Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 950
Filter
Add more filters

Publication year range
1.
Genetica ; 152(1): 43-49, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38349466

ABSTRACT

Satellite DNAs (satDNAs) are highly repetitive sequences that occur in virtually all eukaryotic genomes and can undergo rapid copy number and nucleotide sequence variation among relatives. After chromosomal mapping of the satDNA JcSAT1, it was found a large accumulation at subtelomeres of Jatropha curcas (subgenus Curcas), but an absence of these monomers in J. integerrima (subgenus Jatropha). This fact suggests a dynamic scenario for this satellite repeat in Jatropha genomes. Here, we used a multitasking approach (sequence analysis, DNA blotting and chromosomal mapping) to investigate the molecular organization and chromosomal abundance and distribution of JcSAT1 in a broader group of species from the subgenus Jatropha (J. gossypiifolia, J. mollissima, J. podagrica, and J. multifida) in addition to J. curcas, with the aiming of understanding the evolution of this satDNA. Based on the analysis of BAC clone sequences of J. curcas, a large array (~ 30 kb) of 80 homogeneous monomers of JcSAT1 was identified in BAC 23J11. The monomer size was conserved (~ 358 bp) and contained a telomeric motif at the 5' end. PCR amplification coupled with a Southern blot revealed the presence of JcSAT1-like sequences in all species examined. However, a large set of genome copies was identified only in J. curcas, where a ladder-like pattern with multimers of different sizes was observed. In situ hybridization of BAC 23J11 confirmed the subtelomeric pattern for J. curcas, but showed no signals on chromosomes of species from the subgenus Jatropha. Our data indicate that JcSAT1 is a highly homogeneous satDNA that originated from a region near the telomeres and spread throughout the chromosomal subtermini, possibly due to frequent ectopic recombination between these regions. The abundance of JcSAT1 in the genome of J. curcas suggests that an amplification event occurred either at the base of the subgenus Curcas or at least in this species, although the repeat is shared by all species of the genus studied so far.


Subject(s)
Euphorbiaceae , Jatropha , Jatropha/genetics , Euphorbiaceae/genetics , DNA, Satellite/genetics , Phylogeny , Heterochromatin , Telomere/genetics
2.
Physiol Plant ; 176(2): e14274, 2024.
Article in English | MEDLINE | ID: mdl-38566272

ABSTRACT

AIMS: Phorbol esters (PE) are toxic diterpenoids accumulated in physic nut (Jatropha curcas L.) seed tissues. Their biosynthetic pathway remains unknown, and the participation of roots in this process may be possible. Thus, we set out to study the deposition pattern of PE and other terpenoids in roots and leaves of genotypes with detected (DPE) and not detected (NPE) phorbol esters based on previous studies. OUTLINE OF DATA RESOURCES: We analyzed physic nut leaf and root organic extracts using LC-HRMS. By an untargeted metabolomics approach, it was possible to annotate 496 and 146 metabolites in the positive and negative electrospray ionization modes, respectively. KEY RESULTS: PE were detected only in samples of the DPE genotype. Remarkably, PE were found in both leaves and roots, making this study the first report of PE in J. curcas roots. Furthermore, untargeted metabolomic analysis revealed that diterpenoids and apocarotenoids are preferentially accumulated in the DPE genotype in comparison with NPE, which may be linked to the divergence between the genotypes concerning PE biosynthesis, since sesquiterpenoids showed greater abundance in the NPE. UTILITY OF THE RESOURCE: The LC-HRMS files, publicly available in the MassIVE database (identifier MSV000092920), are valuable as they expand our understanding of PE biosynthesis, which can assist in the development of molecular strategies to reduce PE levels in toxic genotypes, making possible the food use of the seedcake, as well as its potential to contain high-quality spectral information about several other metabolites that may possess biological activity.


Subject(s)
Jatropha , Jatropha/genetics , Jatropha/metabolism , Phorbol Esters/analysis , Phorbol Esters/metabolism , Plant Leaves/metabolism , Seeds/genetics
3.
Molecules ; 29(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999040

ABSTRACT

The Jatropha curcas cake, a protein-rich by-product of biofuel production, was the subject of our study. We identified and quantified the ACE inhibitory, antioxidant, and antidiabetic activities of bioactive peptides from a Jatropha curcas L. var Sevangel protein isolate. The protein isolate (20.44% recovered dry matter, 38.75% protein content, and 34.98% protein yield) was subjected to two enzyme systems for hydrolysis: alcalase (PEJA) and flavourzyme (PEJF), recording every 2 h until 8 h had passed. The highest proteolytic capacity in PEJA was reached at 2 h (4041.38 ± 50.89), while in PEJF, it was reached at 6 h (3435.16 ± 59.31). Gel electrophoresis of the PEJA and PEJF samples showed bands corresponding to peptides smaller than 10 kDa in both systems studied. The highest values for the antioxidant capacity (DPPH) were obtained at 4 h for PEJA (56.17 ± 1.14), while they were obtained at 6 h for PEJF (26.64 ± 0.52). The highest values for the antihypertensive capacity were recorded at 6 h (86.46 ± 1.85) in PEJF. The highest antidiabetic capacity obtained for PEJA and PEJF was observed at 6 h, 68.86 ± 8.27 and 52.75 ± 2.23, respectively. This is the first report of their antidiabetic activity. Notably, alcalase hydrolysate outperformed flavourzyme hydrolysate and the cereals reported in other studies, confirming its better multi-bioactivity.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Antioxidants , Hypoglycemic Agents , Jatropha , Plant Proteins , Jatropha/chemistry , Hydrolysis , Antioxidants/chemistry , Antioxidants/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Subtilisins/metabolism , Subtilisins/chemistry , Endopeptidases
4.
BMC Plant Biol ; 23(1): 99, 2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36800929

ABSTRACT

BACKGROUND: The gibberellic acid-stimulated Arabidopsis (GASA) gene encodes a class of cysteine-rich functional proteins and is ubiquitous in plants. Most GASA proteins are influence the signal transmission of plant hormones and regulate plant growth and development, however, their function in Jatropha curcas is still unknown. RESULTS: In this study, we cloned JcGASA6, a member of the GASA family, from J. curcas. The JcGASA6 protein has a GASA-conserved domain and is located in the tonoplast. The three-dimensional structure of the JcGASA6 protein is highly consistent with the antibacterial protein Snakin-1. Additionally, the results of the yeast one-hybrid (Y1H) assay showed that JcGASA6 was activated by JcERF1, JcPYL9, and JcFLX. The results of the Y2H assay showed that both JcCNR8 and JcSIZ1 could interact with JcGASA6 in the nucleus. The expression of JcGASA6 increased continuously during male flower development, and the overexpression of JcGASA6 was associated with filament elongation of the stamens in tobacco. CONCLUSION: JcGASA6, a member of the GASA family in J. curcas, play an important role in growth regulation and floral development (especially in male flower). It is also involved in the signal transduction of hormones, such as ABA, ET, GA, BR, and SA. Also, JcGASA6 is a potential antimicrobial protein determined by its three-dimensional structure.


Subject(s)
Jatropha , Plant Proteins , Gene Expression Regulation, Plant , Gibberellins/metabolism , Jatropha/genetics , Jatropha/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism
5.
BMC Plant Biol ; 23(1): 77, 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36737681

ABSTRACT

BACKGROUND: Jatropha curcas is a promising alternative bio-energy resource. However, underrun limited its broad application in the industry. Luckily, TAW1 is a high-productivity promoting gene that increases the lateral branches by prolonging the identification of inflorescence meristems to generate more spikes and flowers. RESULTS: In the current study, we introduced the Jatropha JcTAW1 gene into tobacco to depict its functional profile. Ectopically expressed JcTAW1 increased the lateral branches and ultimate yield of the transgenic tobacco plants. Moreover, the JcTAW1 lines had significantly higher plant height, longer roots, and better drought resistance than those of wild-type (W.T.). We performed RNA sequencing and weighted gene co-expression network analysis to determine which biological processes were affected by JcTAW1. The results showed that biological processes such as carbon metabolism, cell wall biosynthesis, and ionization transport were extensively promoted by the ectopic expression of JcTAW1. Seven hub genes were identified. Therein, two up-regulated genes affect glucose metabolism and cell wall biosynthesis, five down-regulated genes are involved in DNA repair and negative regulation of TOR (target-of-rapamycin) signaling which was identified as a central regulator to promote cell proliferation and growth. CONCLUSIONS: Our study verified a new promising candidate for Jatropha productive breeding and discovered several new features of JcTAW1. Except for boosting flowering, JcTAW1 was found to promote stem and root growth. Additionally, transcriptome analysis indicated that JcTAW1 might promote glucose metabolism while suppressing the DNA repair system.


Subject(s)
Biological Phenomena , Jatropha , Nicotiana/genetics , Drought Resistance , Ectopic Gene Expression , Plant Breeding , Plants, Genetically Modified , Glucose/metabolism , Gene Expression Regulation, Plant
6.
Planta ; 258(5): 88, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37755517

ABSTRACT

MAIN CONCLUSION: Overexpression of JcSEUSS1 resulted in late flowering, reduced flower number, wrinkled kernels, and decreased seed yield in Jatopha curcas, while downregulation of JcSEUSS1 increased flower number and seed production. The seed oil of Jatropha curcas is suitable as an ideal alternative for diesel fuel, yet the seed yield of Jatropha is restricted by its small number of female flowers and low seed setting rate. Therefore, it is crucial to identify genes that regulate flowering and seed set, and hence improve seed yield. In this study, overexpression of JcSEUSS1 resulted in late flowering, fewer flowers and fruits, and smaller fruits and seeds, causing reduced seed production and oil content. In contrast, the downregulation of JcSEUSS1 by RNA interference (RNAi) technology caused an increase in the flower number and seed yield. However, the flowering time, seed number per fruit, seed weight, and size exhibited no obvious changes in JcSEUSS1-RNAi plants. Moreover, the fatty acid composition also changed in JcSEUSS1 overexpression and RNAi plants, the percentage of unsaturated fatty acids (FAs) was increased in overexpression plants, and the saturated FAs were increased in RNAi plants. These results indicate that JcSEUSS1 played a negative role in regulating reproductive growth and worked redundantly with other genes in the regulation of flowering time, seed number per fruit, seed weight, and size.


Subject(s)
Jatropha , Jatropha/genetics , Seeds/genetics , Fruit/genetics , Wood , Fatty Acids , Genitalia
7.
J Exp Bot ; 74(1): 336-351, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36269314

ABSTRACT

Jatropha curcas is a drought-tolerant plant that maintains its photosynthetic pigments under prolonged drought, and quickly regains its photosynthetic capacity when water is available. It has been reported that drought stress leads to increased thermal dissipation in PSII, but that of PSI has been barely investigated, perhaps due to technical limitations in measuring the PSI absolute quantum yield. In this study, we combined biochemical analysis and spectroscopic measurements using an integrating sphere, and verified that the quantum yields of both photosystems are temporarily down-regulated under drought. We found that the decrease in the quantum yield of PSII was accompanied by a decrease in the core complexes of PSII while light-harvesting complexes are maintained under drought. In addition, in drought-treated plants, we observed a decrease in the absolute quantum yield of PSI as compared with the well-watered control, while the amount of PSI did not change, indicating that non-photochemical quenching occurs in PSI. The down-regulation of both photosystems was quickly lifted in a few days upon re-watering. Our results indicate, that in J. curcas under drought, the down-regulation of both PSII and PSI quantum yield protects the photosynthetic machinery from uncontrolled photodamage.


Subject(s)
Jatropha , Photosystem I Protein Complex , Photosystem I Protein Complex/metabolism , Jatropha/metabolism , Electron Transport/physiology , Droughts , Down-Regulation , Plant Leaves/metabolism , Photosynthesis/physiology , Water/metabolism , Photosystem II Protein Complex/metabolism , Chlorophyll
8.
Arch Microbiol ; 205(2): 61, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36625985

ABSTRACT

Fungal endophytes produce a range of structurally diverse metabolites with bioactive principles. In this study, an endophytic fungus Alternaria alternata was isolated from Jatropha heynei and cultured in potato dextrose liquid broth. Culture filtrate of A. alternata was extracted in ethyl acetate and metabolites were characterized by QTOF-HRLCMS. Among compounds detected, spectral compounds such as kigelinone, and levofuraltadone were reported with antibacterial property, while 2-hydroxychrasophanol, isoathyriol, glycophymoline, columbianetin and kaempferol 3-O-ß-D- galactoside were reported with cytotoxic properties. Partially purified metabolites of A. alternata showed significant antibacterial activity against tested clinical bacterial strains by agar well diffusion method. High zone of inhibition was recorded against Enterococcus faecalis, Pseudomonas syringae and Klebsiella pneumoniae. In vitro anticancer activity of fungal extract by MTT assay displayed high cytotoxic effect on human lung carcinoma cancer cell line (A549) with IC50 value of 393.52 µg ml-1, and without any significant cytotoxic effect on human breast cancer cell line (MCF-7). Further, antibacterial and anticancer spectral compounds of A. alternata were subjected to molecular docking analysis with antibacterial target proteins such as tellurite resistance protein (2JXU), indole-3-acetaldehyde dehydrogenase (5IUU) and alkyl hydroperoxide reductase (5Y63), and anticancer target human apoptotic regulator protein (1G5M). The results of the study indicated that kigelinone, levofuraltadone, 2-hydroxychrasophanol and isoathyriol in the fungal extract have significant binding modes, with best binding energy scores with their respective antibacterial and anticancer target proteins. Alternaria alternata resident in J. heynei offers a promising source of broad-spectrum antibacterial and anticancer compounds.


Subject(s)
Jatropha , Humans , Molecular Docking Simulation , Alternaria , Anti-Bacterial Agents/metabolism , Plant Extracts/metabolism , Endophytes
9.
Bioorg Chem ; 140: 106825, 2023 11.
Article in English | MEDLINE | ID: mdl-37683543

ABSTRACT

Avoiding the probable dangerous side effects of synthetic drugs, this study aims the identification of natural antioxidant and antitumor agents from J. integerrima leaf and floral extracts. A highly efficient and fast UPLC/ESI-qTOF-HRMS/MS screening has led to characterization of 30 flavonoids, i.e. 12 flavonols, 6 flavones, 3 dihydroflavonols, 4 anthocyanins (flower), 2 dihydroflavonols, and 3 isoflavones from both J. integerrima extracts. In addition, six major polyphenols were identified for the first time from leaf extract, and their structures were established as apigenin 7-O-ß-d-neohesperidoside (rhoifolin, 1), apigenin 8-C-ß-D-4C1-glucopyranoside (vitexin, 2), luteolin 6-C-ß-D-4C1-glucopyranoside (isoorientin, 3), 6,6″-di-C-ß-D-4C1-glucopyranosyl-methylene-biapigenin (Jatrophenol-I, 4), (E)-p-coumaric acid methyl ester (5), and (E)-ferulic acid methyl ester (6) with HRESI-MS and NMR analyses. The in vitro antioxidant activity of both extracts and major pure isolates was decided using DPPH, reducing power capability, FRAP, and ABTS radical scavenging assays, and their in vitro cytotoxicity was evaluated on Ehrlich ascites carcinoma cells (EACC), as well.The flower extract and compound 3 have shown the strongest antioxidant and cytotoxic effects. At low concentrations (25 µg/mL), they showed the highest DPPH radical scavenging ability (79.63 ± 0.42 and 76.20 ± 0.35%) regarding BHA (91.44 ± 0.29% at 100 µg/mL). In the parameter of absorbance, they exhibited higher reducing power ability (1.402 ± 0.025 and 1.178 ± 0.019%) than that of BHA (0.975 ± 0.013 at 100 µg/mL). Similarly, they proved superior FRAP (1427 ± 9.61 and 1377 ± 13.61 µmol Trolox/ 100 g) and highest ABTS activity (80.19 ± 0.55 and 68.38 ± 0.19%), which are higher activities compared to BHA (88.42 ± 0.24% at 100 µg/mL). Furthermore, all samples gave noticeable cytotoxicity at the same concentration (100 µg/mL), especially the flower extract and compound 3 which showed a relatively high effect on the viability of EACC (81.12 ± 0.24 and 77.21 ± 0.76 %, respectively) relative to vincristine reference drug (90.64 ± 0.39 %). Based on the findings, the extracts and isolates can be considered as potent antioxidant and cytotoxic natural agents, especially flower extract and isoorientin (3), which may supply novel insight into their likely application in pharmaceutical industries.


Subject(s)
Antineoplastic Agents , Jatropha , Apigenin , Antioxidants/pharmacology , Anthocyanins , Tandem Mass Spectrometry , Phytochemicals , Cytotoxins , Flavonoids
10.
Environ Res ; 219: 115055, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36574797

ABSTRACT

The primary source of soil pollution is a complex mixture of numerous inorganic and organic compounds (including chlorinated compounds, nutrients, and heavy metals, etc.). The presence of all of these compounds makes remediation and cleanup difficult. In this study, the phytoremediation ability of Jatropha curcas and Pongamia pinnata was tested to remove nickel (Ni) and Zinc (Zn) from paper mill and municipal landfill contaminated soils, to understand the uptake potential and to estimate the accumulation pattern of Ni and Zn in the vegetative parts of the plant. The experiments were carried out in pots (3 kg capacity) and the different combinations of soil were made by mixing the contaminated soil with a reference soil (forest soil) as T0, T25, T50, T75 and T100. The plant biomass, chlorophyll content, proline, nitrate reductase activity and metal removal efficiency (%)were determined after 120 DAS (i.e., the days after sowing). The results of the study showed that with increasing metal stress, there is a reduction in the above-ground biomass content in both the plant species with a slightly less impact on the root biomass. Over a period of 4 months, J. curcas and P. pinnata removed 82-86% and 93-90% Ni, respectively. The removal of Zn was significantly less as compared to Ni as most of the Zn remained in the belowground part (roots) and in the soil. Besides, the phytostabilization capacities of the plants were calculated on the basis of their tolerance index (TI), bioaccumulation factor (BAF) and translocation factor (TF). The low BAF and TF values with increasing heavy metals (HMs) content indicates its higher phytostabilization capacity in the root and rhizospheric region as compared to phytoaccumulation.


Subject(s)
Jatropha , Metals, Heavy , Millettia , Soil Pollutants , Zinc , Nickel , Biodegradation, Environmental , Solid Waste , Soil , Soil Pollutants/analysis , Metals, Heavy/analysis , Plants
11.
Environ Res ; 232: 116295, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37263472

ABSTRACT

This investigation was performed to evaluate the metal pollution and possible phytoremediation on bauxite mine surrounding farmland soil. The quality analysis results revealed that, the soil has been polluted with metals such as Al (13.25 ± 0.54 mg kg-1), Pb (336.18 ± 7.17 mg kg-1), Zn (382.18 ± 3.05 mg kg-1), and Cd (11.32 ± 0.28 mg kg-1) and possess poor essential element content. The test bacterium Pseudomonas aeroginosa showed considerable metal tolerance up to 100 mg kg-1 concentration of metals such as Al, Pb, Zn, and Cd. Besides that, it also possesses essential plant growth promoting traits such as sederophore, IAA, nitrogen fixation, and phosphate solubilization. The test bacterium P. aeroginosa demonstrated optimistic influence on the growth and phytoremediation ability of Jatropha gossypifolia on metal-polluted soil under greenhouse experiment with different treatment groups (I-V). Group I (J. gossypifolia seeds coated with P. aeroginosa) showed outstanding phytoremediation potential on metal polluted soil than other treatment groups. The group I reduced considerable quantity of metals (Al 42.79%, Pb 36.57%, Zn 47.06%, and Cd 39.57%) from the treated soil. It was significantly higher than the remediation potential of other treatment groups (II-V). These findings suggest that P. aeroginosa's metal tolerant and PGP characters can effectively influence the growth and phytoremediation potential of J. gossypifolia on metal polluted soil.


Subject(s)
Jatropha , Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Metals, Heavy/analysis , Cadmium/analysis , Pseudomonas aeruginosa , Soil , Lead/analysis , Soil Pollutants/toxicity , Soil Pollutants/analysis , Bacteria
12.
Plant Cell Rep ; 42(8): 1333-1344, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37355482

ABSTRACT

KEY MESSAGE: Overexpression of JcGAST1 promotes plant growth but inhibits pistil development. The pyrimidine box and CGTCA motif of the JcGAST1 promoter were responsible for the GA and MeJA responses. Members of the gibberellic acid-stimulated Arabidopsis (GASA) gene family play roles in plant growth and development, particularly in flower induction and seed development. However, there is still relatively limited knowledge of GASA genes in Jatropha curcas. Herein, we identified a GASA family gene from Jatropha curcas, namely, JcGAST1, which encodes a protein containing a conserved GASA domain. Sequence alignment showed that the JcGAST1 protein shares 76% sequence identity and 80% sequence similarity with SlGAST1. JcGAST1 had higher expression and protein levels in the female flowers than in the male flowers. Overexpression of JcGAST1 in tobacco promotes plant growth but inhibits pistil development. JcGAST1 expression was upregulated by GA and downregulated by MeJA. Promoter analysis indicated that the pyrimidine box and CGTCA motif were the GA- and MeJA-responsive elements of the JcGAST1 promoter. Using a Y1H screen, six transcription factors were found to interact with the pyrimidine box, and three transcription factors were found to interact with the CGTCA motif. Overall, the results of this study improve our understanding of the JcGAST1 gene and provide useful information for further studies.


Subject(s)
Arabidopsis , Jatropha , Jatropha/genetics , Jatropha/metabolism , Gene Expression Regulation, Plant/genetics , Promoter Regions, Genetic/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
13.
Bioprocess Biosyst Eng ; 46(3): 373-379, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35773493

ABSTRACT

Bauxite wastewater creates soil contamination and produces toxic effects on human health such as respiratory and skin rash problems. In this study, we investigated the phytoremediation ability of Jatropha curcas to remove bauxite wastewater from soil. Pot experiments were conducted to investigate the bauxite wastewater on the phytoremediation potential of J. curcas grown in contaminated soils. J. curcas exhibited a significant increase in plant growth leaf, root activity, plant height, and plant shoot when grown in bauxite contaminated soils compared with J. curcas grown in uncontaminated soils after 30 d treatment. Under bauxite exposure, a higher aluminium removal (88.5%) was observed in soils planted with J. curcas than unplanted soils (39.6%). The bioconcentration factor was also found to be 5.62, indicating that J. curcas have great tolerance and hyperaccumulator of aluminium under high aluminium concentrations and are capable of phytoextraction of soil contaminated with bauxite wastewater.


Subject(s)
Jatropha , Soil Pollutants , Humans , Biodegradation, Environmental , Wastewater , Aluminum Oxide , Aluminum , Soil
14.
Int J Mol Sci ; 24(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37685991

ABSTRACT

The Flowering locus T (FT) gene encodes the florigen protein, which primarily regulates the flowering time in plants. Recent studies have shown that FT genes also significantly affect plant growth and development. The FT gene overexpression in plants promotes flowering and suppresses leaf and stem development. This study aimed to conduct a transcriptome analysis to investigate the multiple effects of Jatropha curcas L. homolog (JcFT) overexpression on leaf growth in tobacco plants. The findings revealed that JcFT overexpression affected various biological processes during leaf development, including plant hormone levels and signal transduction, lipid oxidation metabolism, terpenoid metabolism, and the jasmonic-acid-mediated signaling pathway. These results suggested that the effects of FT overexpression in plants were complex and multifaceted, and the combination of these factors might contribute to a reduction in the leaf size. This study comprehensively analyzed the effects of JcFT on leaf development at the transcriptome level and provided new insights into the function of FT and its homologous genes.


Subject(s)
Jatropha , Jatropha/genetics , Nicotiana/genetics , Gene Expression Profiling , Transcriptome , Plant Leaves/genetics
15.
Int J Mol Sci ; 25(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38203318

ABSTRACT

Euphorbia species are important sources of polycyclic and macrocyclic diterpenes, which have been the focus of natural-product-based drug research due to their relevant biological properties, including anticancer, multidrug resistance reversal, antiviral, and anti-inflammatory activities. Premyrsinane, cyclomyrsinane, and myrsinane diterpenes are generally and collectively designated as myrsinane-type diterpenes. These compounds are derived from the macrocyclic lathyrane structure and are characterized by having highly oxygenated rearranged polycyclic systems. This review aims to describe and summarize the distribution and diversity of 220 myrsinane-type diterpenes isolated in the last four decades from about 20 Euphorbia species. Some myrsinane diterpenes obtained from Jatropha curcas are also described. Discussion on their plausible biosynthetic pathways is presented, as well as isolation procedures and structural elucidation using nuclear magnetic resonance spectroscopy. Furthermore, the most important biological activities are highlighted, which include cytotoxic and immunomodulatory activities, the modulation of efflux pumps, the neuroprotective effects, and the inhibition of enzymes such as urease, HIV-1 reverse transcriptase, and prolyl endopeptidase, among other biological effects.


Subject(s)
Diterpenes , Euphorbia , Jatropha , Diterpenes/pharmacology , Immunomodulation , Prolyl Oligopeptidases
16.
Environ Monit Assess ; 195(5): 580, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069471

ABSTRACT

Heavy metal contamination is a serious rising issue with the dumping of fly ash (FA). A recent focus of researches and practices tends towards reutilization of FA with bioremediation technique using various plants. The present research aimed to investigate optimum metal extraction in fly ash-amended soil using microbes and treated wastewater with Jatropha curcas plant using response surface methodology (RSM). The Box-Behnken design was used to determine the optimum condition for maximum metal remediation with three levels and three variables, viz., fly ash percentage (5, 12.5, 20%), microbial dose (0.5, 5.25, 10 ml), and contaminant level of water to irrigate the plant (freshwater, treated wastewater, untreated wastewater). The approach adopted was to set fly ash percentage as "maximum," microbial dose as "minimum," and contaminant level of water to irrigate the plant as "in range." The outcome of the present research provided the best prediction models, integrated the process variables, and developed rotational curves for analyzing metal remediation in 360° rotation for Fe, Mn, Zn, Cu, and Al as responses of interest. The optimum conditions for maximum bioremediation from fly ash-amended soils by bioaccumulation on Jatropha curcas plant worked out as 13.866% fly ash, 4.088 ml microbial dose, and treated wastewater as type of water to irrigate the plant that bioaccumulated Fe, Mn, Zn, Cu, and Al as to 26.904, 0.760, 0.160, 0.162, and 12.895 mg/l.


Subject(s)
Jatropha , Metals, Heavy , Soil Pollutants , Coal Ash , Soil , Wastewater , Bioaccumulation , Environmental Monitoring , Soil Pollutants/analysis , Metals, Heavy/analysis
17.
Environ Monit Assess ; 195(6): 793, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37261537

ABSTRACT

This study evaluated the effects of neem seed biochar, poultry manure, and their combinations at varying rates of 15 and 25% (w/w) on potentially toxic elements (PTEs) in soils. Afterward, the suitability of Manihot esculenta and Jatropha curcas in removing Cd, As, Zn, Pb, and Hg from mine spoils were appraised in a 270-day outdoor pot experiment. Using ICP-Mass Spectrometry, the elemental contents of target PTE in the shoot, root, and soil specimens were determined for each treatment. The obtained average values were further subjected to a nonparametric test of samples using IBM SPSS Statistic 29. The applied organic amendments resulted in significant differences p < 0.05 in PTE availability for plant uptake after the Independent-Samples Kruskal-Wallis Test was made. Nonetheless, applying a 25% (w/w) mixture of neem seed biochar and poultry manure was efficient in immobilizing more PTEs in soils which caused lower PTEs presence in plants. Organic amendments further significantly enhanced the fertility of the mine soils leading to about a 6- 25.00% increase in the biomass yield (p < 0.05) of both plants. No significant difference (p > 0.05) was however observed between the phytoremediation potentials of both plants after the Independent-Sample Mann-Whitney U test. Even that, Manihot esculenta was averagely more efficient in PTE uptake than Jatropha curcas. Larger portions of the bioaccumulated PTEs were stored in the roots of both plants leading to high bioconcentration factors of 1.94- 2.47 mg/kg and 1.27- 4.70 mg/kg, respectively, for Jatropha curcas and Manihot esculenta. A transfer factor < 1 was achieved for all PTEs uptake by both plants and indicated their suitability for phytostabilization. Techniques for easy cultivation of root-storing PTEs are required to enhance their large-scale use as their biomass could further be used in clean energy production.


Subject(s)
Jatropha , Manihot , Metals, Heavy , Soil Pollutants , Animals , Biodegradation, Environmental , Metals, Heavy/analysis , Manure/analysis , Soil Pollutants/analysis , Soil/chemistry , Poultry , Environmental Monitoring , Seeds/chemistry
18.
Planta ; 255(6): 111, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35478059

ABSTRACT

MAIN CONCLUSION: Overexpression of JcSEP3 causes defective stamen development in Jatropha curcas, in which brassinosteroid and gibberellin signaling pathways may be involved. SEPALLATAs (SEPs), the class E genes of the ABCE model, are required for floral organ determination. In this study, we investigated the role of the JcSEP3 gene in floral organ development in the woody plant Jatropha curcas. Transgenic Jatropha plants overexpressing JcSEP3 displayed abnormal phenotypes such as deficient anthers and pollen, as well as free stamen filaments, whereas JcSEP3-RNA interference (RNAi) transgenic plants had no obvious phenotypic changes, suggesting that JcSEP3 is redundant with other JcSEP genes in Jatropha. Moreover, we compared the transcriptomes of wild-type plants, JcSEP3-overexpressing, and JcSEP3-RNAi transgenic plants. In the JcSEP3-overexpressing transgenic plants, we discovered 25 upregulated genes involved in anther and pollen development, as well as 12 induced genes in brassinosteroid (BR) and gibberellin (GA) signaling pathways. These results suggest that JcSEP3 directly or indirectly regulates stamen development, concomitant with the regulation of BR and GA signaling pathways. Our findings help to understand the roles of SEP genes in stamen development in perennial woody plants.


Subject(s)
Jatropha , Brassinosteroids/metabolism , Gene Expression Regulation, Plant , Gibberellins/metabolism , Jatropha/genetics , Jatropha/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism
19.
Mol Biol Rep ; 49(6): 4293-4306, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35239140

ABSTRACT

BACKGROUND: Jatropha (Jatropha curcas L.) has been considered as a potential bioenergy crop and its genetic improvement is essential for higher seed yield and oil content which has been hampered due to lack of desirable molecular markers. METHODS AND RESULTS: An F2 population was created using an intraspecific cross involving a Central American line RJCA9 and an Asiatic species RJCS-9 to develop a dense genetic map and for Quantitative trait loci (QTL) identification. The genotyping-by-sequencing (GBS) approach was used to genotype the mapping population of 136 F2 individuals along with the two parental lines for classification of the genotypes based on single nucleotide polymorphism (SNPs). NextSeq 2500 sequencing technology provided a total of 517.23 million clean reads, with an average of ~ 3.8 million reads per sample. We analysed 411 SNP markers and developed 11 linkage groups. The total length of the genetic map was 4092.3 cM with an average marker interval of 10.04 cM. We have identified a total of 83 QTLs for various yield and oil content governing traits. The percentage of phenotypic variation (PV) was found to be in the range of 8.81 to 65.31%, and a QTL showed the maximum PV of 65.3% for a total seed number on the 6th linkage group (LG). CONCLUSIONS: The QTLs detected in this study for various phenotypic traits will lay down the path for marker-assisted breeding in the future and cloning of genes that are responsible for phenotypic variation.


Subject(s)
Jatropha , Quantitative Trait Loci , Chromosome Mapping/methods , Genetic Linkage , Genotype , Jatropha/genetics , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
20.
J Appl Microbiol ; 133(2): 743-757, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35491755

ABSTRACT

AIM: Our previous study reported a strain that can detoxify Jatropha curcas L. cake (JCC), but the detoxification duration is long. This study intends to explore the efficient detoxification of JCC through multi-strain collaborative fermentation to accelerate the detoxification process. METHODS AND RESULTS: Mucor circinelloides SCYA25 strain that we previously reported can effectively degrade the toxicity of JCC, and the newly screened Bacillus megaterium SCYA10 and Geotrichum candidum SCYA23 strains were used to detoxify JCC. Different solid-state-fermentation (SSF) parameters were optimized by single-factor tests and response surface methodology. A detoxification rate established by zebrafish toxicity of JCC at 96% was achieved under the following optimized conditions: the combination ratio of B. megaterium SCYA10, G. candidum SCYA23 and M. circinelloides SCYA25 at 2:3:1, a total injection amount of 15.25%, a feed to water ratio of 1:0.68, a fermentation temperature of 30.3°C and fermentation duration of 21.5 days. The protein content of fermented JCC (FJCC) increased, while the concentrations of ether extract, crude fibre and toxins were all degraded considerably. Metabolomics analysis revealed that the fermentation increased the contents of neurotransmitter receptor modulator, emulsifier, aromatic substances and insecticidal compounds, as well as decreasing the contents of oxidative stress and neurotoxic substances. A rat feeding trial showed that the growth performance of the rats provided with the FJCC diet was similar to that of the corn-soybean meal group, and no lesions in the liver and kidney were observed. CONCLUSION: The co-bio-fermentation process can effectively detoxify JCC and improve its nutritional value, which means it could be served as a protein feed in animal husbandry. SIGNIFICANCE: The combination of three microbial strains can detoxify JCC in a safe and effective manner to provide a great potential alternative to soybean meal. The research also suggests that metabonomics and bioinformatics are useful tools for revealing the bio-detoxification mechanism.


Subject(s)
Jatropha , Animal Feed/analysis , Animals , Fermentation , Jatropha/metabolism , Metabolome , Rats , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL