we previously found that ticks contain as many as five genes, coding for presumed ACP receptors. In the current paper, we cloned these receptors and expressed each of them in Chinese Hamster Ovary (CHO) cells. Each expressed receptor was activated by nanomolar concentrations of ACP, demonstrating that all five receptors were functional ACP receptors. Phylogenetic tree analyses showed that the cloned tick ACP receptors were mostly related to insect ACP receptors and, next, to insect AKH receptors, suggesting that ACP receptor genes and AKH receptor genes originated by gene duplications from a common ancestor. Similar duplications have probably occurred for the ligand genes, during a process of ligand/receptor co-evolution. Interestingly, chelicerates, in contrast to all other arthropods, do not have AKH or AKH receptor genes. Therefore, the ancestor of chelicerates might have lost AKH and AKH receptor genes and functionally replaced them by ACP and ACP receptor genes. For the small family of AKH, ACP, and corazonin receptors and their ligands, gene losses and gene gains occur frequently between the various ecdysozoan clades. Tardigrades, for example, which are well known for their survival in extreme environments, have as many as ten corazonin receptor genes and six corazonin peptide genes, while insects only have one of each, or none.


Subject(s)
Insect Hormones , Ixodes , Neuropeptides , Oligopeptides , Pyrrolidonecarboxylic Acid , Receptors, G-Protein-Coupled , Animals , Neuropeptides/metabolism , Neuropeptides/genetics , Insect Hormones/metabolism , Insect Hormones/genetics , Ixodes/metabolism , Ixodes/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Oligopeptides/metabolism , Oligopeptides/genetics , Oligopeptides/chemistry , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism , Phylogeny , Amino Acid Sequence , Cricetulus , CHO Cells , Insect Proteins/genetics , Insect Proteins/metabolism , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/genetics
7.
Gen Comp Endocrinol ; 345: 114393, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37865149

ABSTRACT

Gonadotropin-releasing hormone (GnRH) superfamily comprises multiple families of signaling peptides in both protostomes and deuterostomes. Among this superfamily, vertebrate GnRH stimulates reproduction, but other GnRH superfamily members elicit diverse pleiotropic effects. Within the GnRH superfamily members, adipokinetic hormone (AKH) and its receptor are well described in ecdysozoans but understudied in other lineages. To fill this knowledge gap, we deorphanized a putative receptor for a lophotrochozoan AKH in a gastropod mollusk, Aplysia californica, and named it Aplca-AKHR. Phylogenetic analysis revealed an orthologous relationship of Aplca-AKHR with ecdysozoan AKHRs and other putative lophotrochozoan AKHRs. Aplca-AKHR bound specifically to the previously identified Aplca-AKH with high affinity and activated the inositol phosphate pathway. Aplca-AKHR was expressed widely among central and peripheral tissues, but most prominently in several central ganglia and the heart. The expression of Aplca-AKHR was downregulated by a hyposaline challenge, consistent with a role in volume and fluid regulation previously described for its ligand, Aplca-AKH. In summary, this is the first pairing of a lophotrochozoan AKH with its cognate receptor. Expression data further support diverse central and peripheral roles, including volume and fluid control, of this ligand/receptor pair.


Subject(s)
Gastropoda , Insect Hormones , Animals , Aplysia/genetics , Aplysia/metabolism , Amino Acid Sequence , Gastropoda/metabolism , Phylogeny , Ligands , Gonadotropin-Releasing Hormone/metabolism , Insect Hormones/metabolism , Pyrrolidonecarboxylic Acid/metabolism
8.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33785598

ABSTRACT

Maintaining internal salt and water balance in response to fluctuating external conditions is essential for animal survival. This is particularly true for insects as their high surface-to-volume ratio makes them highly susceptible to osmotic stress. However, the cellular and hormonal mechanisms that mediate the systemic control of osmotic homeostasis in beetles (Coleoptera), the largest group of insects, remain largely unidentified. Here, we demonstrate that eight neurons in the brain of the red flour beetle Tribolium castaneum respond to internal changes in osmolality by releasing diuretic hormone (DH) 37 and DH47-homologs of vertebrate corticotropin-releasing factor (CRF) hormones-to control systemic water balance. Knockdown of the gene encoding the two hormones (Urinate, Urn8) reduces Malpighian tubule secretion and restricts organismal fluid loss, whereas injection of DH37 or DH47 reverses these phenotypes. We further identify a CRF-like receptor, Urinate receptor (Urn8R), which is exclusively expressed in a functionally unique secondary cell in the beetle tubules, as underlying this response. Activation of Urn8R increases K+ secretion, creating a lumen-positive transepithelial potential that drives fluid secretion. Together, these data show that beetle Malpighian tubules operate by a fundamentally different mechanism than those of other insects. Finally, we adopt a fluorescent labeling strategy to identify the evolutionary origin of this unusual tubule architecture, revealing that it evolved in the last common ancestor of the higher beetle families. Our work thus uncovers an important homeostatic program that is key to maintaining osmotic control in beetles, which evolved parallel to the radiation of the "advanced" beetle lineages.


Subject(s)
Evolution, Molecular , Malpighian Tubules/physiology , Tribolium/physiology , Water-Electrolyte Balance , Animals , Brain/cytology , Brain/physiology , Insect Hormones/metabolism , Malpighian Tubules/cytology , Neurons/physiology , Tribolium/genetics
9.
Article in English | MEDLINE | ID: mdl-38242349

ABSTRACT

We analyse the developmental and circadian profiles of expression of the genes responsible for ecdysteroidogenesis (Halloween genes) in the PGs of Rhodnius prolixus throughout larval-adult development. Extensive use of in vitro techniques enabled multiple different parameters to be measured in individual PGs. Expression of disembodied and spook closely paralleled the ecdysteroid synthesis of the same PGs, and the ecdysteroid titre in vivo, but with functionally significant exceptions. Various tissues other than PGs expressed one, both or neither genes. Both gonads express both genes in pharate adults (larvae close to ecdysis). Both genes were expressed at low, but significant, levels in UF Rhodnius, raising questions concerning how developmental arrest is maintained in UF animals. IHC confirmed the subcellular localisation of the coded proteins. Gene knockdown suppressed transcription of both genes and ecdysteroid synthesis, with spook apparently regulating the downstream gene disembodied. Transcription of both genes occurred with a daily rhythm (with peaks at night) that was confirmed to be under circadian control using aperiodic conditions. The complex behaviour of the rhythm in LL implied two anatomically distinct oscillators regulate this transcription rhythm. First, the circadian clock in the PGs and second, the circadian rhythm of of Rhodnius PTTH which is released rhythmically from the brain under control of the circadian clock therein, both of which were described previously. We conclude ecdysteroidogenesis in Rhodnius PGs employs a similar pathway as other insects, but its control is complex, involving mechanisms both within and outside the PGs.


Subject(s)
Insect Hormones , Rhodnius , Animals , Ecdysteroids/metabolism , Rhodnius/genetics , Rhodnius/metabolism , Insect Hormones/genetics , Insect Hormones/metabolism , Circadian Rhythm/physiology , Larva/metabolism
10.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791179

ABSTRACT

In holometabolous insects, such as Drosophila and Bombyx, prothoracicotropic hormone (PTTH) is well established to be critical in controlling developmental transitions and metamorphosis by stimulating the biosynthesis of ecdysone in the prothoracic glands (PGs). However, the physiological role of PTTH and the receptor Torso in hemimetabolous insects remains largely unexplored. In this study, homozygous PTTH- and Torso-null mutants of the brown planthopper (BPH), Nilaparvata lugens, were successfully generated by employing clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR-Cas9). Further characterization showed that both NlPTTH-/- and NlTorso-/- mutants exhibited prolonged nymphal duration and increased final adult size. Enzyme-linked immunosorbent assay (ELISA) revealed that NlPTTH-/- and NlTorso-/- mutants exhibited a significant reduction in 20-hydroxyecdysone (20E) in fifth-instar nymphs at 48 h post-ecdysis compared to Wt controls. Furthermore, our results indicated that both NlPTTH-/- and NlTorso-/- mutants had shortened lifespan, reduced female fecundity, and reduced egg hatching rates in adults. These findings suggest a conserved role for the PTTH-Torso signaling system in the regulation of developmental transitions by stimulating ecdysone biosynthesis in hemimetabolous insects.


Subject(s)
Ecdysone , Hemiptera , Insect Hormones , Insect Proteins , Signal Transduction , Animals , Female , Male , Body Size , Ecdysone/metabolism , Gene Expression Regulation, Developmental , Hemiptera/growth & development , Hemiptera/genetics , Hemiptera/metabolism , Homeostasis , Insect Hormones/metabolism , Insect Hormones/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Metamorphosis, Biological , Reproduction
11.
Development ; 147(14)2020 07 24.
Article in English | MEDLINE | ID: mdl-32631830

ABSTRACT

The activation of a neuroendocrine system that induces a surge in steroid production is a conserved initiator of the juvenile-to-adult transition in many animals. The trigger for maturation is the secretion of brain-derived neuropeptides, yet the mechanisms controlling the timely onset of this event remain ill-defined. Here, we show that a regulatory feedback circuit controlling the Drosophila neuropeptide Prothoracicotropic hormone (PTTH) triggers maturation onset. We identify the Ecdysone Receptor (EcR) in the PTTH-expressing neurons (PTTHn) as a regulator of developmental maturation onset. Loss of EcR in these PTTHn impairs PTTH signaling, which delays maturation. We find that the steroid ecdysone dose-dependently affects Ptth transcription, promoting its expression at lower concentrations and inhibiting it at higher concentrations. Our findings indicate the existence of a feedback circuit in which rising ecdysone levels trigger, via EcR activity in the PTTHn, the PTTH surge that generates the maturation-inducing ecdysone peak toward the end of larval development. Because steroid feedback is also known to control the vertebrate maturation-inducing hypothalamic-pituitary-gonadal axis, our findings suggest an overall conservation of the feedback-regulatory neuroendocrine circuitry that controls the timing of maturation initiation.


Subject(s)
Drosophila Proteins/metabolism , Insect Hormones/metabolism , Receptors, Steroid/metabolism , Animals , Body Size , Drosophila/growth & development , Drosophila/metabolism , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/genetics , Ecdysterone/pharmacology , Gene Expression Regulation, Developmental/drug effects , Insect Hormones/antagonists & inhibitors , Insect Hormones/genetics , Larva/growth & development , Larva/metabolism , Metamorphosis, Biological , Microscopy, Fluorescence , Neurons/metabolism , RNA Interference , RNA, Guide, Kinetoplastida/metabolism , Receptors, Steroid/antagonists & inhibitors , Receptors, Steroid/genetics , Signal Transduction
12.
Insect Mol Biol ; 32(6): 615-633, 2023 12.
Article in English | MEDLINE | ID: mdl-37382487

ABSTRACT

Adipokinetic hormone (AKH) is a neuropeptide produced in the insect corpora cardiaca that plays an essential role in mobilising carbohydrates and lipids from the fat body to the haemolymph. AKH acts by binding to a rhodopsin-like G protein-coupled receptor (GPCR), the adipokinetic hormone receptor (AKHR). In this study, we tackle AKH ligand and receptor gene evolution as well as the evolutionary origins of AKH gene paralogues from the order Blattodea (termites and cockroaches). Phylogenetic analyses of AKH precursor sequences point to an ancient AKH gene duplication event in the common ancestor of Blaberoidea, yielding a new group of putative decapeptides. In total, 16 different AKH peptides from 90 species were obtained. Two octapeptides and seven putatively novel decapeptides are predicted for the first time. AKH receptor sequences from 18 species, spanning solitary cockroaches and subsocial wood roaches as well as lower and higher termites, were subsequently acquired using classical molecular methods and in silico approaches employing transcriptomic data. Aligned AKHR open reading frames revealed 7 highly conserved transmembrane regions, a typical arrangement for GPCRs. Phylogenetic analyses based on AKHR sequences support accepted relationships among termite, subsocial (Cryptocercus spp.) and solitary cockroach lineages to a large extent, while putative post-translational modification sites do not greatly differ between solitary and subsocial roaches and social termites. Our study provides important information not only for AKH and AKHR functional research but also for further analyses interested in their development as potential candidates for biorational pest control agents against invasive termites and cockroaches.


Subject(s)
Cockroaches , Insect Hormones , Animals , Cockroaches/metabolism , Phylogeny , Oligopeptides/metabolism , Insect Hormones/metabolism , Pyrrolidonecarboxylic Acid/metabolism
13.
Insect Mol Biol ; 32(4): 352-362, 2023 08.
Article in English | MEDLINE | ID: mdl-36815346

ABSTRACT

The circadian clock plays an integral role in hormone biosynthesis and secretion. However, how the circadian clock precisely coordinates hormonal homeostasis to maintain normal animal development remains unclear. Here, we show that knocking out the core clock gene Cryptochrome 1 (Cry1) significantly delays the developmental time in Bombyx mori. This study focuses on the ecdysone and juvenile hormone signalling pathways of fifth instar larvae with the longest developmental time delay. We found that the mutant reduced prothoracicotropic hormone synthesis in the brain, and could not produce sufficient ecdysone in the prothoracic gland, resulting in a delayed peak of 20-hydroxyecdysone titre in the hemolymph of fifth instar larvae, prolonging developmental time. Moreover, further investigation revealed that the mutant enhanced juvenile hormone biosynthesis and signalling pathway and that this higher juvenile hormone titre also resulted in prolonged developmental time in fifth instar larvae. Our results provide insights into the molecular mechanisms by which the circadian clock regulates animal development by maintaining hormonal homeostasis.


Subject(s)
Bombyx , Circadian Clocks , Insect Hormones , Animals , Juvenile Hormones/metabolism , Ecdysone/metabolism , Bombyx/metabolism , Insect Hormones/metabolism , Larva/genetics , Larva/metabolism
14.
Amino Acids ; 55(11): 1641-1654, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37882863

ABSTRACT

Small neuropeptides from the corpora cardiaca are responsible in cockroaches for the mobilisation of trehalose from the fat body into the haemolymph. Such hypertrehalosaemic hormones (HrTHs) belong to the large family of insect adipokinetic hormones (AKHs); a few HrTHs were previously sequenced from cockroaches, and from genomic and/or transcriptomic information one may predict the genes encoding HrTHs from more species. Definite elucidation of the primary structure of the mature peptide with putative modifications needs analytical chemical methods. In the current study, we use high-resolution mass spectrometry coupled with liquid chromatography to identify unequivocally the HrTHs of 13 cockroach species. Either genomic/transcriptomic information was available for most of the species examined, or from related species. We confirm predicted novel sequences and find hydroxyproline modification for the majority of the peptides. The novel decapeptides are structurally close to Bladi-HrTH, which is found in all seven of the investigated blaberid subfamilies. Bladi-HrTH and all the novel peptides elicit a hypertrehalosaemic response in Periplaneta americana, a blattid cockroach.


Subject(s)
Cockroaches , Insect Hormones , Animals , Amino Acid Sequence , Oligopeptides/chemistry , Pyrrolidonecarboxylic Acid , Peptides/chemistry , Mass Spectrometry , Insect Hormones/chemistry
15.
Arch Insect Biochem Physiol ; 113(3): e22016, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37073494

ABSTRACT

Previous studies had shown that the corpora cardiaca (CC) of the Indian stick insect, Carausius morosus, synthesizes two hypertrehalosemic hormones (HrTHs)-decapeptides which differ in the way that the chromatographically less-hydrophobic form, code-named Carmo-HrTH-I, is modified by an unique C-mannosylated tryptophan residue at position 8. The availability of milligram amounts of this modified peptide in synthetic form now makes it possible to study physico-chemical and physiological properties. This study revealed that the synthetic peptide co-elutes with the natural peptide from the CC chromatographically, is heat stable for at least 30 min at 100°C, and causes hyperlipemia in acceptor locusts (a heterologous bioassay) and hypertrehalosemia in ligated stick insects (conspecific bioassay). In vitro incubation of Carmo-HrTH-I together with stick insect hemolymph (a natural source of peptidases) demonstrated clearly via chromatographic separation that the C-mannosylated Trp bond is stable and is not broken down to Carmo-HrTH-II (the more-hydrophobic decapeptide with an unmodified Trp residue). This notwithstanding, breakdown of Carmo-HrTH-I did take place, and the half-life of the compound was calculated as about 5 min. Finally, the natural peptide is releasable when CC are treated in vitro with a depolarizing saline (high potassium concentration) suggesting its role as true HrTHs in the stick insect. In conclusion, the results indicate that Carmo-HrTH-I which is synthesized in the CC is released into the hemolymph, binds to a HrTH receptor in the fat body, activates the carbohydrate metabolism pathway and is quickly inactivated in the hemolymph by (an) as yet unknown peptidase(s).


Subject(s)
Insect Hormones , Neuropeptides , Animals , Amino Acid Sequence , Oligopeptides/pharmacology , Oligopeptides/chemistry , Neuropeptides/metabolism , Insecta/metabolism , Peptides , Neoptera/metabolism , Insect Hormones/metabolism , Pyrrolidonecarboxylic Acid/chemistry
16.
Mol Cell ; 60(6): 941-52, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26698662

ABSTRACT

In insects, brain-derived Prothoracicotropic hormone (PTTH) activates the receptor tyrosine kinase (RTK) Torso to initiate metamorphosis through the release of ecdysone. We have determined the crystal structure of silkworm PTTH in complex with the ligand-binding region of Torso. Here we show that ligand-induced Torso dimerization results from the sequential and negatively cooperative formation of asymmetric heterotetramers. Mathematical modeling of receptor activation based upon our biophysical studies shows that ligand pulses are "buffered" at low receptor levels, leading to a sustained signal. By contrast, high levels of Torso develop the signal intensity and duration of a noncooperative system. We propose that this may allow Torso to coordinate widely different functions from a single ligand by tuning receptor levels. Phylogenic analysis indicates that Torso is found outside arthropods, including human parasitic roundworms. Together, our findings provide mechanistic insight into how this receptor system, with roles in embryonic and adult development, is regulated.


Subject(s)
Bombyx/metabolism , Insect Hormones/chemistry , Insect Hormones/metabolism , Receptor Protein-Tyrosine Kinases/chemistry , Receptor Protein-Tyrosine Kinases/metabolism , Animals , Binding Sites , Bombyx/chemistry , Crystallography, X-Ray , Gene Expression Regulation, Developmental , Humans , Insect Proteins/chemistry , Insect Proteins/metabolism , Models, Molecular , Phylogeny , Protein Multimerization , Receptors, Interleukin-17/chemistry , Signal Transduction
17.
Gen Comp Endocrinol ; 332: 114184, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36455643

ABSTRACT

Prothoracicotropic hormone (PTTH) is a central regulator of insect development that regulates the production of the steroid moulting hormones (ecdysteroids) from the prothoracic glands (PGs). Rhodnius PTTH was the first brain neurohormone discovered in any animal almost 100 years ago but has eluded identification and no homologue of Bombyx mori PTTH occurs in its genome. Here, we report Rhodnius PTTH is the first noggin-like PTTH found. It differs in important respects from known PTTHs and is the first PTTH from the Hemimetabola (Exopterygota) to be fully analysed. Recorded PTTHs are widespread in Holometabola but close to absent in hemimetabolous orders. We concluded Rhodnius PTTH likely differed substantially from the known ones. We identified one Rhodnius gene that coded a noggin-like protein (as defined by Molina et al., 2009) that had extensive similarities with known PTTHs but also had two additional cysteines. Sequence and structural analysis showed known PTTHs are closely related to noggin-like proteins, as both possess a growth factor cystine knot preceded by a potential cleavage site. The gene is significantly expressed only in the brain, in a few cells of the dorsal protocerebrum. We vector-expressed the sequence from the potential cleavage site to the C-terminus. This protein was strongly steroidogenic on PGs in vitro. An antiserum to the protein removed the steroidogenic protein released by the brain. RNAi performed on brains in vitro showed profound suppression of transcription of the gene and of production and release of PTTH and thus of ecdysteroid production by PGs. In vivo, the gene is expressed throughout development, in close synchrony with PTTH release, ecdysteroid production by PGs and the ecdysteroid titre. The Rhodnius PTTH monomer is 17kDa and immunoreactive to anti-PTTH of Bombyx mori (a holometabolan). Bombyx PTTH also mildly stimulated Rhodnius PGs. The two additional cysteines form a disulfide at the tip of finger 2, causing a loop of residues to protrude from the finger. A PTTH variant without this loop failed to stimulate PGs, showing the loop is essential for PTTH activity. It is considered that PTTHs of Holometabola evolved from a noggin-like protein in the ancestor of Holometabola and Hemiptera, c.400ma, explaining the absence of holometabolous-type PTTHs from hemimetabolous orders and the differences of Rhodnius PTTH from them. Noggin-like proteins studied from Hemiptera to Arachnida were homologous with Rhodnius PTTH and may be common as PTTHs or other hormones in lower insects.


Subject(s)
Bombyx , Insect Hormones , Rhodnius , Animals , Ecdysteroids/metabolism , Rhodnius/genetics , Rhodnius/metabolism , Circadian Rhythm/physiology , Insect Hormones/genetics , Insect Hormones/metabolism , Larva/metabolism
18.
Gen Comp Endocrinol ; 330: 114145, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36244431

ABSTRACT

The adipokinetic hormone/corazonin-related peptide (ACP) is an insect neuropeptide structurally intermediate between corazonin (CRZ) and adipokinetic hormone (AKH). Unlike the AKH and CRZ signaling systems that are widely known for their roles in the mobilization of energy substrates and stress responses, respectively, the main role of ACP and its receptor (ACPR) remains unclear in most arthropods. The current study aimed to localize the distribution of ACP in the nervous system and provide insight into its physiological roles in the disease vector mosquito, Aedes aegypti. Immunohistochemical analysis and fluorescence in situ hybridization localized the ACP peptide and transcript within a number of cells in the central nervous system, including two pairs of laterally positioned neurons in the protocerebrum of the brain and a few ventrally localized neurons within the pro- and mesothoracic regions of the fused thoracic ganglia. Further, extensive ACP-immunoreactive axonal projections with prominent blebs and varicosities were observed traversing the abdominal ganglia. Given the prominent enrichment of ACPR expression within the abdominal ganglia of adult A. aegypti mosquitoes as determined previously, the current results indicate that ACP may function as a neurotransmitter and/or neuromodulator facilitating communication between the brain and posterior regions of the nervous system. In an effort to elucidate a functional role for ACP signaling, biochemical measurement of energy substrates in female mosquitoes revealed a reduction in abdominal fat body in response to ACP that matched the actions of AKH, but interestingly, a corresponding hypertrehalosaemic effect was only found in response to AKH since ACP did not influence circulating carbohydrate levels. Comparatively, both ACP and AKH led to a significant increase in haemolymph carbohydrate levels in male mosquitoes while both peptides had no influence on their glycogen stores. Neither ACP nor AKH influenced circulating or stored lipid levels in both male and female mosquitoes. Collectively, these results reveal ACP signaling in mosquitoes may have complex sex-specific actions, and future research should aim to expand knowledge on the role of this understudied neuropeptide.


Subject(s)
Aedes , Insect Hormones , Neuropeptides , Humans , Animals , Male , Female , Aedes/genetics , Aedes/metabolism , In Situ Hybridization, Fluorescence , Mosquito Vectors , Phylogeny , Insect Hormones/genetics , Insect Hormones/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Carbohydrates
19.
Gen Comp Endocrinol ; 331: 114165, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36368438

ABSTRACT

Protein tyrosine phosphorylation is a reversible, dynamic process regulated by the activities of tyrosine kinases and tyrosine phosphatases. Although the involvement of tyrosine kinases in the prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in insect prothoracic glands (PGs) has been documented, few studies have been conducted on the involvement of protein tyrosine phosphatases (PTPs) in PTTH-stimulated ecdysteroidogenesis. In the present study, we investigated the correlation between PTPs and PTTH-stimulated ecdysteroidogenesis in Bombyx mori PGs. Our results showed that the basal PTP enzymatic activities exhibited development-specific changes during the last larval instar and pupation stage, with high activities being detected during the later stages of the last larval instar. PTP enzymatic activity was stimulated by PTTH treatment both in vitro and in vivo. Pretreatment with phenylarsine oxide (PAO) and benzylphosphonic acid (BPA), two chemical inhibitors of tyrosine phosphatase, reduced PTTH-stimulated enzymatic activity. Determination of ecdysteroid secretion showed that treatment with PAO and BPA did not affect basal ecdysteroid secretion, but greatly inhibited PTTH-stimulated ecdysteroid secretion, indicating that PTTH-stimulated PTP activity is indeed involved in ecdysteroid secretion. PTTH-stimulated phosphorylation of the extracellular signal-regulated kinase (ERK) and 4E-binding protein (4E-BP) was partially inhibited by pretreatment with either PAO or BPA, indicating the potential link between PTPs and phosphorylation of ERK and 4E-BP. In addition, we also found that in vitro treatment with 20-hydroxyecdysone did not affect PTP enzymatic activity. We further investigated the expressions of two important PTPs (PTP 1B (PTP1B) and the phosphatase and tension homologue (PTEN)) in Bombyx PGs. Our immunoblotting analysis showed that B. mori PGs contained the proteins of PTP1B and PTEN, with PTP1B protein undergoing development-specific changes. Protein levels of PTP1B and PTEN were not affected by PTTH treatment. The gene expression levels of PTP1B and PTEN showed development-specific changes. From these results, we suggest that PTTH-regulated PTP signaling may crosstalk with ERK and target of rapamycin (TOR) signaling pathways and is a necessary component for stimulation of ecdysteroid secretion.


Subject(s)
Bombyx , Insect Hormones , Animals , Bombyx/genetics , Ecdysteroids/metabolism , Insect Hormones/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Larva/metabolism , Protein Tyrosine Phosphatases/metabolism , Tyrosine/metabolism
20.
Proc Natl Acad Sci U S A ; 117(2): 1097-1106, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31843923

ABSTRACT

The molecular mechanisms by which animals integrate external stimuli with internal energy balance to regulate major developmental and reproductive events still remain enigmatic. We investigated this aspect in the marine bristleworm, Platynereis dumerilii, a species where sexual maturation is tightly regulated by both metabolic state and lunar cycle. Our specific focus was on ligands and receptors of the gonadotropin-releasing hormone (GnRH) superfamily. Members of this superfamily are key in triggering sexual maturation in vertebrates but also regulate reproductive processes and energy homeostasis in invertebrates. Here we show that 3 of the 4 gnrh-like (gnrhl) preprohormone genes are expressed in specific and distinct neuronal clusters in the Platynereis brain. Moreover, ligand-receptor interaction analyses reveal a single Platynereis corazonin receptor (CrzR) to be activated by CRZ1/GnRHL1, CRZ2/GnRHL2, and GnRHL3 (previously classified as AKH1), whereas 2 AKH-type hormone receptors (GnRHR1/AKHR1 and GnRHR2/AKHR2) respond only to a single ligand (GnRH2/GnRHL4). Crz1/gnrhl1 exhibits a particularly strong up-regulation in sexually mature animals, after feeding, and in specific lunar phases. Homozygous crz1/gnrhl1 knockout animals exhibit a significant delay in maturation, reduced growth, and attenuated regeneration. Through a combination of proteomics and gene expression analysis, we identify enzymes involved in carbohydrate metabolism as transcriptional targets of CRZ1/GnRHL1 signaling. Our data suggest that Platynereis CRZ1/GnRHL1 coordinates glycoprotein turnover and energy homeostasis with growth and sexual maturation, integrating both metabolic and developmental demands with the worm's monthly cycle.


Subject(s)
Gonadotropin-Releasing Hormone/metabolism , Homeostasis , Insect Proteins/metabolism , Moon , Neuropeptides/metabolism , Polychaeta/physiology , Sexual Maturation/physiology , Signal Transduction/physiology , Animals , Brain , DNA-Binding Proteins/genetics , Gene Knockdown Techniques , Gonadotropin-Releasing Hormone/genetics , Insect Hormones/genetics , Insect Hormones/metabolism , Insect Proteins/genetics , Invertebrates/genetics , Neuropeptides/genetics , Phylogeny , Polychaeta/genetics , Polychaeta/growth & development , Receptors, Neuropeptide , Receptors, Peptide/genetics , Signal Transduction/genetics , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL