Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 816
Filter
Add more filters

Publication year range
1.
Mol Cell ; 81(8): 1666-1681.e6, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33823140

ABSTRACT

Nuclear speckles are prominent nuclear bodies that contain proteins and RNA involved in gene expression. Although links between nuclear speckles and gene activation are emerging, the mechanisms regulating association of genes with speckles are unclear. We find that speckle association of p53 target genes is driven by the p53 transcription factor. Focusing on p21, a key p53 target, we demonstrate that speckle association boosts expression by elevating nascent RNA amounts. p53-regulated speckle association did not depend on p53 transactivation functions but required an intact proline-rich domain and direct DNA binding, providing mechanisms within p53 for regulating gene-speckle association. Beyond p21, a substantial subset of p53 targets have p53-regulated speckle association. Strikingly, speckle-associating p53 targets are more robustly activated and occupy a distinct niche of p53 biology compared with non-speckle-associating p53 targets. Together, our findings illuminate regulated speckle association as a mechanism used by a transcription factor to boost gene expression.


Subject(s)
Cell Nucleus/genetics , Gene Expression Regulation/genetics , Nuclear Proteins/genetics , RNA/genetics , Transcriptional Activation/genetics , Tumor Suppressor Protein p53/genetics , DNA/genetics , HEK293 Cells , Humans , Intranuclear Inclusion Bodies/genetics , Protein Binding/genetics , Transcription Factors/genetics , Transcription, Genetic/genetics
2.
Mol Cell ; 81(5): 1027-1042.e4, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33453166

ABSTRACT

Alternative lengthening of telomeres (ALT) is mediated by break-induced replication (BIR), but how BIR is regulated at telomeres is poorly understood. Here, we show that telomeric BIR is a self-perpetuating process. By tethering PML-IV to telomeres, we induced telomere clustering in ALT-associated PML bodies (APBs) and a POLD3-dependent ATR response at telomeres, showing that BIR generates replication stress. Ablation of BLM helicase activity in APBs abolishes telomere synthesis but causes multiple chromosome bridges between telomeres, revealing a function of BLM in processing inter-telomere BIR intermediates. Interestingly, the accumulation of BLM in APBs requires its own helicase activity and POLD3, suggesting that BIR triggers a feedforward loop to further recruit BLM. Enhancing BIR induces PIAS4-mediated TRF2 SUMOylation, and PIAS4 loss deprives APBs of repair proteins and compromises ALT telomere synthesis. Thus, a BLM-driven and PIAS4-mediated feedforward loop operates in APBs to perpetuate BIR, providing a critical mechanism to extend ALT telomeres.


Subject(s)
Fanconi Anemia Complementation Group Proteins/genetics , Feedback, Physiological , Poly-ADP-Ribose Binding Proteins/genetics , Protein Inhibitors of Activated STAT/genetics , RNA Helicases/genetics , Telomere Homeostasis , Telomere/chemistry , Telomeric Repeat Binding Protein 2/metabolism , Cell Line , Cell Line, Tumor , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Fanconi Anemia Complementation Group Proteins/antagonists & inhibitors , Fanconi Anemia Complementation Group Proteins/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/metabolism , Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Inhibitors of Activated STAT/antagonists & inhibitors , Protein Inhibitors of Activated STAT/metabolism , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , RecQ Helicases/genetics , RecQ Helicases/metabolism , Signal Transduction , Sumoylation , Telomere/metabolism , Telomeric Repeat Binding Protein 2/genetics
3.
Mol Cell ; 78(3): 493-505.e8, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32353257

ABSTRACT

The promyelocytic leukemia (PML) body is a phase-separated nuclear structure physically associated with chromatin, implying its crucial roles in genome functions. However, its role in transcriptional regulation is largely unknown. We developed APEX-mediated chromatin labeling and purification (ALaP) to identify the genomic regions proximal to PML bodies. We found that PML bodies associate with active regulatory regions across the genome and with ∼300 kb of the short arm of the Y chromosome (YS300) in mouse embryonic stem cells. The PML body association with YS300 is essential for the transcriptional activity of the neighboring Y-linked clustered genes. Mechanistically, PML bodies provide specific nuclear spaces that the de novo DNA methyltransferase DNMT3A cannot access, resulting in the steady maintenance of a hypo-methylated state at Y-linked gene promoters. Our study underscores a new mechanism for gene regulation in the 3D nuclear space and provides insights into the functional properties of nuclear structures for genome function.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , Gene Expression Regulation , Intranuclear Inclusion Bodies/genetics , Y Chromosome/genetics , Animals , Cell Line , Chromatin/genetics , Chromatin/metabolism , DEAD-box RNA Helicases/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation , DNA Methyltransferase 3A , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Embryonic Stem Cells/physiology , Endonucleases/genetics , High-Throughput Nucleotide Sequencing , Intranuclear Inclusion Bodies/metabolism , Mice, Knockout , Minor Histocompatibility Antigens/genetics , Multifunctional Enzymes/genetics , Multigene Family , Oxidative Stress , Promyelocytic Leukemia Protein/genetics , Promyelocytic Leukemia Protein/metabolism , Proteins/genetics , Transcription Factors/genetics , Y Chromosome/metabolism
4.
Mol Cell ; 79(3): 443-458.e7, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32649883

ABSTRACT

Despite the prominent role of TDP-43 in neurodegeneration, its physiological and pathological functions are not fully understood. Here, we report an unexpected role of TDP-43 in the formation of dynamic, reversible, liquid droplet-like nuclear bodies (NBs) in response to stress. Formation of NBs alleviates TDP-43-mediated cytotoxicity in mammalian cells and fly neurons. Super-resolution microscopy reveals distinct functions of the two RRMs in TDP-43 NB formation. TDP-43 NBs are partially colocalized with nuclear paraspeckles, whose scaffolding lncRNA NEAT1 is dramatically upregulated in stressed neurons. Moreover, increase of NEAT1 promotes TDP-43 liquid-liquid phase separation (LLPS) in vitro. Finally, we discover that the ALS-associated mutation D169G impairs the NEAT1-mediated TDP-43 LLPS and NB assembly, causing excessive cytoplasmic translocation of TDP-43 to form stress granules, which become phosphorylated TDP-43 cytoplasmic foci upon prolonged stress. Together, our findings suggest a stress-mitigating role and mechanism of TDP-43 NBs, whose dysfunction may be involved in ALS pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , Intranuclear Inclusion Bodies/metabolism , Neurons/metabolism , RNA, Long Noncoding/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Animals, Genetically Modified , Arsenites/pharmacology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/ultrastructure , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/ultrastructure , DNA-Binding Proteins/metabolism , Disease Models, Animal , Drosophila melanogaster , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , Intranuclear Inclusion Bodies/drug effects , Intranuclear Inclusion Bodies/ultrastructure , Mice , Mutation , Neurons/drug effects , Neurons/ultrastructure , Primary Cell Culture , Protein Transport/drug effects , RNA, Long Noncoding/metabolism , Signal Transduction , Stress, Physiological
5.
Am J Hum Genet ; 109(3): 533-541, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35148830

ABSTRACT

Recent studies indicate that CGG repeat expansions in LRP12, GIPC1, and NOTCH2NLC are associated with oculopharyngodistal myopathy (OPDM) types 1, 2, and 3, respectively. However, some clinicopathologically confirmed OPDM cases continue to have unknown genetic causes. Here, through a combination of long-read whole-genome sequencing (LRS), repeat-primed polymerase chain reaction (RP-PCR), and fluorescence amplicon length analysis PCR (AL-PCR), we found that a CGG repeat expansion in the 5' UTR of RILPL1 is associated with familial and simplex OPDM type 4 (OPDM4). The number of repeats ranged from 139 to 197. Methylation analysis indicates that the methylation levels in RILPL1 were unaltered in OPDM4 individuals. Analyses of muscle biopsies suggested that the expanded CGG repeat might be translated into a toxic poly-glycine protein that co-localizes with p62 in intranuclear inclusions. Moreover, analyses suggest that the toxic RNA gain-of-function effects also contributed to the pathogenesis of this disease. Intriguingly, all four types of OPDM have been found to be associated with the CGG repeat expansions located in 5' UTRs. This finding suggests that a common pathogenic mechanism, driven by the CGG repeat expansion, might underlie all cases of OPDM.


Subject(s)
Muscular Dystrophies , Trinucleotide Repeat Expansion , 5' Untranslated Regions , Adaptor Proteins, Signal Transducing , Humans , Intranuclear Inclusion Bodies/genetics , Muscular Dystrophies/genetics , Trinucleotide Repeat Expansion/genetics
6.
J Med Genet ; 61(4): 340-346, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-37923380

ABSTRACT

BACKGROUND: Oculopharyngodistal myopathy (OPDM) is a rare adult-onset neuromuscular disease, associated with CGG repeat expansions in the 5' untranslated region of LRP12, GIPC1, NOTCH2NLC and RILPL1. However, the genetic cause of a proportion of pathoclinically confirmed cases remains unknown. METHODS: A total of 26 OPDM patients with unknown genetic cause(s) from 4 tertiary referral hospitals were included in this study. Clinical data and laboratory findings were collected. Muscle samples were observed by histological and immunofluorescent staining. Long-read sequencing was initially conducted in six patients with OPDM. Repeat-primed PCR was used to screen the CGG repeat expansions in LOC642361/NUTM2B-AS1 in all 26 patients. RESULTS: We identified CGG repeat expansion in the non-coding transcripts of LOC642361/NUTM2B-AS1 in another two unrelated Chinese cases with typical pathoclinical features of OPDM. The repeat expansion was more than 70 times in the patients but less than 40 times in the normal controls. Both patients showed no leucoencephalopathy but one showed mild cognitive impairment detected by Montreal Cognitive Assessment. Rimmed vacuoles and p62-positive intranuclear inclusions (INIs) were identified in muscle pathology, and colocalisation of CGG RNA foci with p62 was also found in the INIs of patient-derived fibroblasts. CONCLUSIONS: We identified another two unrelated cases with CGG repeat expansion in the long non-coding RNA of the LOC642361/NUTM2B-AS1 gene, presenting with a phenotype of OPDM. Our cases broadened the recognised phenotypic spectrum and pathogenesis in the disease associated with CGG repeat expansion in LOC642361/NUTM2B-AS1.


Subject(s)
Muscular Dystrophies , Adult , Humans , Muscular Dystrophies/genetics , Phenotype , Intranuclear Inclusion Bodies/genetics , Trinucleotide Repeat Expansion/genetics
7.
Proc Natl Acad Sci U S A ; 119(41): e2208649119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191230

ABSTRACT

Neuronal intranuclear inclusion disease (NIID) is a neuromuscular/neurodegenerative disease caused by the expansion of CGG repeats in the 5' untranslated region (UTR) of the NOTCH2NLC gene. These repeats can be translated into a polyglycine-containing protein, uN2CpolyG, which forms protein inclusions and is toxic in cell models, albeit through an unknown mechanism. Here, we established a transgenic Drosophila model expressing uN2CpolyG in multiple systems, which resulted in progressive neuronal cell loss, locomotor deficiency, and shortened lifespan. Interestingly, electron microscopy revealed mitochondrial swelling both in transgenic flies and in muscle biopsies of individuals with NIID. Immunofluorescence and immunoelectron microscopy showed colocalization of uN2CpolyG with mitochondria in cell and patient samples, while biochemical analysis revealed that uN2CpolyG interacted with a mitochondrial RNA binding protein, LRPPRC (leucine-rich pentatricopeptide repeat motif-containing protein). Furthermore, RNA sequencing (RNA-seq) analysis and functional assays showed down-regulated mitochondrial oxidative phosphorylation in uN2CpolyG-expressing flies and NIID muscle biopsies. Finally, idebenone treatment restored mitochondrial function and alleviated neurodegenerative phenotypes in transgenic flies. Overall, these results indicate that transgenic flies expressing uN2CpolyG recapitulate key features of NIID and that reversing mitochondrial dysfunction might provide a potential therapeutic approach for this disorder.


Subject(s)
Drosophila , Neurodegenerative Diseases , 5' Untranslated Regions , Animals , Animals, Genetically Modified , Drosophila/genetics , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/pathology , Leucine/genetics , Mitochondria/genetics , Mitochondria/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , RNA-Binding Proteins/genetics , Trinucleotide Repeat Expansion/genetics
8.
Neurobiol Dis ; 190: 106391, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38145851

ABSTRACT

CGG repeat expansion in NOTCH2NLC is the genetic cause of neuronal intranuclear inclusion disease (NIID). Previous studies indicated that the CGG repeats can be translated into polyglycine protein (N2CpolyG) which was toxic to neurons by forming intranuclear inclusions (IIs). However, little is known about the factors governing polyG IIs formation as well as its molecular pathogenesis. Considering that neurogenetic disorders usually involve interactions between genetic and environmental stresses, we investigated the effect of stress on the formation of IIs. Our results revealed that under hyperosmotic stress, N2CpolyG translocated from the cytoplasm to the nucleus and formed IIs in SH-SY5Y cells, recapitulating the pathological hallmark of NIID patients. Furthermore, N2CpolyG interacted/ co-localized with an RNA-binding protein FUS in the IIs of cellular model and NIID patient tissues, thereby disrupting stress granule formation in cytoplasm under hyperosmotic stress. Consequently, dysregulated expression of microRNAs was found both in NIID patients and cellular model, which could be restored by FUS overexpression in cultured cells. Overall, our findings indicate a mechanism of stress-induced pathological changes as well as neuronal damage, and a potential strategy for the treatment of NIID.


Subject(s)
Neuroblastoma , Neurodegenerative Diseases , Humans , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/metabolism , Intranuclear Inclusion Bodies/pathology , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Neuroblastoma/pathology , Neurodegenerative Diseases/metabolism
9.
Eur J Neurol ; 31(1): e16102, 2024 01.
Article in English | MEDLINE | ID: mdl-37823700

ABSTRACT

BACKGROUND AND PURPOSE: Neuronal intranuclear inclusion disease (NIID) poses a diagnostic challenge because of its diverse clinical manifestations. Detection of intranuclear inclusions remains the primary diagnostic criterion for NIID. Skin biopsies have traditionally been used, but concerns exist regarding postoperative complications and scarring. We sought to investigate the diagnostic utility of labial salivary gland biopsy, a less invasive alternative. METHODS: This study included a total of 19 patients and 11 asymptomatic carriers who underwent labial gland biopsies, while 10 patients opted for skin biopsies. All these individuals were confirmed to have pathogenic GGC repeat expansions in the NOTCH2NLC gene. The control group comprised 20 individuals matched for age and sex, all with nonpathogenic GGC repeat expansions, and their labial gland tissue was sourced from oral surgery specimens. RESULTS: Labial gland biopsies proved to be a highly effective diagnostic method in detecting eosinophilic intranuclear inclusions in NIID patients. The inclusions showed positive staining for p62 and ubiquitin, confirming their pathological significance. The presence of uN2CpolyG protein in the labial gland tissue further supported the diagnosis. Importantly, all patients who underwent lip gland biopsy experienced fast wound healing without any noticeable scarring. In contrast, skin biopsies led to varying degrees of scarring and one instance of a localized infection. CONCLUSION: Labial salivary gland biopsy emerged as a minimally invasive, efficient diagnostic method for NIID, with rapid healing and excellent sensitivity.


Subject(s)
Intranuclear Inclusion Bodies , Lip , Humans , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/pathology , Lip/pathology , Cicatrix/pathology , Salivary Glands/pathology , Biopsy/methods
10.
Eur J Neurol ; 31(2): e16145, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37975799

ABSTRACT

BACKGROUND AND PURPOSE: The role of GGC repeat expansions within NOTCH2NLC in Parkinson's disease (PD) and the substantia nigra (SN) dopaminergic neuron remains unclear. Here, we profile the NOTCH2NLC GGC repeat expansions in a large cohort of patients with PD. We also investigate the role of GGC repeat expansions within NOTCH2NLC in the dopaminergic neurodegeneration of SN. METHODS: A total of 2,522 patients diagnosed with PD and 1,085 health controls were analyzed for the repeat expansions of NOTCH2NLC by repeat-primed PCR and GC-rich PCR assay. Furthermore, the effects of GGC repeat expansions in NOTCH2NLC on dopaminergic neurons were investigated by using recombinant adeno-associated virus (AAV)-mediated overexpression of NOTCH2NLC with 98 GGC repeats in the SN of mice by stereotactic injection. RESULTS: Four PD pedigrees (4/333, 1.2%) and three sporadic PD patients (3/2189, 0.14%) were identified with pathogenic GGC repeat expansions (larger than 60 GGC repeats) in the NOTCH2NLC gene, while eight PD patients and one healthy control were identified with intermediate GGC repeat expansions ranging from 41 to 60 repeats. No significant difference was observed in the distribution of intermediate NOTCH2NLC GGC repeat expansions between PD cases and controls (Fisher's exact test p-value = 0.29). Skin biopsy showed P62-positive intranuclear NOTCH2NLC-polyGlycine (polyG) inclusions in the skin nerve fibers of patient. Expanded GGC repeats in NOTCH2NLC produced widespread intranuclear and perinuclear polyG inclusions, which led to a severe loss of dopaminergic neurons in the SN. Consistently, polyG inclusions were presented in the SN of EIIa-NOTCH2NLC-(GGC)98 transgenic mice and also led to dopaminergic neuron loss in the SN. CONCLUSIONS: Overall, our findings provide strong evidence that GGC repeat expansions within NOTCH2NLC contribute to the pathogenesis of PD and cause degeneration of nigral dopaminergic neurons.


Subject(s)
Parkinson Disease , Animals , Humans , Mice , Dopaminergic Neurons/pathology , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/pathology , Mice, Transgenic , Nerve Degeneration/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Substantia Nigra/pathology , Trinucleotide Repeat Expansion
11.
BMC Neurol ; 24(1): 154, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714961

ABSTRACT

BACKGROUND: Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by CGG repeat expansion of FMR1 gene. Both FXTAS and neuronal intranuclear inclusion disease (NIID) belong to polyglycine diseases and present similar clinical, radiological, and pathological features, making it difficult to distinguish these diseases. Reversible encephalitis-like attacks are often observed in NIID. It is unclear whether they are presented in FXTAS and can be used for differential diagnosis of NIID and FXTAS. CASE PRESENTATION: A 63-year-old Chinese male with late-onset gait disturbance, cognitive decline, and reversible attacks of fever, consciousness impairment, dizziness, vomiting, and urinary incontinence underwent neurological assessment and examinations, including laboratory tests, electroencephalogram test, imaging, skin biopsy, and genetic test. Brain MRI showed T2 hyperintensities in middle cerebellar peduncle and cerebrum, in addition to cerebellar atrophy and DWI hyperintensities along the corticomedullary junction. Lesions in the brainstem were observed. Skin biopsy showed p62-positive intranuclear inclusions. The possibilities of hypoglycemia, lactic acidosis, epileptic seizures, and cerebrovascular attacks were excluded. Genetic analysis revealed CGG repeat expansion in FMR1 gene, and the number of repeats was 111. The patient was finally diagnosed as FXTAS. He received supportive treatment as well as symptomatic treatment during hospitalization. His encephalitic symptoms were completely relieved within one week. CONCLUSIONS: This is a detailed report of a case of FXTAS with reversible encephalitis-like episodes. This report provides new information for the possible and rare features of FXTAS, highlighting that encephalitis-like episodes are common in polyglycine diseases and unable to be used for differential diagnosis.


Subject(s)
Ataxia , Encephalitis , Fragile X Syndrome , Tremor , Humans , Ataxia/diagnosis , Ataxia/genetics , Diagnosis, Differential , Encephalitis/diagnosis , Encephalitis/complications , Encephalitis/genetics , Encephalitis/pathology , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Fragile X Syndrome/diagnosis , Fragile X Syndrome/complications , Intranuclear Inclusion Bodies/pathology , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/complications , Tremor/diagnosis , Tremor/genetics , Tremor/etiology
12.
Brain ; 146(8): 3373-3391, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36825461

ABSTRACT

GGC repeat expansion in the 5' untranslated region (UTR) of NOTCH2NLC is associated with a broad spectrum of neurological disorders, especially neuronal intranuclear inclusion disease (NIID). Studies have found that GGC repeat expansion in NOTCH2NLC induces the formation of polyglycine (polyG)-containing protein, which is involved in the formation of neuronal intranuclear inclusions. However, the mechanism of neurotoxicity induced by NOTCH2NLC GGC repeats is unclear. Here, we used NIID patient-specific induced pluripotent stem cell (iPSC)-derived 3D cerebral organoids (3DCOs) and cellular models to investigate the pathophysiological mechanisms of NOTCH2NLC GGC repeat expansion. IPSC-derived 3DCOs and cellular models showed the deposition of polyG-containing intranuclear inclusions. The NOTCH2NLC GGC repeats could induce the upregulation of autophagic flux, enhance integrated stress response and activate EIF2α phosphorylation. Bulk RNA sequencing for iPSC-derived neurons and single-cell RNA sequencing (scRNA-seq) for iPSC-derived 3DCOs revealed that NOTCH2NLC GGC repeats may be associated with dysfunctions in ribosome biogenesis and translation. Moreover, NOTCH2NLC GGC repeats could induce the NPM1 nucleoplasm translocation, increase nucleolar stress, impair ribosome biogenesis and induce ribosomal RNA sequestration, suggesting dysfunction of membraneless organelles in the NIID cellular model. Dysfunctions in ribosome biogenesis and phosphorylated EIF2α and the resulting increase in the formation of G3BP1-positive stress granules may together lead to whole-cell translational inhibition, which may eventually cause cell death. Interestingly, scRNA-seq revealed that NOTCH2NLC GGC repeats may be associated with a significantly decreased proportion of immature neurons while 3DCOs were developing. Together, our results underscore the value of patient-specific iPSC-derived 3DCOs in investigating the mechanisms of polyG diseases, especially those caused by repeats in human-specific genes.


Subject(s)
DNA Helicases , RNA Helicases , Humans , Poly-ADP-Ribose Binding Proteins , RNA Recognition Motif Proteins , 5' Untranslated Regions , Intranuclear Inclusion Bodies , Ribosomes , Trinucleotide Repeat Expansion/genetics
13.
Cell ; 136(3): 496-507, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19167051

ABSTRACT

Small regulatory RNAs including small interfering RNAs (siRNAs) and microRNAs (miRNAs) guide Argonaute (Ago) proteins to specific target RNAs leading to mRNA destabilization or translational repression. Here, we report the identification of Importin 8 (Imp8) as a component of miRNA-guided regulatory pathways. We show that Imp8 interacts with Ago proteins and localizes to cytoplasmic processing bodies (P bodies), structures involved in RNA metabolism. Furthermore, we detect Ago2 in the nucleus of HeLa cells, and knockdown of Imp8 reduces the nuclear Ago2 pool. Using immunoprecipitations of Ago2-associated mRNAs followed by microarray analysis, we further demonstrate that Imp8 is required for the recruitment of Ago protein complexes to a large set of Ago2-associated target mRNAs, allowing for efficient and specific gene silencing. Therefore, we provide evidence that Imp8 is required for cytoplasmic miRNA-guided gene silencing and affects nuclear localization of Ago proteins.


Subject(s)
Eukaryotic Initiation Factor-2/metabolism , RNA, Messenger/metabolism , beta Karyopherins/metabolism , Active Transport, Cell Nucleus , Argonaute Proteins , Cell Line , Cytoplasmic Granules/metabolism , Gene Silencing , HeLa Cells , Humans , Intranuclear Inclusion Bodies/metabolism , MicroRNAs/metabolism
14.
Neuropathology ; 44(1): 31-40, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37340992

ABSTRACT

Neuronal intranuclear inclusions (NIIs) are common key structures in polyglutamine (polyQ) diseases such as Huntington disease (HD), spinocerebellar ataxia type 1 (SCA1), and SCA3. Marinesco bodies (MBs) of dopaminergic neurons in the substantia nigra are also intranuclear structures and are frequently seen in normal elderly people. Ribosomal dysfunction is closely related to two differential processes; therefore, we aimed to identify the pathological characteristics of ribosomal protein SA (RPSA), a ribosomal protein, in both states. To this end, we evaluated the autopsy findings in four patients with HD, two SCA3, and five normal elderly cases (NCs). Immunohistochemical studies demonstrated that both NIIs and MBs contain RPSA. In polyQ diseases, RPSA was co-localized with polyQ aggregations, and 3D-reconstructed images revealed their mosaic-like distribution. Assessments of the organization of RPSA and p62 in NIIs showed that RPSA was more localized toward the center than p62 and that this unique organization was more evident in the MBs. Immunoblotting of the temporal cortices revealed that the nuclear fraction of HD patients contained more RPSA than that of NCs. In conclusion, our study revealed that RPSA is a common component of both NIIs and MBs, indicating that a similar mechanism contributes to the formation of polyQ NIIs and MBs.


Subject(s)
Brain , Intranuclear Inclusion Bodies , Aged , Humans , Brain/pathology , Intranuclear Inclusion Bodies/metabolism , Peptides/metabolism , Ribosomal Proteins/metabolism
15.
Stroke ; 54(5): 1236-1245, 2023 05.
Article in English | MEDLINE | ID: mdl-36942588

ABSTRACT

BACKGROUND: Neuronal intranuclear inclusion disease (NIID), caused by GGC (guanine-guanine-cytosine) repeat expansion in NOTCH2NLC, has several clinical and radiological features akin to cerebral small vessel disease (cSVD). The present study tested the hypothesis that NOTCH2NLC GGC expansion may contribute to cSVD. METHODS: One hundred and ninety-seven unrelated patients with genetically unsolved vascular leukoencephalopathy without NOTCH3, HTRA1, and mitochondrial m.3243A>G mutations and 730 healthy individuals were screened for NOTCH2NLC GGC repeat expansion using repeat-primed polymerase chain reaction, fragment analysis, Southern blot analysis, or nanopore sequencing with Cas9 (CRISPR associated protein 9)-mediated enrichment. The clinical and neuroimaging features of the patients were compared between individuals with and without NOTCH2NLC GGC repeat expansion. RESULTS: Six of the 197 (3.0%) patients with unsolved vascular leukoencephalopathy and none of the controls carried the GGC repeat expansion (P=0.00009). Skin biopsy of 1 patient revealed eosinophilic, ubiquitin-positive, and p62-positive intranuclear inclusions in the cells of sweat gland and capillary, providing pathologic evidence for the involvement of small vessels in NIID. For the 6 patients, gait disturbance and cognitive decline were common manifestations with a median onset age of 65 (59-69) years. They all had multiple neuroimaging features suggestive of cSVD, including diffuse white matter hyperintensities, lacunes, and enlarged perivascular space in all 6 patients, cerebral microbleeds in 5, and old intracerebral hemorrhage in 4. Four patients had linear hyperintensity in the corticomedullary junction on diffusion-weighted imaging-the characteristic neuroimaging feature of NIID. There was no difference in the severity of cSVD imaging features between the patients with and without the GGC expansion but more pronounced brain atrophy in the patients with the GGC expansion. CONCLUSIONS: NOTCH2NLC GGC repeat expansion accounted for 3% of genetically unsolved Taiwanese vascular leukoencephalopathy cases after excluding participants with cerebral autosomal dominant arteriopathy with subcortical infarct and leukoencephalopathy (CADASIL), cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), and mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS). NIID should be considered in patients manifesting cSVD, especially in those with characteristic neuroimaging feature of NIID.


Subject(s)
CADASIL , Leukoencephalopathies , Neurodegenerative Diseases , Aged , Humans , CADASIL/pathology , High-Temperature Requirement A Serine Peptidase 1 , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/pathology , Leukoencephalopathies/genetics , Neurodegenerative Diseases/pathology , Middle Aged
16.
Neurobiol Dis ; 177: 105989, 2023 02.
Article in English | MEDLINE | ID: mdl-36621630

ABSTRACT

Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease characterized by eosinophilic hyaline intranuclear inclusions in the neurons, glial cells, and other somatic cells. Although CGG repeat expansions in NOTCH2NLC have been identified in most East Asian patients with NIID, the pathophysiology of NIID remains unclear. Ubiquitin- and p62-positive intranuclear inclusions are the pathological hallmark of NIID. Targeted immunostaining studies have identified several other proteins present in these inclusions. However, the global molecular changes within nuclei with these inclusions remained unclear. Herein, we analyzed the proteomic profile of nuclei with p62-positive inclusions in a NIID patient with CGG repeat expansion in NOTCH2NLC to discover candidate proteins involved in the NIID pathophysiology. We used fluorescence-activated cell sorting and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify each protein identified in the nuclei with p62-positive inclusions. The distribution of increased proteins was confirmed via immunofluorescence in autopsy brain samples from three patients with genetically confirmed NIID. Overall, 526 proteins were identified, of which 243 were consistently quantified using MS. A 1.4-fold increase was consistently observed for 20 proteins in nuclei with p62-positive inclusions compared to those without. Fifteen proteins identified with medium or high confidence in the LC-MS/MS analysis were further evaluated. Gene ontology enrichment analysis showed enrichment of several terms, including poly(A) RNA binding, nucleosomal DNA binding, and protein binding. Immunofluorescence studies confirmed that the fluorescent intensities of increased RNA-binding proteins identified by proteomic analysis, namely hnRNP A2/B1, hnRNP A3, and hnRNP C1/C2, were higher in the nuclei with p62-positive inclusions than in those without, which were not confined to the intranuclear inclusions. We identified several increased proteins in nuclei with p62-positive inclusions. Although larger studies are needed to validate our results, these proteomic data may form the basis for understanding the pathophysiology of NIID.


Subject(s)
Intranuclear Inclusion Bodies , Neurodegenerative Diseases , Humans , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/metabolism , Intranuclear Inclusion Bodies/pathology , Neurodegenerative Diseases/metabolism , Chromatography, Liquid , Proteomics , Tandem Mass Spectrometry
17.
J Cell Sci ; 134(10)2021 05 15.
Article in English | MEDLINE | ID: mdl-34028540

ABSTRACT

The heat-shock response is critical for the survival of all organisms. Metastasis-associated long adenocarcinoma transcript 1 (MALAT1) is a long noncoding RNA localized in nuclear speckles, but its physiological role remains elusive. Here, we show that heat shock induces translocation of MALAT1 to a distinct nuclear body named the heat shock-inducible noncoding RNA-containing nuclear (HiNoCo) body in mammalian cells. MALAT1-knockout A549 cells showed reduced proliferation after heat shock. The HiNoCo body, which is formed adjacent to nuclear speckles, is distinct from any other known nuclear bodies, including the nuclear stress body, Cajal body, germs, paraspeckles, nucleoli and promyelocytic leukemia body. The formation of HiNoCo body is reversible and independent of heat shock factor 1, the master transcription regulator of the heat-shock response. Our results suggest the HiNoCo body participates in heat shock factor 1-independent heat-shock responses in mammalian cells.


Subject(s)
Adenocarcinoma , RNA, Long Noncoding , Animals , Cell Nucleus/genetics , Intranuclear Inclusion Bodies , RNA, Long Noncoding/genetics , RNA, Untranslated
18.
PLoS Pathog ; 17(1): e1009231, 2021 01.
Article in English | MEDLINE | ID: mdl-33471863

ABSTRACT

Liquid-liquid phase separation (LLPS) can drive formation of diverse and essential macromolecular structures, including those specified by viruses. Kaposi's Sarcoma-Associated Herpesvirus (KSHV) genomes associate with the viral encoded Latency-Associated Nuclear Antigen (LANA) to form stable nuclear bodies (NBs) during latent infection. Here, we show that LANA-NB formation and KSHV genome conformation involves LLPS. Using LLPS disrupting solvents, we show that LANA-NBs are partially disrupted, while DAXX and PML foci are highly resistant. LLPS disruption altered the LANA-dependent KSHV chromosome conformation but did not stimulate lytic reactivation. We found that LANA-NBs undergo major morphological transformation during KSHV lytic reactivation to form LANA-associated replication compartments encompassing KSHV DNA. DAXX colocalizes with the LANA-NBs during latency but is evicted from the LANA-associated lytic replication compartments. These findings indicate the LANA-NBs are dynamic super-molecular nuclear structures that partly depend on LLPS and undergo morphological transitions corresponding to the different modes of viral replication.


Subject(s)
Antigens, Viral/chemistry , Co-Repressor Proteins/metabolism , Genome, Viral/genetics , Herpesvirus 8, Human/genetics , Intranuclear Inclusion Bodies/metabolism , Molecular Chaperones/metabolism , Nuclear Proteins/chemistry , Sarcoma, Kaposi/virology , Antigens, Viral/genetics , Cell Line, Tumor , Herpesvirus 8, Human/physiology , Histones/metabolism , Humans , Inclusion Bodies, Viral/chemistry , Inclusion Bodies, Viral/metabolism , Intranuclear Inclusion Bodies/chemistry , Latent Infection , Liquid-Liquid Extraction , Nuclear Proteins/genetics , Plasmids/genetics , Virus Latency , Virus Replication
19.
PLoS Pathog ; 17(8): e1009863, 2021 08.
Article in English | MEDLINE | ID: mdl-34370791

ABSTRACT

Restriction factors are potent antiviral proteins that constitute a first line of intracellular defense by blocking viral replication and spread. During co-evolution, however, viruses have developed antagonistic proteins to modulate or degrade the restriction factors of their host. To ensure the success of lytic replication, the herpesvirus human cytomegalovirus (HCMV) expresses the immediate-early protein IE1, which acts as an antagonist of antiviral, subnuclear structures termed PML nuclear bodies (PML-NBs). IE1 interacts directly with PML, the key protein of PML-NBs, through its core domain and disrupts the dot-like multiprotein complexes thereby abrogating the antiviral effects. Here we present the crystal structures of the human and rat cytomegalovirus core domain (IE1CORE). We found that IE1CORE domains, also including the previously characterized IE1CORE of rhesus CMV, form a distinct class of proteins that are characterized by a highly similar and unique tertiary fold and quaternary assembly. This contrasts to a marked amino acid sequence diversity suggesting that strong positive selection evolved a conserved fold, while immune selection pressure may have fostered sequence divergence of IE1. At the same time, we detected specific differences in the helix arrangements of primate versus rodent IE1CORE structures. Functional characterization revealed a conserved mechanism of PML-NB disruption, however, primate and rodent IE1 proteins were only effective in cells of the natural host species but not during cross-species infection. Remarkably, we observed that expression of HCMV IE1 allows rat cytomegalovirus replication in human cells. We conclude that cytomegaloviruses have evolved a distinct protein tertiary structure of IE1 to effectively bind and inactivate an important cellular restriction factor. Furthermore, our data show that the IE1 fold has been adapted to maximize the efficacy of PML targeting in a species-specific manner and support the concept that the PML-NBs-based intrinsic defense constitutes a barrier to cross-species transmission of HCMV.


Subject(s)
Adaptation, Physiological , Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , Immediate-Early Proteins/chemistry , Immediate-Early Proteins/metabolism , Intranuclear Inclusion Bodies/metabolism , Virus Replication , Animals , Cytomegalovirus Infections/metabolism , Humans , Primates , Protein Folding , Protein Structure, Tertiary , Rats , Species Specificity
20.
Ann Neurol ; 92(3): 512-526, 2022 09.
Article in English | MEDLINE | ID: mdl-35700120

ABSTRACT

OBJECTIVE: Oculopharyngodistal myopathy (OPDM) is an adult-onset neuromuscular disease characterized by progressive ptosis, dysarthria, ophthalmoplegia, and distal muscle weakness. Recent studies revealed that GGC repeat expansions in 5'-UTR of LRP12, GIPC1, and NOTCH2NLC are associated with OPDM. Despite these advances, approximately 30% of OPDM patients remain genetically undiagnosed. Herein, we aim to investigate the genetic basis for undiagnosed OPDM patients in two unrelated Chinese Han families. METHODS: Parametric linkage analysis was performed. Long-read sequencing followed by repeat-primed polymerase chain reaction and amplicon length polymerase chain reaction were used to determine the genetic cause. Targeted methylation sequencing was implemented to detect epigenetic changes. The possible pathogenesis mechanism was investigated by quantitative polymerase chain reaction, immunoblotting, RNA fluorescence in situ hybridization, and immunofluorescence staining of muscle biopsy samples. RESULTS: The disease locus was mapped to 12q24.3. Subsequently, GGC repeat expansion in the promoter region of RILPL1 was identified in six OPDM patients from two families, findings consistent with a founder effect, designated as OPDM type 4. Targeted methylation sequencing revealed hypermethylation at the RILPL1 locus in unaffected individuals with ultralong expansion. Analysis of muscle samples showed no significant differences in RILPL1 mRNA or RILPL1 protein levels between patients and controls. Public CAGE-seq data indicated that alternative transcription start sites exist upstream of the RefSeq-annotated RILPL1 transcription start site. Strand-specific RNA-seq data revealed bidirectional transcription from the RILPL1 locus. Finally, fluorescence in situ hybridization/immunofluorescence staining showed that both sense and antisense transcripts formed RNA foci, and were co-localized with hnRNPA2B1 and p62 in the intranuclear inclusions of OPDM type 4 patients. INTERPRETATION: Our findings implicate abnormal GGC repeat expansions in the promoter region of RILPL1 as a novel genetic cause for OPDM, and suggest a methylation mechanism and a potential RNA toxicity mechanism are involved in OPDM type 4 pathogenesis. ANN NEUROL 2022;92:512-526.


Subject(s)
Muscular Dystrophies , Adult , Humans , In Situ Hybridization, Fluorescence , Intranuclear Inclusion Bodies/pathology , Muscular Dystrophies/genetics , Pedigree , RNA , Trinucleotide Repeat Expansion/genetics
SELECTION OF CITATIONS
SEARCH DETAIL