Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 703
Filter
Add more filters

Publication year range
1.
FASEB J ; 38(10): e23669, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38747734

ABSTRACT

Amomum xanthioides (AX) has been used as an edible herbal medicine to treat digestive system disorders in Asia. Additionally, Lactobacillus casei is a well-known probiotic commonly used in fermentation processes as a starter. The current study aimed to investigate the potential of Lactobacillus casei-fermented Amomum xanthioides (LAX) in alleviating metabolic disorders induced by high-fat diet (HFD) in a mouse model. LAX significantly reduced the body and fat weight, outperforming AX, yet without suppressing appetite. LAX also markedly ameliorated excessive lipid accumulation and reduced inflammatory cytokine (IL-6) levels in serum superior to AX in association with UCP1 activation and adiponectin elevation. Furthermore, LAX noticeably improved the levels of fasting blood glucose, serum insulin, and HOMA-IR through positive regulation of glucose transporters (GLUT2, GLUT4), and insulin receptor gene expression. In conclusion, the fermentation of AX demonstrates a pronounced mitigation of overnutrition-induced metabolic dysfunction, including hyperlipidemia, hyperglycemia, hyperinsulinemia, and obesity, compared to non-fermented AX. Consequently, we proposed that the fermentation of AX holds promise as a potential candidate for effectively ameliorating metabolic disorders.


Subject(s)
Amomum , Diet, High-Fat , Fermentation , Lacticaseibacillus casei , Obesity , Animals , Diet, High-Fat/adverse effects , Mice , Obesity/metabolism , Male , Lacticaseibacillus casei/metabolism , Amomum/chemistry , Mice, Inbred C57BL , Probiotics/pharmacology , Uncoupling Protein 1/metabolism , Insulin Resistance , Mice, Obese , Adiponectin/metabolism , Insulin/metabolism , Insulin/blood , Blood Glucose/metabolism
2.
Mol Biol Rep ; 51(1): 675, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787484

ABSTRACT

BACKGROUND: Bioscaffolds and cells are two main components in the regeneration of damaged tissues via cell therapy. Umbilical cord stem cells are among the most well-known cell types for this purpose. The main objective of the present study was to evaluate the effect of the pretreatment of the foreskin acellular matrix (FAM) by monophosphoryl lipid A (MPLA) and Lactobacillus casei supernatant (LCS) on the attraction of human umbilical cord mesenchymal stem cells (hucMSC). METHODS AND RESULTS: The expression of certain cell migration genes was studied using qRT-PCR. In addition to cell migration, transdifferentiation of these cells to the epidermal-like cells was evaluated via immunohistochemistry (IHC) and immunocytochemistry (ICC) of cytokeratin 19 (CK19). The hucMSC showed more tissue tropism in the presence of MPLA and LCS pretreated FAM compared to the untreated control group. We confirmed this result by scanning electron microscopy (SEM) analysis, glycosaminoglycan (GAG), collagen, and DNA content. Furthermore, IHC and ICC data demonstrated that both treatments increase the protein expression level of CK19. CONCLUSION: Pretreatment of acellular bioscaffolds by MPLA or LCS can increase the migration rate of cells and also transdifferentiation of hucMSC to epidermal-like cells without growth factors. This strategy suggests a new approach in regenerative medicine.


Subject(s)
Lacticaseibacillus casei , Lipid A , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Lacticaseibacillus casei/metabolism , Lipid A/metabolism , Lipid A/analogs & derivatives , Cell Movement/drug effects , Skin/metabolism , Tissue Scaffolds/chemistry , Male , Umbilical Cord/cytology , Umbilical Cord/metabolism , Foreskin/cytology , Cell Transdifferentiation/drug effects , Tissue Engineering/methods , Extracellular Matrix/metabolism , Keratin-19/metabolism , Keratin-19/genetics
3.
Appl Microbiol Biotechnol ; 108(1): 379, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888798

ABSTRACT

The transition towards a sustainable model, particularly the circular economy, emphasizes the importance of redefining waste as a valuable resource, paving the way for innovative upcycling strategies. The olive oil industry, with its significant output of agricultural waste, offers a promising avenue for high-value biomass conversion into useful products through microbial processes. This study focuses on exploring new, high-value applications for olive leaves waste, utilizing a biotechnological approach with Lactobacillus casei for the production of second-generation lactic acid. Contrary to initial expectations, the inherent high polyphenol content and low fermentable glucose levels in olive leaves posed challenges for fermentation. Addressing this, an enzymatic hydrolysis step, following a preliminary extraction process, was implemented to increase glucose availability. Subsequent small-scale fermentation tests were conducted with and without nutrient supplements, identifying the medium that yielded the highest lactic acid production for scale-up. The scaled-up batch fermentation process achieved an enhanced conversion rate (83.58%) and specific productivity (0.26 g/L·h). This research confirms the feasibility of repurposing olive waste leaves for the production of lactic acid, contributing to the advancement of a greener economy through the valorization of agricultural waste. KEY POINTS: • Olive leaves slurry as it did not allow L. casei to ferment. • High concentrations of polyphenols inhibit fermentation of L. casei. • Enzymatic hydrolysis combined to organosolv extraction is the best pretreatment for lactic acid production starting from leaves and olive pruning waste.


Subject(s)
Fermentation , Lactic Acid , Lacticaseibacillus casei , Olea , Olive Oil , Plant Leaves , Lactic Acid/metabolism , Lacticaseibacillus casei/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Olive Oil/metabolism , Glucose/metabolism , Hydrolysis , Industrial Waste , Polyphenols/metabolism , Biomass
4.
Plant Foods Hum Nutr ; 79(2): 322-329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38753215

ABSTRACT

This study introduces the concept of developing a functional hemp drink enriched with γ-Aminobutyric acid (GABA) to enhance its nutritional value and functional properties utilizing Solid-State (SSF) co-Fermentation by Lactobacillus casei and Bacillus subtilis and germination bioprocesses. Bioprocesses may offer an alternative solution to challenges in hemp milk, such as product instability and the use of additives. Notably, the hemp milk produced through the germination for three days or co-fermentation processes yielded the highest GABA content of 79.84 and 102.45 mg/100 mL, respectively, compared to the untreated milk. These bioactive milk samples exhibited higher zeta potential and soluble protein content and also reduced solid particle sedimentation and droplet sizes (D4,3 and D3,2) compared to the untreated milk. Furthermore, the peptide, total phenolic content, and antioxidant activity of the produced GABA-enriched kinds of milk surpassed those of the untreated milk. Overall, the SSF and germination processes present a promising alternative for producing stable milk analogs with enhanced health-boosting properties.


Subject(s)
Antioxidants , Bacillus subtilis , Cannabis , Fermentation , Germination , gamma-Aminobutyric Acid , gamma-Aminobutyric Acid/analysis , gamma-Aminobutyric Acid/metabolism , Cannabis/chemistry , Cannabis/growth & development , Antioxidants/analysis , Nutritive Value , Lacticaseibacillus casei/metabolism , Lacticaseibacillus casei/growth & development , Phenols/analysis , Milk/chemistry , Peptides/analysis , Food, Fortified/analysis
5.
J Pathol ; 257(3): 262-273, 2022 07.
Article in English | MEDLINE | ID: mdl-35170753

ABSTRACT

Mucosal immune regulation is considered a key aspect of immunopathogenesis of IgA nephropathy (IgAN). Direct experimental evidence clarifying the role of intestinal mucosa attributes in IgAN is lacking. In this study, a mouse model was established via multiple low-dose intraperitoneal injections of Lactobacillus casei cell wall extract (LCWE) emulsified with Complete Freund's Adjuvant (CFA). We found continuous and stable deposition of IgA in glomerular mesangial areas, accompanying high circulating levels of IgA and IgA-IgG complexes. Expression of the key extracellular matrix components collagen IV and fibronectin also increased in the mesangial areas of LCWE-induced mice. IgA+ B220+ B-cell proportion increased in the small intestine (SI), Peyer's patches, inguinal lymph nodes, spleen, and bone marrow. The intestinal barrier was dysfunctional in the LCWE-induced mice, and consistent with this, higher levels of serum zonulin (namely prehaptoglobin-2), a regulator of epithelial and endothelial barrier function, were observed in patients with IgAN. Hematoxylin and eosin staining results indicated that immune tissues such as liver, spleen, and lymph nodes showed an inflammatory response and focal lesions. Glucocorticoid methylprednisolone treatment could alleviate serum IgA and IgA-IgG complex levels and mesangial IgA deposition. Taken together, our results indicate that we have successfully constructed a mouse model with IgA deposition in the mesangial areas of the glomeruli and provide evidence for the connection between the intestinal barrier and elevated circulating IgA and IgA-IgG in IgAN. © 2022 The Pathological Society of Great Britain and Ireland.


Subject(s)
Glomerulonephritis, IGA , Lacticaseibacillus casei , Animals , Cell Extracts/therapeutic use , Cell Wall/metabolism , Cell Wall/pathology , Delayed-Action Preparations/therapeutic use , Glomerulonephritis, IGA/pathology , Humans , Immunoglobulin A/metabolism , Immunoglobulin G , Lacticaseibacillus casei/metabolism , Mice , Plant Extracts/therapeutic use
6.
Immunol Invest ; 51(4): 748-765, 2022 May.
Article in English | MEDLINE | ID: mdl-33416001

ABSTRACT

BACKGROUND: Exopolysaccharides (EPS) from Lactobacillus spp. have been found to have biological activities. Our previous work demonstrated the antibiofilm activity of EPS from Lactobacillus casei NA-2 (L.casei NA-2) isolated from northeast Chinese sauerkraut (Suan Cai). The present study has focussed on the antioxidant and immunomodulatory activities of the EPS in vitro. METHODS: Antioxidant properties of the EPS were evaluated by the radical-scavenging activities in vitro. The immunomodulatory effects of EPS were assayed by measuring nitric oxide (NO), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and reactive oxygen species (ROS) in RAW 264.7 macrophages, and the mechanism was investigated through NF-κB and JNK. RESULT: EPS contains 88% total sugar, with the molecular weights (Mw) of 1.3 × 106 Da, 6.4 × 105 Da, 2.0 × 105 Da, and 1.4 × 104 Da. EPS showed antioxidant activity by scavenging hydroxyl radicals (42% at 1.2 mg/mL), superoxide radicals (76% at 100 µg/mL), and DPPH (80% at 10 mg/mL); and did not affect the proliferation of unstimulated or lipopolysaccharide (LPS)-induced RAW 264.7 cells at the concentrations ranging from 31.25 to 500 µg/mL. Results showed EPS promoted the production of ROS and TNF-α involved in NF-κB p65 and JNK signaling pathways in unstimulated RAW 264.7 cells. On the other hand, the levels of NO and iNOS were reduced after EPS treatment in LPS-induced RAW 264.7 cells. CONCLUSION: Our results showed the protective effect against oxidative damage and potential immunomodulatory and anti-inflammatory properties of EPS from Lactobacillus casei NA-2.


Subject(s)
Antioxidants , Lacticaseibacillus casei , Polysaccharides, Bacterial , Animals , Antioxidants/pharmacology , China , Fermented Foods , Lacticaseibacillus casei/metabolism , Lipopolysaccharides , Mice , NF-kappa B/metabolism , Nitric Oxide , Polysaccharides, Bacterial/pharmacology , RAW 264.7 Cells , Reactive Oxygen Species , Tumor Necrosis Factor-alpha/metabolism
7.
J Dairy Sci ; 105(6): 4857-4867, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35400499

ABSTRACT

Probiotic fermented milk is more and more popular due to their positive health associated properties. However, fermentation temperature and other process conditions may affect the growth and metabolism of probiotic strains, thereby affecting quality of the final products. In this study, the growth behaviors and metabolomic profiles of yogurts induced by Lactobacillus casei Zhang at fermentation termination (FT) and d 10 of storage (S10d) under different fermentation temperatures at 37°C (low) and 42°C (high) were analyzed and compared using liquid chromatography-mass spectrometry (MS)- and gas chromatography-MS-based metabolomics approaches. At 37°C, the growth of L. casei Zhang at FT and S10d was significantly increased, and the potential relationship between riboflavin, starch, and sucrose metabolism and growth of L. casei Zhang may be mutually promoting. Fermentation temperature (37°C and 42°C) affected volatile and nonvolatile metabolomic profiles and pathways. The levels of acetaldehyde, 2,3-butanedione, acetoin, butyric acid, decanoic acid, hexanoic acid, and octanoic acid were significantly higher at 37°C than at 42°C at FT and S10d. This indicates that the low temperature (37°C) most likely contributes more to the formation of important flavor compounds during the fermentation process and production of short-chain fatty acids during storage.


Subject(s)
Lacticaseibacillus casei , Probiotics , Animals , Fermentation , Lacticaseibacillus casei/metabolism , Milk , Temperature , Yogurt/analysis
8.
J Dairy Sci ; 105(4): 2868-2879, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35151477

ABSTRACT

Diacetyl and acetoin are key aroma components of fermented milk but are produced in low concentrations by starter cultures. In this study, we expressed NADH oxidase, acetolactate synthase, and inactivated acetolactate decarboxylase in Lacticaseibacillus casei TCS to generate recombinant L. casei strains, and investigated the effects of the genes encoding these enzymes on diacetyl and acetoin production during milk fermentation. In the single-gene recombinant strains tested, diacetyl concentrations were highest in milk fermented by L. casei TCSI-nox (nox gene overexpressed, 3.68 mg/kg), whereas acetoin concentrations were highest in milk fermented by L. casei TCS-ΔalsD (alsD gene deleted, 32.94 mg/kg). Moreover, diacetyl and acetoin concentrations were higher in the inducible strains than in the corresponding constitutive strains (e.g., TCSI-nox vs. TCSC-nox, and TCSI-ΔalsD-nox vs. TCSC-ΔalsD-nox). This phenomenon was also reflected in the protein expression levels and enzyme activities. In the double-gene recombinant strains tested, the highest concentrations of diacetyl and acetoin were produced by L. casei TCSI-ΔalsD-nox (nox overexpressed and alsD deleted, 4.66 mg/kg, 69.62 mg/kg, respectively). The triple-gene recombinant L. casei TCS-ΔalsD-nox-alsS produced the highest concentrations of diacetyl and acetoin, which were 2.38 and 11.19 times, respectively, the concentrations produced by the original strain. These results show that the nox, alsS, and alsD genes make key contributions to the biosynthesis of diacetyl and acetoin by L. casei. The modification of multiple genes had a synergistic effect, leading to greatly increased synthesis of diacetyl and acetoin by L. casei during its fermentation of milk.


Subject(s)
Acetoin , Lacticaseibacillus casei , Animals , Diacetyl , Fermentation , Lacticaseibacillus casei/genetics , Lacticaseibacillus casei/metabolism , Milk/metabolism
9.
Ecotoxicol Environ Saf ; 248: 114276, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36371888

ABSTRACT

Deoxynivalenol (DON), a secondary product of Fusarium metabolism, is common in wheat, corn, barley and other grain crops, posing a variety of adverse effects to environment, food safety, human and animal health. The absorption of DON mainly occurs in the proximal part of the small intestine, which can induce intestinal mucosal epithelial injury, and ultimately affect the growth performance and production performance of animals. This study was conducted to investigate the protective effects of selenium nanoparticles (SeNPs)-enriched Lactobacillus casei ATCC 393 (L. casei ATCC 393) on intestinal barrier function of C57BL/6 mice exposed to DON and its association with endoplasmic reticulum stress (ERS) and gut microbiota. The results showed that DON exposure increased the levels of interleukin-6 (IL-6) and interleukin-8 (IL-8), decreased the levels of interleukin-10 (IL-10) and transforming growth factor beta (TGF-ß), caused a redox imbalance and intestinal barrier dysfunction, decreased the mRNA levels of endoplasmic reticulum- resident selenoproteins, activated ERS-protein kinase R-like endoplasmic reticulum kinase (PERK) signaling pathway, altered the composition of the gut microbiota and decreased short-chain fatty acids (SCFAs) content. Dietary supplementation with SeNPs-enriched L. casei ATCC 393 can effectively protect the integrity of intestinal barrier function by reducing inflammatory response, enhancing the antioxidant capacity, up-regulating the mRNA levels of endoplasmic reticulum-resident selenoproteins, inhibiting the activation of PERK signaling pathway, reversing gut microbiota dysbiosis and increasing the content of SCFAs in mice exposed to DON. In conclusion, dietary supplementation with SeNPs-enriched L. casei ATCC 393 effectively alleviated intestinal barrier dysfunction induced by DON in C57BL/6 mice, which may be closely associated with the regulation of ERS and gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Lacticaseibacillus casei , Nanoparticles , Selenium , Humans , Mice , Animals , Lacticaseibacillus casei/genetics , Lacticaseibacillus casei/metabolism , Selenium/pharmacology , Selenium/metabolism , Endoplasmic Reticulum Stress , Mice, Inbred C57BL , Fatty Acids, Volatile/metabolism , RNA, Messenger/metabolism , Dietary Supplements
10.
Andrologia ; 54(11): e14591, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36266770

ABSTRACT

Radiation can lead to various damages in the process of spermatogenesis that lead to a decrease in the number of sperm, an increase in spermatogenesis disorders, and defective sperm function. Radioprotectors are considered a good approach to reducing the damage caused by radiation. The goal of this work was to study how X-ray radiation affects testicular tissue and the process of spermatogenesis, as well as the radioprotective effects of selenium nanoparticles (SeNPs) and Lactobacillus casei (L. casei) as probiotic compounds, given alone or together. This study included 64 adult Syrian male mice weighing approximately 20 ± 5 g and aged 10 ± 1 weeks. Animals were randomly divided into eight groups: control group, SeNPs, probiotic, SeNPs and probiotic, X-ray radiation, SeNPs (X-ray), probiotic (X-ray), and SeNPs and probiotic (X-ray). Histology parameters and levels of oxidative stress biomarkers such as catalase, malondialdehyde, superoxide dismutase, and glutathione peroxidase were examined. In addition, the level of apoptosis was measured in testicular cells that had been treated with SeNPs and L. casei as a probiotic. The results showed that the administration of SeNPs or probiotic diminished the effects of X-ray radiation. These compounds induced a significant decreased in malondialdehyde, caspase 3, and caspase 9 gene levels and a remarkable increased in catalase, superoxide dismutase, and Catsper gene expression. SeNPs and probiotic exhibited a potent antioxidant effect and elevated the mean number of spermatogonia cells, sperm cell count, spermatogenesis percentage, and sperm motility percentage. The prescribed compound exhibited an ideal radioprotective effect with the ability to reduce the side effects of ionizing radiation and to protect normal tissues. SeNPs and probiotic inhibit testicular injury and improve the antioxidant state in male mice.


Subject(s)
Lacticaseibacillus casei , Nanoparticles , Selenium , Male , Mice , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Selenium/pharmacology , Lacticaseibacillus casei/metabolism , Catalase/metabolism , Testis , X-Rays , Sperm Motility , Semen/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism
11.
Prep Biochem Biotechnol ; 52(10): 1142-1150, 2022.
Article in English | MEDLINE | ID: mdl-35192422

ABSTRACT

The aim of the current study was to determine the growth-promoting-effect of Cordyceps militaris, known as a medicinal mushroom, on Lactobacillus casei and Lactobacillus acidophilus. To evaluate the best growth-promoting activity of the test substrates including glucose, inulin, and at different concentrations of C. militaris (0.5%, 1%, and 2%), the cell counts, optical density (OD), prebiotic activity scores, and postbiotics (lactic, acetic, butyric, and propionic acids) were determined. The highest cell count was found for L. casei in media containing 0.5% C. militaris and for L. acidophilus in media containing 1% C. militaris. In the case of both strains, the OD values of the medium with C. militaris (1%) and (2%) increased similar to those of glucose. The prebiotic activity scores for both strains were positive. The concentration of lactic acid ranged from 0.56 to 8.07 g L-1 for L. casei and 0.82 to 5.38 g L-1 for L. acidophilus. Moreover, propionic acid was the highest among short-chain fatty acids (SCFAs) produced by both strains. According to the results of the present study, the tested Lactobacillus species can utilize C. militaris as carbon source and is able to form postbiotics in the media.


Subject(s)
Cordyceps , Lacticaseibacillus casei , Cordyceps/metabolism , Fatty Acids, Volatile/metabolism , Lacticaseibacillus casei/metabolism , Fermentation , Glucose/metabolism
12.
Biochem Biophys Res Commun ; 546: 15-20, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33561743

ABSTRACT

Escherichia coli and Salmonella are common pathogenic bacteria in human intestine, which can infect epithelial cells and cause diseases. Adhesion to intestinal tissue is the first step of pathogen infection. This work was to investigate the protective function of surface layer protein (SLP) from Lactobacillus casei fb05 against the harmful effects of E. coli and Salmonella on intestinal tissue (collagen and HT-29 cells). The SLP of L. casei fb05 was identified by transmission electron microscopy and SDS-PAGE. The purified SLP could reduce the adhesion of E. coli and Salmonella to collagen and HT-29 cells as observed by light microscope. The flow cytometry results showed that the L. casei fb05 SLP decreased the two pathogens-induced apoptosis of HT-29 cells by about 45%-49%. In addition, the activation of caspase-9 and caspase-3 caused by the two pathogens was significantly declined by the interference of the L. casei fb05 SLP. All the findings demonstrated that the L. casei fb05 SLP could decrease the deleterious effects of E. coli and Salmonella on intestinal tract in two ways: reducing pathogen adhesion and inhibiting pathogen-induced apoptosis. The potential of L. casei fb05 SLP in the treatment of intestinal diseases might be explored in this work.


Subject(s)
Escherichia coli/pathogenicity , Intestines/microbiology , Lacticaseibacillus casei/metabolism , Membrane Glycoproteins/metabolism , Salmonella typhimurium/pathogenicity , Apoptosis , Bacterial Adhesion , Caspase 3/metabolism , Caspase 9/metabolism , Collagen/metabolism , HT29 Cells , Humans , Protective Factors
13.
BMC Vet Res ; 17(1): 184, 2021 May 04.
Article in English | MEDLINE | ID: mdl-33947419

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea (PED) is a contagious intestinal disease caused by porcine epidemic diarrhea virus (PEDV) characterized by vomiting, diarrhea, anorexia, and dehydration, which have caused huge economic losses around the world. At present, vaccine immunity is still the most effective method to control the spread of PED. In this study, we have constructed a novel recombinant L. casei-OMP16-PEDVS strain expressing PEDVS protein of PEDV and OMP16 protein of Brucella abortus strain. To know the immunogenicity of the recombinant L. casei-OMP16-PEDVS candidate vaccine, it was compared with BL21-OMP16-PEDVS-F, BL21-OMP16-PEDVS, and BL21-PEDVS recombinant protein. RESULTS: The results showed that we could detect higher levels of IgG, neutralizing antibody, IL-4, IL-10, and INF-γ in serum and IgA in feces of L. casei-OMP16-PEDVS immunized mice, which indicated that L. casei-OMP16-PEDVS candidate vaccine could induce higher levels of humoral immunity, cellular immunity, and mucosal immunity. CONCLUSION: Therefore, L. casei-OMP16-PEDVS is a promising candidate vaccine for prophylaxis of PEDV infection.


Subject(s)
Brucella abortus/genetics , Coronavirus Infections/prevention & control , Lacticaseibacillus casei/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/virology , Animals , Antibodies, Neutralizing , Antibodies, Viral/immunology , Brucella abortus/metabolism , Coronavirus Infections/immunology , Female , Immunity, Cellular , Immunity, Humoral , Immunity, Mucosal , Immunization , Lacticaseibacillus casei/metabolism , Mice, Inbred BALB C , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology
14.
Lett Appl Microbiol ; 72(5): 578-588, 2021 May.
Article in English | MEDLINE | ID: mdl-33421164

ABSTRACT

Probiotics play an important role in health benefits on the host. However, they also possess potentials for infectivity or in situ toxin production; thus, requiring a comprehensive assessment of their safety. In this study, we report genomic characteristics of a newly isolated Lactobacillus casei IDCC 3451 from infant faeces. Phenotypic assays based on enzyme activities and carbohydrate fermentation profiles represented metabolic features of the strain. Safety evaluation for antimicrobial resistance, biogenic amines production and cytotoxicity to a murine mouse model suggested its safe use as a probiotic strain. Our findings on the genetic background of L. casei IDCC 3451 and its potential features provide a promising functional and safe probiotic strain for the human consumption.


Subject(s)
Genome, Bacterial/genetics , Lacticaseibacillus casei/genetics , Lacticaseibacillus casei/metabolism , Probiotics/adverse effects , Probiotics/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Feces/microbiology , Fermentation , Genomics , Humans , Infant , Lacticaseibacillus casei/isolation & purification , Mice
15.
J Sci Food Agric ; 101(11): 4481-4489, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-33454981

ABSTRACT

BACKGROUND: The study aimed to evaluate the effect of Lactobacillus casei TH14, cellulase, and molasses combination fermented sugarcane bagasse (SB) as an exclusive roughage source in the total mixed ration (TMR) for mid-lactation 75% crossbred Holstein cows on feed intake, digestibility, ruminal ecology, milk yield and milk composition. Four multiparous mid-lactation crossbred (75% Holstein Friesian and 25% Thai native breed) dairy cows of 439 ± 16 kg body weight, 215 ± 5 days in milk and average milk yield 10 ± 2 kg d-1 were assigned to a 4 × 4 Latin square design. The unfermented SB (SB-TMR), SB fermented with cellulase and molasses (CM-TMR), SB fermented with L. casei TH14 and molasses (LM-TMR), and SB fermented with L. casei TH14, cellulase and molasses (LCM-TMR) were used as dietary treatments. RESULTS: CM-TMR, LM-TMR and LCM-TMR significantly (P < 0.01) increased dry matter and fiber digestibility, gross energy and metabolizable energy intake (P < 0.05), blood glucose, total volatile fatty acids (P < 0.05), propionic acid and milk yield, but decreased ammonia, acetic acid, acetic:propionic ratio and methane production (P < 0.05) when compared with the SB-TMR. Compared with fermented SB treatments, LCM-TMR had lower (P < 0.05) ruminal ammonia and greater blood glucose (P < 0.01); LCM-TMR showed (P < 0.05) greater volatile fatty acids, propionic acid, milk yield and total solids, and lower acetic:propionic ratio (P < 0.01); methane, protozoa and somatic cell count were found to be lowest in LCM-TMR. CONCLUSION: Combination of L. casei TH14 and additives (LCM-TMR) effectively enhanced feed use, rumen ecology and milk production of Holstein Friesian cows. © 2021 Society of Chemical Industry.


Subject(s)
Animal Feed/analysis , Cattle/metabolism , Cellulase/metabolism , Cellulose/metabolism , Lacticaseibacillus casei/metabolism , Milk/metabolism , Molasses/microbiology , Saccharum/microbiology , Animals , Cattle/growth & development , Cellulase/chemistry , Cellulose/analysis , Female , Fermentation , Lactation , Molasses/analysis , Rumen/metabolism , Waste Products/analysis
16.
Biochemistry ; 59(32): 2974-2985, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32786400

ABSTRACT

myo-Inositol (mI) is widely distributed in all domains of life and is important for several cellular functions, including bacterial survival. The enzymes responsible for the bacterial catabolism of mI, encoded in the iol operon, can vary from one organism to another, and these pathways have yet to be fully characterized. We previously identified a new scyllo-inositol dehydrogenase (sIDH) in the iol operon of Lactobacillus casei that can oxidize mI in addition to the natural substrate, scyllo-inositol, but the product of mI oxidation was not determined. Here we report the identification of these metabolites by monitoring the reaction with 13C nuclear magnetic resonance. We prepared all six singly 13C-labeled mI isotopomers through a biocatalytic approach and used these labeled inositols as substrates for sIDH. The use of all six singly labeled mI isotopomers allowed for metabolite characterization without isolation steps. sIDH oxidation of mI produces 1l-5-myo-inosose preferentially, but also two minor products, 1d-chiro-inosose and 1l-chiro-inosose. Together with previous crystal structure data for sIDH, we were able to rationalize the observed oxidation preference. Our relatively simple procedure for the preparation of isotopically labeled mI standards can have broad applications for the study of mI biotransformations.


Subject(s)
Carbon Isotopes/chemistry , Inositol/chemistry , Inositol/metabolism , Lacticaseibacillus casei/metabolism , Oxidation-Reduction
17.
Appl Environ Microbiol ; 86(14)2020 07 02.
Article in English | MEDLINE | ID: mdl-32414796

ABSTRACT

Bce-like systems mediate resistance against antimicrobial peptides in Firmicutes bacteria. Lactobacillus casei BL23 encodes an "orphan" ABC transporter that, based on homology to BceAB-like systems, was proposed to contribute to antimicrobial peptide resistance. A mutant lacking the permease subunit was tested for sensitivity against a collection of peptides derived from bacteria, fungi, insects, and humans. Our results show that the transporter specifically conferred resistance against insect-derived cysteine-stabilized αß defensins, and it was therefore renamed DerAB for defensin resistance ABC transporter. Surprisingly, cells lacking DerAB showed a marked increase in resistance against the lantibiotic nisin. This could be explained by significantly increased expression of the antimicrobial peptide resistance determinants regulated by the Bce-like systems PsdRSAB (formerly module 09) and ApsRSAB (formerly module 12). Bacterial two-hybrid studies in Escherichia coli showed that DerB could interact with proteins of the sensory complex in the Psd resistance system. We therefore propose that interaction of DerAB with this complex in the cell creates signaling interference and reduces the cell's potential to mount an effective nisin resistance response. In the absence of DerB, this negative interference is relieved, leading to the observed hyperactivation of the Psd module and thus increased resistance to nisin. Our results unravel the function of a previously uncharacterized Bce-like orphan resistance transporter with pleiotropic biological effects on the cell.IMPORTANCE Antimicrobial peptides (AMPs) play an important role in suppressing the growth of microorganisms. They can be produced by bacteria themselves-to inhibit competitors-but are also widely distributed in higher eukaryotes, including insects and mammals, where they form an important component of innate immunity. In low-GC-content Gram-positive bacteria, BceAB-like transporters play a crucial role in AMP resistance but have so far been primarily associated with interbacterial competition. Here, we show that the orphan transporter DerAB from the lactic acid bacterium Lactobacillus casei is crucial for high-level resistance against insect-derived AMPs. It therefore represents an important mechanism for interkingdom defense. Furthermore, our results support a signaling interference from DerAB on the PsdRSAB module that might prevent the activation of a full nisin response. The Bce modules from L. casei BL23 illustrate a biological paradox in which the intrinsic nisin detoxification potential only arises in the absence of a defensin-specific ABC transporter.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Antibiosis , Bacterial Proteins/genetics , Defensins/chemistry , Insect Proteins/chemistry , Lacticaseibacillus casei/genetics , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Lacticaseibacillus casei/metabolism
18.
Microb Cell Fact ; 19(1): 191, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33028330

ABSTRACT

BACKGROUND: Nowadays, microbial infections have caused increasing economic losses in aquaculture industry and deteriorated worldwide environments. Many of these infections are caused by opportunistic pathogens through cell-density mediated quorum sensing (QS). The disruption of QS, known as quorum quenching (QQ), is an effective and promising way to prevent and control pathogens, driving it be the potential bio-control agents. In our previous studies, AHL lactonase AiiK was identified with many characteristics, and constitutive expression vector pELX1 was constructed to express heterologous proteins in Lactobacillus casei MCJΔ1 (L. casei MCJΔ1). In this study, recombinant strain pELCW-aiiK/L. casei MCJΔ1 (LcAiiK) and wild-type Aeromonas hydrophila (A. hydrophila) were co-cultured to test the QQ ability of LcAiiK against A. hydrophila. RESULTS: A cell wall-associated expression vector pELCW for L. casei MCJΔ1 was constructed. Localization assays revealed that the expressed AiiK was anchored at the surface layer of LcAiiK via vector pELCW-aiiK. LcAiiK (OD600 = 0.5) degraded 24.13 µM of C6-HSL at 2 h, 40.99 µM of C6-HSL at 12 h, and 46.63 µM of C6-HSL at 24 h. Over 50% LcAiiK cells maintained the pELCW-aiiK plasmid after 15 generations of cultivation without erythromycin. Furthermore, LcAiiK inhibited the swimming motility, extracellular proteolytic activity, haemolytic activity and biofilm formation of A. hydrophila AH-1 and AH-4. CONCLUSION: The AHL lactonase AiiK is firstly and constitutively expressed at the surface layer of L. casei MCJΔ1. LcAiiK displayed considerable AHL lactonase activity and great QQ abilities against A. hydrophila AH-1 and AH-4 by attenuating their QS processes instead of killing them. Therefore, the LcAiiK can be exploited as an anti-pathogenic drug or a bio-control agent to control the AHL-mediated QS of pathogenic bacteria.


Subject(s)
Aeromonas hydrophila/metabolism , Carboxylic Ester Hydrolases/genetics , Lacticaseibacillus casei/genetics , Quorum Sensing , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Biological Control Agents , Carboxylic Ester Hydrolases/metabolism , Lacticaseibacillus casei/metabolism
19.
Microb Cell Fact ; 19(1): 213, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33228670

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a major clinical challenge, and the gut microbiome plays important roles in the occurrence and metastasis of CRC. Lactobacillus and their metabolites are thought to be able to suppress the growth of CRC cells. However, the antimetastatic mechanism of Lactobacillus or their metabolites toward CRC cells is not clear. Therefore, the aim of this study was to assess the inhibitory mechanism of cell-free supernatants (CFSs) of L. rhamnosus GG, L. casei M3, and L. plantarum YYC-3 on metastasis of CRC cells. RESULTS: YYC-3 CFS showed the highest inhibitory effect on CRC cell growth, invasion and migration, and inhibited MMP2, MMP9, and VEGFA gene and protein expression, and protein secretion. Furthermore, it suppressed the activities of MMPs by gelatin zymography. Moreover, the effective compounds in these CFSs were analyzed by Q Exactive Focus liquid chromatography-mass spectrometry. CONCLUSIONS: Our results showed that metabolite secretions of YYC-3 may inhibited cell metastasis by downregulating the VEGF/MMPs signaling pathway. These data suggest that treatment of CRC cells with metabolites from L. plantarum YYC-3 may reduce colon cancer metastasis.


Subject(s)
Colonic Neoplasms/drug therapy , Colonic Neoplasms/microbiology , Lactobacillus/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Vascular Endothelial Growth Factor A/metabolism , Caco-2 Cells , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , HT29 Cells , Humans , Lacticaseibacillus casei/metabolism , Lactobacillus plantarum/metabolism , Lacticaseibacillus rhamnosus/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Neoplasm Metastasis/drug therapy , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/genetics
20.
Eur J Nutr ; 59(4): 1443-1451, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31123864

ABSTRACT

PURPOSE: Human colon inflammation is associated with changes in the diverse and abundant microorganisms in the gut. As important beneficial microbes, Lactobacillus contributes to the immune responses and intestinal integrity that may alleviate experimental colitis. However, the mechanisms underlying probiotic benefits have not been fully elucidated. METHODS: Dextran sodium sulfate or rapamycin-challenged mice were used as model for colon inflammation evaluation. Histological scores of the colon, levels of colonic myeloperoxidase, serum tumor necrosis factor-α and interleukin-6 were assessed as inflammatory markers and the gut microbiota profiles of each mouse were studied. RESULTS: We found that Lactobacillus casei Zhang (LCZ) can prevent experimental colitis and rapamycin-induced inflammation in intestinal mucosa by improving histological scores, decreasing host inflammatory cytokines, modulating gut-dominated bacteria, enhancing cystic fibrosis transmembrane conductance regulator (CFTR) expression and downregulating the expression of p-STAT3 (phosphorylated signal transducer and activator of transcription 3) or Akt/NF-κB (AKT serine/threonine kinase and nuclear factor kappa B). CONCLUSION: Our results suggest that LCZ may provide effective prevention against colitis.


Subject(s)
Anti-Bacterial Agents/adverse effects , Colitis/prevention & control , Dextran Sulfate/adverse effects , Lacticaseibacillus casei/metabolism , Sirolimus/adverse effects , Animals , Colitis/etiology , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL