Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Malar J ; 20(1): 163, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33757533

ABSTRACT

BACKGROUND: Approximately 70% of Kenya's population is at risk for malaria. The core vector control methods in Kenya are insecticide-treated mosquito nets (ITNs) and indoor residual spraying, with supplementary larval source management. In 2015, 21% of ITNs were accessed through the private retail sector. Despite the private sector role in supplying mosquito control products (MCPs), there is little evidence on the availability, sales trends, and consumer preferences for MCPs other than ITNs. This study, a component of a larger research programme focused on evaluating a spatial repellent intervention class for mosquito-borne disease control, addressed this evidence gap on the role of the private sector in supplying MCPs. METHODS: A cross-sectional survey was deployed in a range of retail outlets in Busia County to characterize MCP availability, sales trends, and distribution channels. The questionnaire included 32 closed-ended and four open-ended questions with short answer responses. Descriptive analysis of frequency counts and percentages was carried out to glean insights about commercially available MCPs and the weighted average rank was used to determine consumer preferences for MCPs. Open-ended data was analysed thematically. RESULTS: Retail outlets that stocked MCPs commonly stocked mosquito coils (73.0%), topical repellents (38.1%), aerosol insecticide sprays (23.8%) and ITNs (14.3%). Overall, retailers reported the profits from selling MCPs were adequate and they overwhelmingly planned to continue stocking the products. Of respondents who stocked MCPs, 96.8% responded that sales increased during long rains and 36.5% that sales also surged during short rains. ITNs and baby-size nets were often delivered by the wholesaler. Retailers of aerosol sprays, mosquito coils, and topical repellents either collected stock from the wholesaler or products were delivered to them. Other commercially available MCPs included insecticide incense sticks, electric mosquito strikers, insecticide soaps, electrically heated insecticide mats, and electric insecticide emanators, indicating a well-established market. CONCLUSIONS: The wide range of MCPs in local retail outlets within the study area suggests the need and demand for mosquito control tools, in addition to ITNs, that are affordable, easy to use and effective. The presence of a wide range of MCPs, is a promising sign for the introduction of a spatial repellent intervention class of products that meets consumer needs and preferences.


Subject(s)
Insect Repellents/supply & distribution , Insecticide-Treated Bednets/supply & distribution , Insecticides/supply & distribution , Mosquito Control/statistics & numerical data , Private Sector/statistics & numerical data , Cross-Sectional Studies , Kenya , Mosquito Control/methods
2.
Malar J ; 20(1): 355, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34454501

ABSTRACT

BACKGROUND: Insecticide-treated nets (ITNs) access-use has been pivotal monitoring indicator for malaria prevention and control, particularly in resource limited settings. The objective of the study was to compare ITN access-use based on universal household and population indicators and measures adapted to sleeping spaces. METHODS: A cross-sectional study was conducted in five districts of Jimma Zone, Ethiopia, March, 2019. 762 HHs were sampled for the survey. Multi-stage followed by simple random sampling used. Monitoring and evaluation reference group's (MERG's) indicators were used for measuring ITN access-use. MERG's indicators are each adapted ITN access-use to sleeping spaces. Household (ownership, saturation and sufficiency) and population access and household members' status of last night sleeping under ITN compared based on the two models. Differences of estimates of ITN access-use based on the two methods reported as magnitude of over/under estimations, at p-value < 0.05. RESULTS: Based on MERG's approach, the study revealed household (HH) based indicators as such: HH ownership of at least 1 ITN (92.6%), sufficiency of ITN for every two people in HH (50.3%), and saturation of ITN for every 2 people in HHs with any ITN (54.6%). Moreover, population based indicators were: population with ITN access (P3 = 78.6%), people who slept under ITN previous night (63.0%), people who slept under ITN among who accessed it (73.1%), ITN use-gap (26.9%). Equivalent indicators of HH ownership, sufficiency, saturation, and people accessed at where they actually slept, and people slept under ITN among those accessed at where they slept estimated at 71.3%, 49.4%, 69.3%, 66.3%, and 92.1%, respectively. MERG's approach over-estimated ownership, people's access, and behaviour-failures by 21.3%, 12.3%, 19.0%, respectively. Over-estimation occurred for reasons such as many sleeping spaces lack ITN and > 2 people actually slept per sleeping space. CONCLUSIONS: MERG's universal indicators over estimated households and populations ITN access-use as a result of absence of measures capturing access-use values at spaces where people actually slept. Consequently, measures adapted to sleeping contexts revealed potential misdistributions practiced when the existing indicators are in use. Insertion of sleeping spaces into existing approach will be worthwhile and needs to be promoted as it improves curiosity in ITN distribution, produces closer estimates and prevents malaria prevention and control programmes from overlooking access-use challenges.


Subject(s)
Family Characteristics , Health Services Accessibility/statistics & numerical data , Insecticide-Treated Bednets/supply & distribution , Sleep , Socioeconomic Factors , Adult , Ethiopia , Female , Humans , Male , Middle Aged , Young Adult
3.
Malar J ; 20(1): 171, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33781261

ABSTRACT

BACKGROUND: As insecticide-treated nets (ITNs) wear out and are disposed, some household members are prioritized to use remaining ITNs. This study assessed how nets are allocated within households to individuals of different age categories as ITNs are lost or damaged and as new ITNs are obtained. The study also explored how ITN allocation affects ITN durability. METHODS: A cross-sectional household survey and ITN durability study was conducted among 2,875 households across Tanzania to determine the proportion of nets that remain protective (serviceable) 22 months after net distribution aiming for universal coverage. Allocation of study nets within houses, and re-allocation of ITNs when new universal replacement campaign (URC) nets arrived in study households in Musoma District, was also assessed. RESULTS: Some 57.0% (95% CI 53.9-60.1%) of households had sufficient ITNs for every household member, while 84.4% (95% CI 82.4-86.4%) of the population had access to an ITN within their household (assuming 1 net covers every 2 members). In households with sufficient nets, 77.5% of members slept under ITNs. In households without sufficient nets, pregnant women (54.6%), children < 5 years (45.8%) and adults (42.1%) were prioritized, with fewer school-age children 5-14 years (35.9%), youths 15-24 years (28.1%) and seniors > 65 years (32.6%) sleeping under ITNs. Crowding ([Formula: see text] 3 people sleeping under nets) was twice as common among people residing in houses without sufficient nets for all age groups, apart from children < 5. Nets were less likely to be serviceable if: [Formula: see text] 3 people slept under them (OR 0.50 (95% CI 0.40-0.63)), or if nets were used by school-age children (OR 0.72 (95% CI 0.56-0.93)), or if the net product was Olyset®. One month after the URC, only 23.6% (95% CI 16.7-30.6%) of the population had access to a URC ITN in Musoma district. Householders in Musoma district continued the use of old ITNs even with the arrival of new URC nets. CONCLUSION: Users determined the useful life of ITNs and prioritized pregnant women and children < 5 to serviceable ITNs. When household net access declines, users adjust by crowding under remaining nets, which further reduces ITN lifespan. School-age children that commonly harbour gametocytes that mediate malaria transmission are compelled to sleep under unserviceable nets, crowd under nets or remain uncovered. However, they were accommodated by the arrival of new nets. More frequent ITN delivery through the school net programme in combination with mass distribution campaigns is essential to maximize ITN effectiveness.


Subject(s)
Insecticide-Treated Bednets/statistics & numerical data , Malaria/prevention & control , Mosquito Control/statistics & numerical data , Ownership/statistics & numerical data , Cross-Sectional Studies , Family Characteristics , Insecticide-Treated Bednets/supply & distribution , Mosquito Control/instrumentation , Tanzania
4.
Malar J ; 19(1): 220, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32576180

ABSTRACT

BACKGROUND: Insecticide-treated nets (ITNs) and house modifications are proven vector control tools, yet in most regions, full coverage has not been achieved. This study investigates household factors associated with access to ITNs and house modification in Tanzania. METHODS: Baseline cross-sectional survey data from previous studies on spatial repellants and indoor residual spray evaluation was analysed from 6757 households in Bagamoyo (60 km north of Dar es Salaam) and 1241 households in Ulanga (a remote rural area in southeast Tanzania), respectively. Regression models were used to estimate the associations between the outcomes: population access to ITNs, access to ITN per sleeping spaces, window screens and closed eaves, and the covariates household size, age, gender, pregnancy, education, house size, house modification (window screens and closed eaves) and wealth. RESULTS: Population access to ITNs (households with one ITN per two people that stayed in the house the previous night of the survey) was 69% (n = 4663) and access to ITNs per sleeping spaces (households with enough ITNs to cover all sleeping spaces used the previous night of the survey) was 45% (n = 3010) in Bagamoyo, 3 years after the last mass campaign. These findings are both lower than the least 80% coverage target of the Tanzania National Malaria Strategic Plan (Tanzania NMSP). In Ulanga, population access to ITNs was 92% (n = 1143) and ITNs per sleeping spaces was 88% (n = 1093), 1 year after the last Universal Coverage Campaign (UCC). Increased household size was significantly associated with lower access to ITNs even shortly after UCC. House modification was common in both areas but influenced by wealth. In Bagamoyo, screened windows were more common than closed eaves (65% vs 13%), whereas in Ulanga more houses had closed eaves than window screens (55% vs 12%). CONCLUSION: Population access to ITNs was substantially lower than the targets of the Tanzania NMSP after 3 years and lower among larger households after 1 year following ITN campaign. House modification was common in both areas, associated with wealth. Improved access to ITNs and window screens through subsidies and Behaviour Change Communication (BCC) strategies, especially among large and poor households and those headed by people with a low level of education, could maximize the uptake of a combination of these two interventions.


Subject(s)
Family Characteristics , Housing/statistics & numerical data , Insecticide-Treated Bednets/supply & distribution , Adult , Aged , Aged, 80 and over , Cross-Sectional Studies , Female , Humans , Insecticide-Treated Bednets/statistics & numerical data , Male , Middle Aged , Tanzania , Young Adult
5.
Malar J ; 19(1): 110, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32169081

ABSTRACT

BACKGROUND: Long-lasting insecticidal nets (LLINs) are the most sustainable and effective malaria control tool currently available. Global targets are for 80% of the population living in malaria endemic areas to have access to (own) and use a LLIN. However, current access to LLINs in endemic areas is 56% due to system inefficiencies and budget limitations. Thus, cost-effective approaches to maximize access to effective LLINs in endemic areas are required. This study evaluated whether LLINs that had been stored for 5 years under manufacturer's recommended conditions may be optimally effective against Anopheles mosquitoes, to inform malaria control programmes and governments on the periods over which LLINs may be stored between distributions, in an effort to maximize use of available LLINs. METHODS: Standard World Health Organization (WHO) bioassays (cone and tunnel test) were used to evaluate the bio-efficacy and wash resistance of Olyset® and DawaPlus® 2.0 (rebranded Tsara® Soft) LLINs after 5 years of storage at 25 °C to 33.4 °C and 40% to 100% relative humidity. In addition, a small scale Ifakara Ambient Chamber test (I-ACT) was conducted to compare the bio-efficacy of one long stored LLINs to one new LLIN of the same brand, washed or unwashed. LLINs were evaluated using laboratory reared fully susceptible Anopheles gambiae sensu stricto (s.s.) (Ifakara strain) and pyrethroid resistant Anopheles arabiensis (Kingani strain). RESULTS: After 5 years of storage, both unwashed and washed, Olyset® and DawaPlus® 2.0 (Tsara® Soft) LLINs passed WHO bio-efficacy criteria on knockdown (KD60) ≥ 95%, 24-h mortality ≥ 80% and ≥ 90% blood-feeding inhibition in WHO assays against susceptible An. gambiae s.s. DawaPlus® 2.0 LLINs also passed combined WHO bioassay criteria against resistant An. arabiensis. Confirmatory I-ACT tests using whole nets demonstrated that long-stored LLINs showed higher efficacy than new LLINs on both feeding inhibition and mortality endpoints against resistant strains. CONCLUSIONS: Even after long-term storage of around 5 years, both Olyset® and DawaPlus® 2.0 LLINs remain efficacious against susceptible Anopheles mosquitoes at optimal storage range of 25 °C to 33.4 °C for temperature and 40% to 100% relative humidity measured by standard WHO methods. DawaPlus® 2.0 (Tsara® Soft) remained efficacious against resistant strain.


Subject(s)
Anopheles , Insecticide-Treated Bednets/standards , Insecticides , Mosquito Control/instrumentation , Animals , Biological Assay , Female , Insecticide-Treated Bednets/economics , Insecticide-Treated Bednets/supply & distribution , Time Factors , World Health Organization
6.
Malar J ; 19(1): 105, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32131834

ABSTRACT

BACKGROUND: Insecticide-treated nets (ITNs) are one of the most cost-effective measures for preventing malaria. The World Health Organization recommends both large-scale mass distribution campaigns and continuous distributions (CD) as part of a multifaceted strategy to achieve and sustain universal access to ITNs. A combination of these strategies has been effective for scaling up ITN access. For policy makers to make informed decisions on how to efficiently implement CD or combined strategies, information on the costs and cost-effectiveness of these delivery systems is necessary, but relatively few published studies of the cost continuous distribution systems exist. METHODS: To address the gap in continuous distribution cost data, four types of delivery systems-CD through antenatal care services (ANC) and the expanded programme on immunization (EPI) (Ghana, Mali, and mainland Tanzania), CD through schools (Ghana and mainland Tanzania), and a combined community/health facility-based distribution (Zanzibar, Tanzania), as well as mass distributions (Mali)-were costed. Data on costs were collected retrospectively from financial and operational records, stakeholder interviews, and resource use surveys. RESULTS: Overall, from a full provider perspective, mass distributions and continuous systems delivered ITNs at overlapping economic costs per net distributed (mass distributions: 4.37-4.61 USD, CD channels: 3.56-9.90 USD), with two of the school-based systems and the mass distributions at the lower end of this range. From the perspective of international donors, the costs of the CD systems were, for the most part, less costly than the mass distributions (mass distributions: 4.34-4.55 USD, Ghana and Tanzania 2017 school-based: 3.30-3.69 USD, health facility-based: 3.90-4.55 USD, combined community/health facility 4.55 USD). The 2015 school-based distribution (7.30 USD) and 2016 health facility-based distribution (6.52 USD) programmes in Tanzania were an exception. Mass distributions were more heavily financed by donors, while CD relied more extensively on domestic resource contributions. CONCLUSIONS: These results suggest that CD strategies can continue to deliver nets at a comparable cost to mass distributions, especially from the perspective of the donor.


Subject(s)
Delivery of Health Care/economics , Insecticide-Treated Bednets/economics , Malaria/prevention & control , Mosquito Control/economics , Africa South of the Sahara , Cost-Benefit Analysis , Delivery of Health Care/methods , Female , Humans , Insecticide-Treated Bednets/supply & distribution , Mosquito Control/instrumentation , Pregnancy , Pregnant Women , Public Health/economics , Retrospective Studies , Surveys and Questionnaires
7.
Malar J ; 19(1): 431, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33239004

ABSTRACT

BACKGROUND: In 2020, Benin has implemented a digitalized mass distribution campaign of insecticide-treated nets (ITNs) in the particular context of COVID-19 pandemic. This paper describes the implementation process as well as the challenges and lessons learned from this campaign. METHODS: A descriptive design was used for reporting the planning and implementation process of ITNs campaign. Moreover, the changes and adaptations related to COVID-19 pandemic are described. RESULTS: A total of 3,175,773 households were registered corresponding to a total of 14,423,998 persons (13.55% more from projection). Moreover, 94.16% (13,581,637 people) of enumerated population were protected. A total of 7,652,166 ITNs were distributed countrywide. CONCLUSIONS: High political commitment, engagement and support add to the financial and technical supports from partners were the essential factors that make 2020 ITNs mass campaign success in Benin despite the particular context of COVID-19 pandemic. It is essential to maintain the prevention activities for malaria and this could substantially reduce the overall impact of the COVID-19 pandemic for the populations at malaria risk.


Subject(s)
Coronavirus Infections/epidemiology , Insecticide-Treated Bednets/supply & distribution , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Benin/epidemiology , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Delivery of Health Care , Education , Family Characteristics , Health Care Surveys , Health Planning Organizations , Humans , Malaria/epidemiology , Malaria/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Public Health/methods , SARS-CoV-2
8.
Malar J ; 18(1): 191, 2019 Jun 08.
Article in English | MEDLINE | ID: mdl-31176365

ABSTRACT

BACKGROUND: Insecticide-treated nets (ITN) have largely been distributed via mass distribution campaigns. Since 2011, however, the World Health Organization (WHO) has recommended additional ITN distribution via routine antenatal care (ANC) and expanded programme on immunization (EPI) services. Countries have begun to implement these routine facility-based distribution strategies, but inconsistently, and there is little research on outcomes of these new programmes. This paper investigates the impact of ITN distribution policies on children's net use, comparing countries with different policies in place. METHODS: Demographic Health Surveys from 25 countries in Africa were used to analyse household ITN ownership, and ITN use among children under 5 years of age. Countries were categorized in terms of the ITN facility-based distribution policies in place, based on nationally reported policies and distribution data provided to the WHO. The analysis was conducted for individual countries and then pooled with all countries in each category weighted equally to present the average country experience, by ITN distribution policy. RESULTS: Household ITN ownership, children's ITN use, and children's ITN use in households with at least one ITN increase with each additional routine facility-based distribution policy. An average of 54.0% of children slept under an ITN in countries with ITN distribution via ANC and EPI, compared to 34.3% and 24.7% in countries with ITN distribution via ANC only, or no facility-based distribution, respectively. Linear regression found a 13% increase in net use among children under 5, on average, with each additional ITN distribution policy. CONCLUSION: ITN distribution via ANC and EPI can not only assist countries in maintaining ITN ownership and use, but may be extremely effective at increasing ITN ownership and use. There is also an additional benefit associated with combined ANC and EPI-based ITN distribution, compared to ANC distribution alone.


Subject(s)
Equipment and Supplies Utilization , Health Policy , Insecticide-Treated Bednets/supply & distribution , Insecticide-Treated Bednets/statistics & numerical data , Adolescent , Adult , Africa , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Surveys and Questionnaires , Young Adult
9.
Malar J ; 17(1): 173, 2018 Apr 24.
Article in English | MEDLINE | ID: mdl-29690873

ABSTRACT

BACKGROUND: Zambia was an early adopter of insecticide-treated nets strategy in 2001, and policy for mass distribution with long-lasting insecticidal nets (LLINs) in 2005. Since then, the country has implemented mass distribution supplemented with routine delivery through antenatal care and under five clinics in health facilities. The national targets of universal (100%) coverage and 80% utilization of LLINs have not been attained. Free mass LLIN distribution campaign in Zambia offers important lessons to inform future campaigns in the African region. METHODS: This study reviewed LLIN free mass distribution campaign information derived from Zambia's national and World Health Organization Global Malaria Programme annual reports and strategic plans published between 2001 and 2016. RESULTS: In 2014, a nationwide mass distribution campaign in Zambia delivered all the 6.0 million LLINs in 6 out of 10 provinces in 4 months between June and September before the onset of the rainy season. Compared with 235,800 LLINs and 2.9 million LLINs distributed on a rolling basis in 2008 and 2013, respectively, the 2014 mass campaign, which distributed 6 million LLINs represented the largest one-time-nationwide LLIN distribution in Zambia. The province (Luapula) with highest malaria transmission, mostly with rural settings recorded 98-100% sleeping spaces in homes covered with LLINs. The percentage of households owning at least 1 LLIN increased from 50.9% in 2006 to 77.7% in 2015. The 2014 mass campaign involved a coordinated response with substantial investments into macro (central) and micro (district) level planning, capacity building, tracking and logistics management supported by a new non-health sector partnership landscape. Coordination of LLIN distribution and logistics benefited from the mobile phone technology to transmit "real time" data on commodity tracking that facilitated timely delivery to districts. CONCLUSION: Free mass distribution of LLINs policy was adopted in 2005 in Zambia. Consistently implemented, has not only contributed to increased coverage of LLINs, but has also produced the added value and lessons of strengthening joint planning, strategic coordination, partnerships with non-health sector institutions and community engagement with traditional leaders at community. Furthermore, the mass distribution, through improving coverage has indirect added (spin-off) value or impact on other arthropod-borne diseases, in addition to malaria.


Subject(s)
Insecticide-Treated Bednets/statistics & numerical data , Mosquito Control/organization & administration , Family Characteristics , Humans , Insecticide-Treated Bednets/supply & distribution , Ownership , Zambia
10.
Malar J ; 17(1): 104, 2018 Mar 06.
Article in English | MEDLINE | ID: mdl-29510701

ABSTRACT

BACKGROUND: Despite the availability of cost effective malaria control interventions, such as insecticide-treated bed nets (ITN), diagnosis and effective treatment of malaria, and intermittent preventive treatment during pregnancy (IPTp), the lack of equitable access and coverage affect utilization of these interventions in rural communities. Aggregated rates of access and utilization of malaria interventions in national surveys mask substantial variations in intervention coverage. Utilization of interventions and factors affecting utilization need investigation in rural communities. METHODS: One year of quantitative data collected from a rolling Malaria Indicator Survey (April 2015-April 2016) in Chikhwawa District, Malawi, before the ITN distribution campaign, were analysed. Univariate analyses were used to quantify rates of ITN usage, care-seeking for fever in children aged 6-59 months and women aged 15-49 years and IPTp uptake (for women aged 15-49 years with a recent delivery). Results were compared to national survey estimates; factors associated with these outcomes were determined using multivariate regression models. RESULTS: A total of 2046 participants were included from 1328 households; 56.6% were women aged 15-49 years and 43.4% were children aged 6-59 months. Reported ownership of at least one ITN per household and under-five children ITN use the previous night were 35.3 and 33.5% compared to 70.2 and 67.1%, respectively, in the national survey; ITN use was higher in high wealth quintile households than low quintile ones. For participants with recent fever, 37.6 and 19.5% sought care and sought care within 24 h, respectively. Care-seeking was lower for febrile women than febrile children [aOR, 95% CI 0.53 (0.35-0.81)]. Uptake of two and three or more doses of IPTp were 40.6 and 15.0%, respectively, among women with a pregnancy in the last 2 years. CONCLUSION: To achieve effective malaria control, fine-scale or district-based surveillance should be used to identify and target communities requiring scaling up of interventions. Qualitative research and a participatory community approach should be used to address behavioural factors affecting how people make use of interventions.


Subject(s)
Communicable Disease Control/methods , Disease Transmission, Infectious/prevention & control , Health Services Accessibility , Health Services Research , Malaria/prevention & control , Adolescent , Adult , Child, Preschool , Female , Humans , Infant , Insecticide-Treated Bednets/supply & distribution , Malawi , Male , Middle Aged , Rural Population , Young Adult
11.
Malar J ; 17(1): 100, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29490649

ABSTRACT

BACKGROUND: The Government of Tanzania is the main source of long-lasting insecticidal nets (LLINs) for its population. Mosquito nets (treated and untreated) are also available in the commercial market. To sustain investments and health gains in the fight against malaria, it is important for the National Malaria Control Programme to monitor LLIN coverage especially in the years between mass distributions and to understand what households do if their free nets are deemed unusable. The aim of this paper was to assess standard LLIN indicators by wealth status in Tanzania in 2013, 2 years after the last mass campaign in 2011, and extend the analysis to untreated nets (UTNs) to investigate how households adapt when nets are not continuously distributed. METHODS: Between October-December 2013, a household survey was conducted in 3398 households in eight districts in Tanzania. Using the Roll Back Malaria indicators, the study analysed: (1) household net ownership; (2) access to nets; (3) population net use and (4) net use:access ratio. Outcomes were calculated for LLINs and UTNs. Results were analysed by socio-economic quintiles and by district. RESULTS: Only three of the eight districts had household LLIN ownership of more than 80%. In 2013, less than a quarter of the households had one LLIN for every two people and only half of the population had access to an LLIN. Only the wealthier quintiles increased their net ownership and access to levels above 80% through the addition of UTNs. Overall net use of the population was low (LLINs: 32.8%; UTNs: 9.5%) and net use:access ratio was below target level (LLINs: 0.66; UTN: 0.50). Both measures varied significantly by district. CONCLUSIONS: Two years after the last mass campaign, the percentage of households or population with access to LLINs was low. These findings indicate the average rate at which households in Tanzania lose their nets is higher than the rate at which they acquire new nets. The wealthiest households topped up their household net ownership with UTNs. Efforts to make LLINs available through commercial markets should be promoted, so those who can afford to buy nets purchase LLINs rather than UTNs. Net use was low around 40% and mostly explained by lack of access to nets. However, the use:access ratio was poor in Mbozi and Kahama districts warranting further investigations to understand other barriers to net use.


Subject(s)
Insecticide-Treated Bednets/supply & distribution , Mosquito Control/methods , Cross-Sectional Studies , Disease Transmission, Infectious/prevention & control , Health Services Accessibility , Humans , Malaria/prevention & control , Socioeconomic Factors , Surveys and Questionnaires , Tanzania
12.
J Math Biol ; 77(1): 1-25, 2018 07.
Article in English | MEDLINE | ID: mdl-28965238

ABSTRACT

Insecticide-treated bed nets (ITNs) are among the most important and effective intervention measures against malaria. In order to investigate the impact of bed net use on disease control, we formulate a periodic vector-bias malaria model incorporating the juvenile stage of mosquitoes and the use of ITNs. We derive the vector reproduction ratio [Formula: see text] and the basic reproduction ratio [Formula: see text]. We show that the global dynamics of the model is completely determined by these two reproduction ratios. More precisely, the mosquito-free periodic solution is globally attractive if [Formula: see text]; the unique disease-free periodic solution is globally attractive if [Formula: see text] and [Formula: see text]; and the model admits a unique positive periodic solution and it is globally attractive if [Formula: see text] and [Formula: see text]. Numerically, we study the malaria transmission case in Port Harcourt, Nigeria. Our findings show that the use of ITNs has a positive effect on reducing [Formula: see text], and that malaria may be eliminated from this area if over 75% of the human population were to use ITNs. The simulation about the long term behavior of solutions has good agreement with the obtained analytic result. Moreover, we find that the ignorance of the vector-bias effect may result in underestimation of the basic reproduction ratio [Formula: see text]. Another notable result is that the infection risk would be underestimated if the basic reproduction ratio [Formula: see text] of the time-averaged autonomous system were used.


Subject(s)
Climate , Insecticide-Treated Bednets/statistics & numerical data , Malaria/prevention & control , Models, Biological , Animals , Anopheles/growth & development , Anopheles/parasitology , Basic Reproduction Number/statistics & numerical data , Computer Simulation , Host-Parasite Interactions , Humans , Insecticide-Treated Bednets/supply & distribution , Malaria/epidemiology , Malaria/transmission , Mathematical Concepts , Mosquito Vectors/growth & development , Mosquito Vectors/parasitology , Nigeria/epidemiology
13.
Bull World Health Organ ; 95(5): 322-332, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28479633

ABSTRACT

OBJECTIVE: To examine the change in equity of insecticide-treated net (ITN) ownership among 19 malaria-endemic countries in sub-Saharan Africa before and after the launch of the Cover The Bed Net Gap initiative. METHODS: To assess change in equity in ownership of at least one ITN by households from different wealth quintiles, we used data from Demographic and Health Surveys and Malaria Indicator Surveys. We assigned surveys conducted before the launch (2003-2008) as baseline surveys and surveys conducted between 2009-2014 as endpoint surveys. We did country-level and pooled multicountry analyses. Pooled analyses based on malaria transmission risk, were done by dividing geographical zones into either low- and intermediate-risk or high-risk. To assess changes in equity, we calculated the Lorenz concentration curve and concentration index (C-index). FINDINGS: Out of the 19 countries we assessed, 13 countries showed improved equity between baseline and endpoint surveys and two countries showed no changes. Four countries displayed worsened equity, two favouring the poorer households and two favouring the richer. The multicountry pooled analysis showed an improvement in equity (baseline survey C-index: 0.11; 95% confidence interval, CI: 0.10 to 0.11; and endpoint survey C-index: 0.00; 95% CI: -0.01 to 0.00). Similar trends were seen in both low- and intermediate-risk and high-risk zones. CONCLUSION: The mass ITN distribution campaigns to increase coverage, linked to the launch of the Cover The Bed Net Gap initiative, have led to improvement in coverage of ITN ownership across sub-Saharan Africa with significant reduction in inequity among wealth quintiles.


Subject(s)
Health Equity , Insecticide-Treated Bednets/supply & distribution , Malaria/prevention & control , Mosquito Control/methods , Ownership/statistics & numerical data , Africa South of the Sahara/epidemiology , Endemic Diseases , Humans , Income/statistics & numerical data , Malaria/epidemiology , Risk Assessment , Socioeconomic Factors
14.
Malar J ; 16(1): 429, 2017 10 25.
Article in English | MEDLINE | ID: mdl-29070079

ABSTRACT

BACKGROUND: The universal coverage bed nets campaign is a proven health intervention promoting increased access, ownership, and use of bed nets to reduce malaria burden. This article describes the intervention and implementation strategies that Mozambique carried out recently in order to improve access and increase demand for long-lasting insecticidal nets (LLINs). METHODS: A before-and-after study with a control group was used during Stage I of the implementation process. The following strategies were tested in Stage I: (1) use of coupons during household registration; (2) use of stickers to identify the registered households; (3) new LLIN ascription formula (one LLIN for every two people). In Stage II, the following additional strategies were implemented: (4) mapping and micro-planning; (5) training; and (6) supervision. Odds ratio (OR) and 95% confidence interval (CI) were used to compare and establish differences between intervened and control districts in Stage I. Main outcomes were: percentage of LLINs distributed, percentage of target households benefited. RESULTS: In Stage I, 87.8% (302,648) of planned LLINs were distributed in the intervention districts compared to 77.1% (219,613) in the control districts [OR: 2.14 (95% CI 2.11-2.16)]. Stage I results also showed that 80.6% (110,453) of households received at least one LLIN in the intervention districts compared to 72.8% (87,636) in the control districts [OR: 1.56 (95% CI 1.53-1.59)]. In Stage II, 98.4% (3,536,839) of the allocated LLINs were delivered, covering 98.6% (1,353,827) of the registered households. CONCLUSIONS: Stage I results achieved better LLINs and household coverage in districts with the newly implemented strategies. The results of stage II were also encouraging. Additional strategies adaptation is required for a wide-country LLIN campaign.


Subject(s)
Insecticide-Treated Bednets/supply & distribution , Insecticide-Treated Bednets/statistics & numerical data , Humans , Malaria , Mosquito Control/methods , Mozambique , Pilot Projects
15.
Malar J ; 16(1): 285, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28705241

ABSTRACT

BACKGROUND: Universal coverage campaigns for long-lasting insecticide-treated nets do not always reach the goal of one net for every two household members, and even when ownership of at least one net per household is high, many households may not own enough nets. The retail market provides these households options for replacing or increasing the number of nets they own with products that best fit their needs since a variety of net shapes, sizes, and colours are available. Hence, it is important to understand the factors affecting private net demand. This study explores private demand for nets in Tanzania using a discrete choice experiment. The experiment provides participants the option to buy nets with their own money, and thus should prove more accurate than a hypothetical survey of net preferences. RESULTS: Nearly 800 participants sampled in two regions showed an overall strong demand for nets, with 40% choosing to buy a net across all seven combinations of net prices and characteristics such as size, shape, and insecticide treatment. Only 8% of all participants chose not to buy a single net. A key factor influencing demand was whether a participant's household currently owned sufficient nets for all members, with rural participants showing lower net coverage and greater demand than urban participants. Both poor and less poor households showed strong evidence of making purchase decisions based on more than price alone. Mean willingness-to-pay values for a net started at US$1.10 and grew by US$0.50-1.40 for various attributes such as rectangular shape, large size, and insecticide treatment. The impact of price on demand was negative but small, with elasticity values between -0.25 and -0.45. CONCLUSIONS: The results suggest that private demand for nets in Tanzania could potentially supplement future coverage campaigns. Net manufacturers and retailers should advertise and promote consumers' preferred net attributes to improve sales and further expand net access and coverage. To overcome household liquidity concerns and best replicate the experiment results, policy makers should consider making credit available for interested buyers.


Subject(s)
Choice Behavior , Insecticide-Treated Bednets/statistics & numerical data , Mosquito Control , Humans , Insecticide-Treated Bednets/economics , Insecticide-Treated Bednets/supply & distribution , Malaria/prevention & control , Rural Population/statistics & numerical data , Tanzania
16.
Malar J ; 16(1): 223, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28545540

ABSTRACT

BACKGROUND: Malaria during pregnancy is associated with poor maternal and pregnancy outcome and the World Health Organization recommends the administration of intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) and distribution of insecticide-treated mosquito nets (ITNs) to all pregnant women attending antenatal care (ANC) services. This study was conducted with the aim to assess the uptake of IPTp and ITNs in pregnant women attending ANC services and correlate with ANC attendance and frequency of stock-outs in 22 health facilities Mozambique. METHODS: A cross-sectional study was conducted between July and December 2011 in 22 health units in 11 districts situated in 11 provinces in Mozambique. Two health facilities were selected per district (one urban and one rural). Data were collected by reviewing logbooks of antenatal consultations as well as from monthly district reports. RESULTS: During the period under investigation, a total of 23,524 pregnant women attended their 1st antenatal care visits, of which 12,775 (54.3%) and 7581 (32.2%) received one and two doses of IPTp, respectively. In regard to ITNs, a total of 16,436 (69.9%) pregnant women received ITNs. Uptake of IPTp and ITNs by pregnant women at ANC services was higher in southern Mozambique and lower in districts situated in the northern part of the country. Stock-outs of SP and ITNs were reported in 50.0% (11/22) and 54.5% (12/22) of the health facilities, respectively. Coverage of IPTp and ITN in health facilities with stock-outs of SP and ITNs was much lower as compared to health facilities with no stock-outs. CONCLUSIONS: Altogether, data from this study shows that coverage of the 2nd dose of IPTp, as well as ITNs, was low in pregnant women attending ANC services in Mozambique. In addition, this data also shows that stock-outs of SP and ITNs were frequent and led to lower coverage of IPTp and ITN, representing a serious barrier for the accomplishment of targets. In conclusion, this study recommends that efforts should be made to improve the supply chains of SP and ITNs.


Subject(s)
Antimalarials/supply & distribution , Insecticide-Treated Bednets/supply & distribution , Malaria/prevention & control , Pyrimethamine/supply & distribution , Sulfadoxine/supply & distribution , Cross-Sectional Studies , Drug Combinations , Female , Humans , Mozambique , Pregnancy , Retrospective Studies
17.
Malar J ; 16(1): 244, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28599666

ABSTRACT

BACKGROUND: Universal coverage of the targeted malaria-endemic areas with long-lasting insecticidal nets (LLINs) is implemented as one of the key interventions for malaria control and elimination in Yemen. In 2013, through a mass campaign, LLINs were distributed to the targeted communities in Al Hudaydah governorate. This study aimed to assess the ownership of, access to, and use of LLINs. It also aimed to identify factors associated with not using LLINs in malaria-endemic areas of Al Hudaydah in the Tihama region, west of Yemen. METHODS: A cross-sectional survey was conducted in four districts (Ad Durayhimi, Al Marawi'ah, Al Mansuriyah and Bayt Al Faqiah) in Al Hudaydah during February 2016. A total of 701 households were included in this study. Data on socio-demographic characteristics and availability of LLINs were collected by interview and observation. Four indicators for malaria prevention using LLINs; proportion of households with at least one LLIN, proportion of households with at least one LLIN for every two people, proportion of population with access to LLINs in the surveyed households and proportion of population who slept under LLINs the previous night of the survey were calculated as indicated by Roll Back Malaria Monitoring and Evaluation Reference Group. Use to access ratio was assessed. Factors associated with not using LLINs among people with access were also investigated. RESULTS: Of 701 households with 4900 de facto population, ownership of at least one LLIN was 90.6%, while 24.1% owned at least one for every two people during the survey in 2016. The overall proportion of people with access to LLINs was 51.5% (95% CI 50.1-52.9). Only 19.0% (95% CI 17.9-20.1) slept under LLINs the night before the survey and the overall use to access ratio was 0.37. The proportions of children under 5 years of age with access to and use of LLINs were 13.7 and 42.5%, respectively. On the other hand, the proportions of pregnant women with access to and use of LLINs were 16.4 and 20.0%, respectively. Multivariable analysis identified that people living in Al Mansuriyah district [adjusted odds ratio (AOR) = 3.29, 95% confidence interval (CI)  1.35-8.01; P = 0.009)], having three or more damaged LLINs in the house (AOR = 2.76, 95% CI 1.79-4.25; P < 0.001), aged between 16 and 45 years old (AOR = 2.17, 95% CI 1.26-3.75; P = 0.005) or older (AOR = 2.17, 95% CI 1.09-4.29; P = 0.026) and living in huts (AOR = 1.59, 95% CI 1.09-2.32; P = 0.015) were significantly less likely to use LLINs. CONCLUSIONS: This study shows a low LLIN access rate among local communities targeted for universal LLIN coverage in Al Hudaydah, a malaria-endemic area of high transmission. This finding necessitates additional distribution channels following mass campaigns to maintain the universal coverage. Reduced use of LLINs among people with access in these communities together with the identified risks of non-use highlight the importance of conducting behaviour change communication campaigns to enhance using LLINs in areas with universal coverage.


Subject(s)
Endemic Diseases/prevention & control , Insecticide-Treated Bednets/statistics & numerical data , Malaria/epidemiology , Malaria/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Insecticide-Treated Bednets/supply & distribution , Male , Middle Aged , Ownership , Yemen/epidemiology , Young Adult
18.
Malar J ; 16(1): 255, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28619076

ABSTRACT

BACKGROUND: The Tanzania National Voucher Scheme (TNVS) was a public private partnership managed by the Ministry of Health that provided pregnant women and infants with highly subsidized (long-lasting) insecticide-treated nets between 2004 and 2014. It was implemented in the context of the National Insecticide Treated Nets (NATNETS) Programme and was the main keep up strategy for vulnerable populations. CASE DESCRIPTION: The programme design was adjusted considerably over time to incorporate new evidence, shifting public health policies, and changing donor priorities. Three TNVS models can be distinguished: (1) the fixed discount; (2) the fixed top-up; (3) the hybrid voucher model. The changes improved equity and effectiveness, but also had a profound effect on how the programme was managed and implemented. RESULTS: The TNVS reached the majority of beneficiaries with vouchers, and significantly increased household ownership and use of LLINs. While two mass distribution campaigns implemented between 2009 and 2011 achieved universal coverage and equity, the TNVS ensured continuous protection of the vulnerable populations before, during and after the campaigns. The TNVS stimulated and maintained a large national retail network which managed the LLIN supply chain. DISCUSSION AND LESSONS LEARNED: The effectiveness of the TNVS was a function of several interdependent factors, including the supply chain of vouchers through the public health system; the supply chain of nets in the commercial sector; the demand for nets from voucher recipients; management and risk mitigation measures; and the influence of global and donor objectives. CONCLUSION: The TNVS was a highly innovative and globally influential programme, which stimulated the thinking around effectively and equitably distributing ITNs, and contributed directly to the evolution of global policy. It was a fundamental component of the NATNETS programme which protected a malaria-vulnerable population for over a decade.


Subject(s)
Insecticide-Treated Bednets/statistics & numerical data , Malaria/prevention & control , Marketing of Health Services/methods , Marketing of Health Services/standards , Pregnancy Complications, Parasitic/prevention & control , Child, Preschool , Family Characteristics , Female , Humans , Infant , Insecticide-Treated Bednets/economics , Insecticide-Treated Bednets/standards , Insecticide-Treated Bednets/supply & distribution , Marketing of Health Services/economics , Ownership/statistics & numerical data , Pregnancy , Tanzania
19.
BMC Public Health ; 17(1): 572, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28606136

ABSTRACT

BACKGROUND: The expansion of malaria prevention and control to school-aged children is receiving increasing attention, but there are still limited data on the costs of intervention. This paper analyses the costs of a comprehensive school-based intervention strategy, delivered by teachers, that included participatory malaria educational activities, distribution of long lasting insecticide-treated nets (LLIN), and Intermittent Parasite Clearance in schools (IPCs) in southern Mali. METHODS: Costs were collected alongside a randomised controlled trial conducted in 80 primary schools in Sikasso Region in Mali in 2010-2012. Cost data were compiled between November 2011 and March 2012 for the 40 intervention schools (6413 children). A provider perspective was adopted. Using an ingredients approach, costs were classified by cost category and by activity. Total costs and cost per child were estimated for the actual intervention, as well as for a simpler version of the programme more suited for scale-up by the government. Univariate sensitivity analysis was performed. RESULTS: The economic cost of the comprehensive intervention was estimated to $10.38 per child (financial cost $8.41) with malaria education, LLIN distribution and IPCs costing $2.13 (20.5%), $5.53 (53.3%) and $2.72 (26.2%) per child respectively. Human resources were found to be the key cost driver, and training costs were the greatest contributor to overall programme costs. Sensitivity analysis showed that an adapted intervention delivering one LLIN instead of two would lower the economic cost to $8.66 per child; and that excluding LLIN distribution in schools altogether, for example in settings where malaria control already includes universal distribution of LLINs at community-level, would reduce costs to $4.89 per child. CONCLUSIONS: A comprehensive school-based control strategy may be a feasible and affordable way to address the burden of malaria among schoolchildren in the Sahel.


Subject(s)
Health Education/organization & administration , Malaria/prevention & control , School Health Services/organization & administration , Child , Costs and Cost Analysis , Health Education/economics , Humans , Insecticide-Treated Bednets/economics , Insecticide-Treated Bednets/supply & distribution , Mali/epidemiology , School Health Services/economics
SELECTION OF CITATIONS
SEARCH DETAIL