Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.829
Filter
Add more filters

Publication year range
1.
Cell ; 174(6): 1406-1423.e16, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30193113

ABSTRACT

Probiotics are widely prescribed for prevention of antibiotics-associated dysbiosis and related adverse effects. However, probiotic impact on post-antibiotic reconstitution of the gut mucosal host-microbiome niche remains elusive. We invasively examined the effects of multi-strain probiotics or autologous fecal microbiome transplantation (aFMT) on post-antibiotic reconstitution of the murine and human mucosal microbiome niche. Contrary to homeostasis, antibiotic perturbation enhanced probiotics colonization in the human mucosa but only mildly improved colonization in mice. Compared to spontaneous post-antibiotic recovery, probiotics induced a markedly delayed and persistently incomplete indigenous stool/mucosal microbiome reconstitution and host transcriptome recovery toward homeostatic configuration, while aFMT induced a rapid and near-complete recovery within days of administration. In vitro, Lactobacillus-secreted soluble factors contributed to probiotics-induced microbiome inhibition. Collectively, potential post-antibiotic probiotic benefits may be offset by a compromised gut mucosal recovery, highlighting a need of developing aFMT or personalized probiotic approaches achieving mucosal protection without compromising microbiome recolonization in the antibiotics-perturbed host.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gastrointestinal Microbiome/drug effects , Probiotics/administration & dosage , Adolescent , Adult , Aged , Animals , Fecal Microbiota Transplantation , Feces/microbiology , Female , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Lactobacillus/drug effects , Lactobacillus/genetics , Lactobacillus/isolation & purification , Lactococcus/genetics , Lactococcus/isolation & purification , Male , Mice , Mice, Inbred C57BL , Middle Aged , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Young Adult
2.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33443222

ABSTRACT

Effective therapies for alcohol-associated liver disease (ALD) are limited; therefore, the discovery of new therapeutic agents is greatly warranted. Toll-like receptor 7 (TLR7) is a pattern recognition receptor for single-stranded RNA, and its activation prevents liver fibrosis. We examined liver and intestinal damage in Tlr7-/- mice to determine the role of TLR7 in ALD pathogenesis. In an alcoholic hepatitis (AH) mouse model, hepatic steatosis, injury, and inflammation were induced by chronic binge ethanol feeding in mice, and Tlr7 deficiency exacerbated these effects. Because these results demonstrated that endogenous TLR7 signaling activation is protective in the AH mouse model, we hypothesized that TLR7 activation may be an effective therapeutic strategy for ALD. Therefore, we investigated the therapeutic effect of TLR7 agonistic agent, 1Z1, in the AH mouse model. Oral administration of 1Z1 was well tolerated and prevented intestinal barrier disruption and bacterial translocation, which thus suppressed ethanol-induced hepatic injury, steatosis, and inflammation. Furthermore, 1Z1 treatment up-regulated the expression of antimicrobial peptides, Reg3b and Reg3g, in the intestinal epithelium, which modulated the microbiome by decreasing and increasing the amount of Bacteroides and Lactobacillus, respectively. Additionally, 1Z1 up-regulated intestinal interleukin (IL)-22 expression. IL-22 deficiency abolished the protective effects of 1Z1 in ethanol-induced liver and intestinal damage, suggesting intestinal IL-22 as a crucial mediator for 1Z1-mediated protection in the AH mouse model. Collectively, our results indicate that TLR7 signaling exerts protective effects in the AH mouse model and that a TLR7 ligand, 1Z1, holds therapeutic potential for the treatment of AH.


Subject(s)
Ethanol/toxicity , Interleukins/metabolism , Intestinal Mucosa/metabolism , Liver Diseases, Alcoholic/drug therapy , Membrane Glycoproteins/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 7/metabolism , Administration, Oral , Animals , Bacteroides/drug effects , Disease Models, Animal , Fatty Liver/complications , Fatty Liver/genetics , Fatty Liver/metabolism , Female , Gastrointestinal Microbiome/drug effects , Inflammation/complications , Inflammation/genetics , Inflammation/metabolism , Intestinal Mucosa/drug effects , Lactobacillus/drug effects , Ligands , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/physiopathology , Membrane Glycoproteins/agonists , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs , Pancreatitis-Associated Proteins/genetics , Pancreatitis-Associated Proteins/metabolism , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/metabolism , Signal Transduction/genetics , Tight Junctions/drug effects , Tight Junctions/pathology , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/genetics , Interleukin-22
3.
Int J Mol Sci ; 25(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38732236

ABSTRACT

The use of probiotic lactobacilli has been proposed as a strategy to mitigate damage associated with exposure to toxic metals. Their protective effect against cationic metal ions, such as those of mercury or lead, is believed to stem from their chelating and accumulating potential. However, their retention of anionic toxic metalloids, such as inorganic arsenic, is generally low. Through the construction of mutants in phosphate transporter genes (pst) in Lactiplantibacillus plantarum and Lacticaseibacillus paracasei strains, coupled with arsenate [As(V)] uptake and toxicity assays, we determined that the incorporation of As(V), which structurally resembles phosphate, is likely facilitated by phosphate transporters. Surprisingly, inactivation in Lc. paracasei of PhoP, the transcriptional regulator of the two-component system PhoPR, a signal transducer involved in phosphate sensing, led to an increased resistance to arsenite [As(III)]. In comparison to the wild type, the phoP strain exhibited no differences in the ability to retain As(III), and there were no observed changes in the oxidation of As(III) to the less toxic As(V). These results reinforce the idea that specific transport, and not unspecific cell retention, plays a role in As(V) biosorption by lactobacilli, while they reveal an unexpected phenotype for the lack of the pleiotropic regulator PhoP.


Subject(s)
Arsenic , Phosphates , Phosphates/metabolism , Arsenic/toxicity , Arsenic/metabolism , Lactobacillus/metabolism , Lactobacillus/drug effects , Lactobacillus/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Phosphate Transport Proteins/metabolism , Phosphate Transport Proteins/genetics , Arsenates/metabolism , Arsenates/toxicity
4.
Nature ; 551(7682): 585-589, 2017 11 30.
Article in English | MEDLINE | ID: mdl-29143823

ABSTRACT

A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (TH17) cells, which can also contribute to hypertension. Induction of TH17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating TH17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased TH17 cells and increased blood pressure. Our results connect high salt intake to the gut-immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.


Subject(s)
Gastrointestinal Microbiome/drug effects , Lactobacillus/drug effects , Lactobacillus/isolation & purification , Sodium Chloride/pharmacology , Th17 Cells/drug effects , Th17 Cells/immunology , Animals , Autoimmunity/drug effects , Blood Pressure/drug effects , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/microbiology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/therapy , Feces/microbiology , Humans , Hypertension/chemically induced , Indoleacetic Acids/metabolism , Indoles/metabolism , Intestines/cytology , Intestines/drug effects , Intestines/immunology , Intestines/microbiology , Lactobacillus/immunology , Lymphocyte Activation/drug effects , Lymphocyte Count , Male , Mice , Pilot Projects , Sodium Chloride/administration & dosage , Symbiosis , Th17 Cells/cytology , Tryptophan/metabolism
5.
Food Microbiol ; 102: 103917, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34809942

ABSTRACT

Cereal-associated lactobacilli resist antimicrobial plant secondary metabolites. This study aimed to identify multi-drug-resistance (MDR) transporters in isolates from mahewu, a Zimbabwean fermented cereal beverage, and to determine whether these MDR-transporters relate to resistance against phenolic compounds and antibiotics. Comparative genomic analyses indicated that all seven mahewu isolates harbored multiple MATE and MFS MDR proteins. Strains of Lactiplantibacillus plantarum and Limosilactobacillus fermentum encoded for the same gene, termed mahewu phenolics resistance gene mprA, with more than 99% nucleotide identity, suggesting horizontal gene transfer. Strains of Lp. plantarum were more resistant than strains of Lm. fermentum to phenolic acids, other antimicrobials and antibiotics but the origins of strains were not related to resistance. The resistance of several strains exceeded EFSA thresholds for several antibiotics. Analysis of gene expression in one strain each of Lp. plantarum and Lm. fermentum revealed that at least one MDR gene in each strain was over-expressed during growth in wheat, sorghum and millet relative to growth in MRS5 broth. In addition, both strains over-expressed a phenolic acid reductase. The results suggest that diverse lactobacilli in mahewu share MDR transporters acquired by lateral gene transfer, and that these transporters mediate resistance to secondary plant metabolites and antibiotics.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial/genetics , Edible Grain , Genes, MDR , Lactobacillus , Anti-Bacterial Agents/pharmacology , Edible Grain/metabolism , Edible Grain/microbiology , Fermented Beverages/microbiology , Genes, Bacterial , Lactobacillus/drug effects , Lactobacillus/genetics , Secondary Metabolism , Zimbabwe
6.
J Biol Chem ; 295(14): 4733-4747, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32075905

ABSTRACT

Nonalcoholic fatty liver disease is a rapidly rising problem in the 21st century and is a leading cause of chronic liver disease that can lead to end-stage liver diseases, including cirrhosis and hepatocellular cancer. Despite this rising epidemic, no pharmacological treatment has yet been established to treat this disease. The rapidly increasing prevalence of nonalcoholic fatty liver disease and its aggressive form, nonalcoholic steatohepatitis (NASH), requires novel therapeutic approaches to prevent disease progression. Alterations in microbiome dynamics and dysbiosis play an important role in liver disease and may represent targetable pathways to treat liver disorders. Improving microbiome properties or restoring normal bile acid metabolism may prevent or slow the progression of liver diseases such as NASH. Importantly, aberrant systemic circulation of bile acids can greatly disrupt metabolic homeostasis. Bile acid sequestrants are orally administered polymers that bind bile acids in the intestine, forming nonabsorbable complexes. Bile acid sequestrants interrupt intestinal reabsorption of bile acids, decreasing their circulating levels. We determined that treatment with the bile acid sequestrant sevelamer reversed the liver injury and prevented the progression of NASH, including steatosis, inflammation, and fibrosis in a Western diet-induced NASH mouse model. Metabolomics and microbiome analysis revealed that this beneficial effect is associated with changes in the microbiota population and bile acid composition, including reversing microbiota complexity in cecum by increasing Lactobacillus and decreased Desulfovibrio The net effect of these changes was improvement in liver function and markers of liver injury and the positive effects of reversal of insulin resistance.


Subject(s)
Bile Acids and Salts/metabolism , Diet, Western , Liver/drug effects , Non-alcoholic Fatty Liver Disease/pathology , Sevelamer/pharmacology , Animals , Bile Acids and Salts/chemistry , Cecum/microbiology , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Cholesterol/analysis , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Disease Models, Animal , Feces/chemistry , Gastrointestinal Microbiome/drug effects , Lactobacillus/drug effects , Lipid Metabolism/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Sevelamer/chemistry , Sevelamer/therapeutic use , Severity of Illness Index , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
7.
Cancer Sci ; 112(10): 4050-4063, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34289209

ABSTRACT

Astragalus polysaccharides (APS), the main effective component of Astragalus membranaceus, can inhibit tumor growth, but the underlying mechanisms remain unclear. Previous studies have suggested that APS can regulate the gut microenvironment, including the gut microbiota and fecal metabolites. In this work, our results showed that APS could control tumor growth in melanoma-bearing mice. It could reduce the number of myeloid-derived suppressor cells (MDSC), as well as the expression of MDSC-related molecule Arg-1 and cytokines IL-10 and TGF-ß, so that CD8+ T cells could kill tumor cells more effectively. However, while APS were administered with an antibiotic cocktail (ABX), MDSC could not be reduced, and the growth rate of tumors was accelerated. Consistent with the changes in MDSC, the serum levels of IL-6 and IL-1ß were lowest in the APS group. Meanwhile, we found that fecal suspension from mice in the APS group could also reduce the number of MDSC in tumor tissues. These results revealed that APS regulated the immune function in tumor-bearing mice through remodeling the gut microbiota. Next, we focused on the results of 16S rRNA, which showed that APS significantly regulated most microorganisms, such as Bifidobacterium pseudolongum, Lactobacillus johnsonii and Lactobacillus. According to the Spearman analysis, the changes in abundance of these microorganisms were related to the increase of metabolites like glutamate and creatine, which could control tumor growth. The present study demonstrates that APS attenuate the immunosuppressive activity of MDSC in melanoma-bearing mice by remodeling the gut microbiota and fecal metabolites. Our findings reveal the therapeutic potential of APS to control tumor growth.


Subject(s)
Astragalus Plant/chemistry , CD8-Positive T-Lymphocytes/immunology , Gastrointestinal Microbiome/drug effects , Melanoma/drug therapy , Myeloid-Derived Suppressor Cells/drug effects , Polysaccharides/pharmacology , Animals , Anti-Bacterial Agents/administration & dosage , Arginase/drug effects , Arginase/metabolism , Bifidobacterium/drug effects , Bifidobacterium/metabolism , Drug Combinations , Fecal Microbiota Transplantation , Feces/microbiology , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/immunology , Gastrointestinal Microbiome/physiology , Immune Tolerance , Interleukin-10/metabolism , Interleukin-1beta/blood , Interleukin-6/blood , Lactobacillus/drug effects , Male , Melanoma/immunology , Melanoma/pathology , Mice , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , RNA, Ribosomal, 16S/analysis , Transforming Growth Factor beta/drug effects , Transforming Growth Factor beta/metabolism , Tumor Microenvironment/immunology
8.
Appl Environ Microbiol ; 87(13): e0072021, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33893120

ABSTRACT

Bacteriocins are useful for controlling the composition of microorganisms in fermented food. Bacteriocin synthesis is regulated by quorum sensing mediated by autoinducing peptides. In addition, short-chain fatty acids, especially acetic acid, reportedly regulate bacteriocin synthesis. Five histidine kinases that regulated the synthesis of bacteriocins were selected to verify their interactions with acetate. Acetate activated the kinase activity of PlnB, SppK, and HpK3 in vitro and increased the yield of their cognate bacteriocins plantaricin EF, sakacin A, and rhamnosin B in vivo. The antimicrobial activity against Staphylococcus aureus of the fermentation supernatants of Lactobacillus plantarum, Lactobacillus sakei, and Lactobacillus rhamnosus with addition of acetate increased to 298%, 198%, and 289%, respectively, compared with that in the absence of acetate. Our study elucidated the activation activity of acetate in bacteriocin synthesis, and it might provide a potential strategy to increase the production of bacteriocin produced by Lactobacillus. IMPORTANCE Bacteriocins produced by lactic acid bacteria (LAB) are particularly useful in food preservation and food safety. Bacteriocins might increase bacterial competitive advantage against the indigenous microbiota of the intestines; at the same time, bacteriocins could limit the growth of undesired microorganisms in yogurt and other dairy products. This study confirmed that three kinds of histidine kinases were activated by acetate and upregulated bacteriocin synthesis both in vitro and in vivo. The increasing yield of bacteriocins reduced the number of pathogens and increased the number of probiotics in milk. Bacteriocin synthesis activation by acetate may have a broad application in the preservation of dairy products and forage silage.


Subject(s)
Acetates/pharmacology , Anti-Bacterial Agents/biosynthesis , Bacteriocins/biosynthesis , Lactobacillus/drug effects , Quorum Sensing/drug effects , Fermentation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Lactobacillus/metabolism , Lactobacillus/physiology , Staphylococcus aureus/growth & development
9.
FASEB J ; 34(8): 10682-10698, 2020 08.
Article in English | MEDLINE | ID: mdl-32619085

ABSTRACT

Allicin (diallylthiosulfinate) is a natural food compound with multiple biological and pharmacological functions. However, the mechanism of beneficial role of Allicin on energy homeostasis is not well studied. Gut microbiota (GM) profoundly affects host metabolism via microbiota-host interactions and coevolution. Here, we investigated the interventions of beneficial microbiome induced by Allicin on energy homeostasis, particularly obesity, and related complications. Interestingly, Allicin treatment significantly improved GM composition and induced the most significant alteration enrichment of Bifidobacterium and Lactobacillus. Importantly, transplantation of the Allicin-induced GM to HFD mice (AGMT) played a remarkable role in decreasing adiposity, maintaining glucose homeostasis, and ameliorating hepatic steatosis. Furthermore, AGMT was effective in modulating lipid metabolism, activated brown adipose tissues (BATs), induced browning in sWAT, reduced inflammation, and inhibited the degradation of intestinal villi. Mechanically, AGMT significantly increased Blautia [short-chain fatty acids (SCFAs)-producing microbiota] and Bifidobacterium in HFD mice, also increased the SCFAs in the cecum, which has been proved many beneficial effects on energy homeostasis. Our study highlights that Allicin-induced host-gut microbe interactions plays an important role in regulating energy homeostasis, which provides a promising potential therapy for obesity and metabolic disorders based on host-microbe interactions.


Subject(s)
Energy Metabolism/drug effects , Gastrointestinal Microbiome/drug effects , Homeostasis/drug effects , Host Microbial Interactions/drug effects , Sulfinic Acids/pharmacology , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adiposity/drug effects , Animals , Bifidobacterium/drug effects , Cecum/drug effects , Cecum/metabolism , Cecum/microbiology , Disulfides , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/microbiology , Lactobacillus/drug effects , Lipid Metabolism/drug effects , Male , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Mice , Mice, Inbred C57BL , Microbiota/drug effects , Obesity/metabolism , Obesity/microbiology
10.
Arch Microbiol ; 203(3): 975-988, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33104821

ABSTRACT

The aim of the paper was to analyse changes in lactic acid bacteria (LAB) populations during spontaneous fermentation of green curly kale juice (Brasicca oleracea L. var. acephala L.) and to determine the probiotic potential of LAB isolates. The analyses revealed that changes in LAB populations were specific for spontaneously fermented vegetable juices. The initial microbiota, composed mostly of Leuconostoc mesenteroides bacteria, was gradually replaced by Lactobacillus species, mainly Lactobacillus plantarum, Lactobacillus sakei, and Lactobacillus coryniformis. Screening tests for the antimicrobial properties and antibiotic susceptibility of isolates allowed for the selection of 12 strains with desirable characteristics. L. plantarum isolates were characterized by the widest spectrum of antimicrobial interactions, both towards Gram-positive and Gram-negative bacteria. Also, L. plantarum strains exhibited the best growth abilities under low pH conditions, and at different NaCl and bile salt concentrations. All strains showed different levels of antibiotic sensitivity, although they were resistant to vancomycin and kanamycin. The present study has shown that bacterial isolates obtained from spontaneously fermented kale juice could constitute valuable probiotic starter cultures, which may be used in fermentation industry.


Subject(s)
Brassica/microbiology , Fermentation , Food Microbiology , Fruit and Vegetable Juices/microbiology , Industrial Microbiology , Lactobacillus/physiology , Probiotics , Anti-Bacterial Agents/pharmacology , Humans , Lactobacillales/isolation & purification , Lactobacillus/drug effects , Lactobacillus/growth & development , Lactobacillus/isolation & purification , Microbial Interactions
11.
Biosci Biotechnol Biochem ; 85(6): 1395-1404, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33784390

ABSTRACT

Liraglutide is an analog of human glucagon-like peptide-1 which play essential roles in regulation of glycolipid metabolism. To investigate role of lactic acid bacteria (LAB) in lipid-lowering effect of liraglutide, 40 mice were divided into normal food diet (NFD), high-fat food (HFD), 10.0 mg/kg/d simvastatin-treated HFD (SIM + HFD), 200 and 400 µg/kg/d liraglutide-treated HFD (LL + HFD and HL + HFD) groups for 5 weeks. We found that liraglutide could upregulate cholesterol 7α-hydroxylase (CYP7A1) and LDL-receptor (LDLR), whereas downregulate 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). Besides, liraglutide enhance abundance of lactobacillaceae in gut of hyperlipidemic mice and increase bile tolerance ability of LAB by upregulating bile salt hydrolases, and the lysate of liraglutide-sensitive LAB could also directly downregulate HMGCR, the key enzyme in cholesterol synthesis, and inhibit hepatocyte steatosis. These findings might provide new theoretical guidance for clinical application of liraglutide and research and development of antiobesity, hypolipidemic, and cholesterol-lowering drugs or functional foods.


Subject(s)
Bile/metabolism , Hypolipidemic Agents/pharmacology , Lactobacillus/drug effects , Lactobacillus/metabolism , Liraglutide/pharmacology , Animals , Cholesterol/metabolism , Cholesterol 7-alpha-Hydroxylase/metabolism , Diet, High-Fat/adverse effects , Dose-Response Relationship, Drug , Male , Mice
12.
Food Microbiol ; 99: 103813, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34119100

ABSTRACT

Tyramine is one of the most toxic biogenic amines and it is produced commonly by lactic acid bacteria in fermented food products. In present study, we investigated the influence of selected nisin-producing Lactococcus lactis subsp. lactis strains and their cell-free supernatants (CFSs) on tyramine production by four Lactobacillus and two Lactiplantibacillus strains isolated from cheese and beer. Firstly, we examined the antimicrobial effect of the CFSs from twelve Lactococcus strains against tested tyramine producers by agar-well diffusion assay. Six Lactococcus strains whose CFSs showed the highest antimicrobial effect on tyramine producers were further studied. Secondly, we investigated the influence of the selected six Lactococcus strains and their respective CFSs on tyramine production by tested Lactobacillus and Lactiplantibacillus strains in MRS broth supplemented with 2 g.L-1 of l-tyrosine. Tyramine production was monitored by HPLC-UV. The tyramine formation of all tested Lactobacillus and Lactiplantibacillus strains was not detected in the presence of Lc. lactis subsp. lactis CCDM 71 and CCDM 702, and their CFSs. Moreover, the remainder of the investigated Lactococcus strains (CCDM 670, CCDM 686, CCDM 689 and CCDM 731) and their CFSs decreased tyramine production significantly (P < 0.05) - even suppressing it completely in some cases - in four of the six tested tyramine producing strains.


Subject(s)
Anti-Bacterial Agents/pharmacology , Beer/microbiology , Cheese/microbiology , Culture Media/pharmacology , Lactobacillaceae/drug effects , Lactobacillus/drug effects , Lactococcus lactis/chemistry , Tyramine/pharmacology , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/metabolism , Chromatography, High Pressure Liquid , Culture Media/chemistry , Culture Media/metabolism , Lactobacillaceae/growth & development , Lactobacillaceae/isolation & purification , Lactobacillus/growth & development , Lactobacillus/isolation & purification , Lactococcus lactis/metabolism , Tyramine/analysis , Tyramine/metabolism
13.
J Dairy Sci ; 104(2): 1524-1530, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33246627

ABSTRACT

Effects of chemical structure, concentration, and pH on antimicrobial activity of conjugated bile acids were investigated in 4 strains of lactobacilli. Considerable differences were observed in the antimicrobial activity between the 6 human conjugated bile acids, including glycocholic acid, taurocholic acid, glycodeoxycholic acid, taurodeoxycholic acid, glycochenodeoxycholic acid, and taurochenodeoxycholic acid. Glycodeoxycholic acid and glycochenodeoxycholic acid generally showed significantly higher antimicrobial activity against the lactobacilli, but glycocholic acid and taurocholic acid exhibited the significantly lower antimicrobial activity. Glycochenodeoxycholic acid was selected for further analysis, and the results showed its antimicrobial activity was concentration-dependent, and there was a significantly negative linear correlation (R2 > 0.98) between bile-antimicrobial index and logarithmic concentration of the bile acid for each strain of lactobacilli. Additionally, the antimicrobial activity of glycochenodeoxycholic acid was also observed to be pH-dependent, and it was significantly enhanced with the decreasing pH, with the result that all the strains of lactobacilli were unable to grow at pH 5.0. In conclusion, chemical structure, concentration, and pH are key factors influencing antimicrobial activity of conjugated bile acids against lactobacilli. This study provides theoretical guidance and technology support for developing a scientific method for evaluating the bile tolerance ability of potentially probiotic strains of lactobacilli.


Subject(s)
Anti-Infective Agents/pharmacology , Bile Acids and Salts/pharmacology , Lactobacillus/drug effects , Animals , Anti-Infective Agents/chemistry , Bile Acids and Salts/chemistry , Glycochenodeoxycholic Acid/chemistry , Glycochenodeoxycholic Acid/pharmacology , Glycocholic Acid/chemistry , Glycocholic Acid/pharmacology , Glycodeoxycholic Acid/pharmacology , Humans , Hydrogen-Ion Concentration , Probiotics , Taurochenodeoxycholic Acid/chemistry , Taurochenodeoxycholic Acid/pharmacology , Taurocholic Acid/chemistry , Taurocholic Acid/pharmacology , Taurodeoxycholic Acid/chemistry , Taurodeoxycholic Acid/pharmacology
14.
Chem Biodivers ; 18(11): e2100611, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34547168

ABSTRACT

Hernandulcin (HE) is a non-caloric sweetener synthesized by the Mexican medicinal plant Phyla scaberrima. Herein we present the results of HE production through cell suspensions of P. scaberrima as well as the influence of pH, temperature, biosynthetic precursors and potential elicitors to enhance HE accumulation. The incorporation of mevalonolactone (30-400 mg L-1 ) farnesol (30-400 mg L-1 ), AgNO3 (0.025-0.175 M), cellulase (5-60 mg L-1 ; 0.3 units/mg), chitin (20-140 mg L-1 ) and (+)-epi-α-bisabolol (300-210 mg L-1 ) to the cell suspensions, resulted in a differential accumulation of HE and biomass. Among elicitors assayed, chitin, cellulase and farnesol increased HE production from 93.2 to ∼160 mg L-1 but, (+)-epi-α-bisabolol (obtained by a synthetic biology approach) increased HE accumulation up to 182.7 mg L-1 . HE produced by the cell suspensions was evaluated against nine strains from six species of gastrointestinal bacteria revealing moderate antibacterial activity (MIC, 214-465 µg mL-1 ) against Staphylococcus aureus, Escherichia coli and Helicobacter pylori. Similarly, HE showed weak toxicity against Lactobacillus sp. and Bifidobacterium bifidum (>1 mg mL-1 ), suggesting a selective antimicrobial activity on some species of gut microbiota. According to our results, chitin and (+)-epi-α-bisabolol were the most effective molecules to enhance HE accumulation in cell suspensions of P. scaberrima.


Subject(s)
Anti-Bacterial Agents/pharmacology , Sesquiterpenes/pharmacology , Verbenaceae/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Bifidobacterium bifidum/drug effects , Escherichia coli/drug effects , Helicobacter pylori/drug effects , Lactobacillus/drug effects , Microbial Sensitivity Tests , Sesquiterpenes/chemistry , Sesquiterpenes/metabolism , Staphylococcus aureus/drug effects , Verbenaceae/cytology
15.
J Sci Food Agric ; 101(6): 2491-2499, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33063324

ABSTRACT

BACKGROUND: Codonopsis pilosula and C. tangshen are both plants widely used in traditional Chinese medicine. Polysaccharides, which are their primary active components, are thought to be important in their extensive use. In this study, two neutral polysaccharide fractions of C. pilosula (CPPN) and C. tangshen (CTPN) were obtained by fractionation on a DEAE-Sepharose column and characterized. RESULTS: It was confirmed that the neutral polymers CPPN and CTPN were ß-(2,1)-linked inulin-type fructans with non-reducing terminal glucose, and degree of polymerization (DP) of 19.6 and 25.2, respectively. The antioxidant and prebiotic activities in vitro were assayed based on IPEC-J2 cell lines and five strains of Lactobacillus. Results indicated that the effects of CPPN and CTPN were increased antioxidant defense in intestinal epithelial cells through enhanced cell viability, improved expression of total antioxidant capacity, glutathione peroxidase, superoxide dismutase and catalase, and reduced levels of malondialdehyde and lactic dehydrogenase. The prebiotic activity of CPPN and CTPN was demonstrated by the promoting effect on Lactobacillus proliferation in vitro. The different biological activities obtained between the two fractions are probably due to the different DP and thus molecular weights of CPPN and CTPN. CONCLUSION: The inulin fractions from C. pilosula and C. tangshen were natural sources of potential intestinal antioxidants as well as prebiotics, which will be valuable in further studies and new applications of inulin-containing health products. © 2020 Society of Chemical Industry.


Subject(s)
Antioxidants/chemistry , Codonopsis/chemistry , Drugs, Chinese Herbal/chemistry , Fructans/chemistry , Inulin/chemistry , Prebiotics/analysis , Antioxidants/isolation & purification , Antioxidants/pharmacology , Cell Line , Cell Survival/drug effects , Codonopsis/classification , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Fructans/isolation & purification , Fructans/pharmacology , Humans , Inulin/isolation & purification , Inulin/pharmacology , Lactobacillus/drug effects , Lactobacillus/growth & development , Oxidative Stress/drug effects , Polymerization
16.
J Infect Dis ; 221(4): 627-635, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31573603

ABSTRACT

We characterized the composition and structure of the vaginal microbiota in a cohort of 149 women with genital Chlamydia trachomatis infection at baseline who were followed quarterly for 9 months after antibiotic treatment. At time of diagnosis, the vaginal microbiota was dominated by Lactobacillus iners or a diverse array of bacterial vaginosis-associated bacteria including Gardnerella vaginalis. Interestingly, L. iners-dominated communities were most common after azithromycin treatment (1 g monodose), consistent with the observed relative resistance of L. iners to azithromycin. Lactobacillus iners-dominated communities have been associated with increased risk of C. trachomatis infection, suggesting that the impact of antibiotic treatment on the vaginal microbiota could favor reinfections. These results provide support for the dual need to account for the potential perturbing effect(s) of antibiotic treatment on the vaginal microbiota, and to develop strategies to protect and restore optimal vaginal microbiota.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Azithromycin/therapeutic use , Chlamydia Infections/drug therapy , Chlamydia trachomatis/genetics , Microbiota/drug effects , Vagina/microbiology , Vaginosis, Bacterial/drug therapy , Adolescent , Adult , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Azithromycin/administration & dosage , Azithromycin/adverse effects , Azithromycin/pharmacology , Chlamydia Infections/microbiology , Cross-Sectional Studies , Female , Follow-Up Studies , Gardnerella vaginalis/drug effects , Gardnerella vaginalis/genetics , Humans , Lactobacillus/drug effects , Lactobacillus/genetics , Microbiota/genetics , Prospective Studies , RNA, Ribosomal, 16S , Treatment Outcome , Vaginosis, Bacterial/microbiology , Young Adult
17.
J Cell Physiol ; 235(3): 2590-2598, 2020 03.
Article in English | MEDLINE | ID: mdl-31489638

ABSTRACT

Unless there is a genetic defect/mutation/deletion in a gene, the causation of a given disease is chronic dysregulation of gut metabolism. Most of the time, if not always, starts within the gut; that is what we eat. Recent research shows that the imbalance between good versus bad microbial population, especially in the gut, causes systemic diseases. Thus, an appropriate balance of the gut microbiota (eubiosis over dysbiosis) needs to be maintained for normal health (Veeranki and Tyagi, 2017, Journal of Cellular Physiology, 232, 2929-2930). However, during various diseases such as metabolic syndrome, inflammatory bowel disease, diabetes, obesity, and hypertension the dysbiotic gut environment tends to prevail. Our research focuses on homocysteine (Hcy) metabolism that occupies a center-stage in many biochemically relevant epigenetic mechanisms. For example, dysbiotic bacteria methylate promoters to inhibit gene activities. Interestingly, the product of the 1-carbon metabolism is Hcy, unequivocally. Emerging studies show that host resistance to various antibiotics occurs due to inverton promoter inhibition, presumably because of promoter methylation. This results from modification of host promoters by bacterial products leading to loss of host's ability to drug compatibility and system sensitivity. In this study, we focus on the role of high methionine diet (HMD), an ingredient rich in red meat and measure the effects of a probiotic on cardiac muscle remodeling and its functions. We employed wild type (WT) and cystathionine beta-synthase heterozygote knockout (CBS+/- ) mice with and without HMD and with and without a probiotic; PB (Lactobacillus) in drinking water for 16 weeks. Results indicate that matrix metalloproteinase-2 (MMP-2) activity was robust in CBS+/- fed with HMD and that it was successfully attenuated by the PB treatment. Cardiomyocyte contractility and ECHO data revealed mitigation of the cardiac dysfunction in CBS+/- + HMD mice treated with PB. In conclusion, our data suggest that probiotics can potentially reverse the Hcy-meditated cardiac dysfunction.


Subject(s)
Cystathionine beta-Synthase/genetics , Dysbiosis/metabolism , Gastrointestinal Microbiome/genetics , Homocysteine/metabolism , Animals , Carbon/metabolism , Disease Models, Animal , Dysbiosis/genetics , Dysbiosis/microbiology , Epigenesis, Genetic/genetics , Homocysteine/genetics , Humans , Lactobacillus/drug effects , Lactobacillus/metabolism , Matrix Metalloproteinase 2/genetics , Mice , Mice, Knockout , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Probiotics/pharmacology
18.
Appl Environ Microbiol ; 86(20)2020 10 01.
Article in English | MEDLINE | ID: mdl-32801180

ABSTRACT

Lactobacillus iners is often associated with vaginal dysbiosis and bacterial vaginosis (BV), which are risk factors for adverse gynecological and obstetric outcomes. To discover natural inhibitors of L. iners, cell-free culture supernatants (CFSs) from 77 vaginal human Lactobacillus strains and 1 human intestinal strain were screened for inhibitory activity. Three active strains were identified, and Lactobacillus paragasseri K7 (K7), a human intestinal strain, produced the most potent L. iners-inhibitory activity. The active material was purified from the K7 CFS and yielded three active peptides, identified as components of two different class IIb, two-peptide bacteriocins, gassericin K7A (GasK7A) and gassericin K7B (GasK7B). The peptides corresponded to the GasK7A α peptide and the GasK7B α and ß peptides. While all three peptides exhibited individual activity against L. iners, GasK7B α was the most potent, with an MIC of 23 ng/ml (4 nM). When combined in equal amounts, the GasK7B α and ß peptides showed synergistic inhibition, with an MIC of 2 ng/ml (each peptide at 0.4 nM). Among the four major vaginal Lactobacillus species, the K7 bacteriocins selectively inhibited L. iners All 21 strains of L. iners tested (100%) were inhibited by the K7 bacteriocins, whereas <20% of the vaginal Lactobacillus crispatus, L. jensenii, and L. gasseri strains were inhibited. The combination of the BV treatment metronidazole and K7 bacteriocins completely killed both L. iners and Gardnerella vaginalis in a coculture experiment to mimic BV conditions. In contrast, this treatment did not inhibit L. crispatus cultures.IMPORTANCELactobacillus iners is a prevalent species of the vaginal microbiome, but unlike other major vaginal Lactobacillus species, it is not considered protective against BV and can coexist with BV-associated bacteria. L. iners is generally the first Lactobacillus species to emerge following the treatment of BV with metronidazole, and mounting evidence suggests that it may contribute to the onset and maintenance of vaginal dysbiosis. The discovery of highly potent bacteriocins that selectively kill L. iners while sparing protective vaginal lactobacilli may provide novel pharmacological tools to better understand the roles of this enigmatic bacterium in vaginal ecology and potentially lead to new and improved therapies for dysbiosis-related conditions such as BV.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteriocins/pharmacology , Lactobacillus/chemistry , Lactobacillus/drug effects , Vagina/microbiology , Female , Humans
19.
Appl Environ Microbiol ; 86(4)2020 02 03.
Article in English | MEDLINE | ID: mdl-31811042

ABSTRACT

Lipopolysaccharide (LPS) has been reported to contribute to a ruminal acidosis of cattle by affecting ruminal bacteria. The goal of this study was to determine how LPS affects the growth of pure cultures of ruminal bacteria, including those that contribute to ruminal acidosis. We found that dosing LPS (200,000 EU) increased the maximum specific growth rates of four ruminal bacterial species (Streptococcus bovis JB1, Succinivibrio dextrinosolvens 24, Lactobacillus ruminis RF1, and Selenomonas ruminantium HD4). Interestingly, all the species ferment sugars and produce lactate, contributing to acidosis. Species that consume lactate or ferment fiber were not affected by LPS. We found that S. bovis JB1 failed to grow in LPS as the carbon source in the media; growth of S. bovis JB1 was increased by LPS when glucose was present. Growth of Megasphaera elsdenii T81, which consumes lactate, was not different between the detoxified (lipid A delipidated) and regular LPS. However, the maximum specific growth rate of S. bovis JB1 was greater in regular LPS than detoxified LPS. Mixed bacteria from a dual-flow continuous culture system were collected to determine changes of metabolic capabilities of bacteria by LPS, and genes associated with LPS biosynthesis were increased by LPS. In summary, LPS was not toxic to bacteria, and lipid A of LPS stimulated the growth of lactate-producing bacteria. Our results indicate that LPS not only is increased during acidosis but also may contribute to ruminal acidosis development by increasing the growth of lactic acid-producing bacteria.IMPORTANCE Gram-negative bacteria contain lipopolysaccharide (LPS) coating their thin peptidoglycan cell wall. The presence of LPS has been suggested to be associated with a metabolic disorder of cattle-ruminal acidosis-through affecting ruminal bacteria. Ruminal acidosis could reduce feed intake and milk production and increase the incidence of diarrhea, milk fat depression, liver abscesses, and laminitis. However, how LPS affects bacteria associated with ruminal acidosis has not been studied. In this study, we investigated how LPS affects the growth of ruminal bacteria by pure cultures, including those that contribute to acidosis, and the functional genes of ruminal bacteria. Thus, this work serves to further our understanding of the roles of LPS in the pathogenesis of ruminal acidosis, as well as providing information that may be useful for the prevention of ruminal acidosis and reducetion of economic losses for farmers.


Subject(s)
Acidosis/veterinary , Cattle Diseases/microbiology , Lactobacillus/growth & development , Lipopolysaccharides/administration & dosage , Selenomonas/growth & development , Streptococcus bovis/growth & development , Succinivibrionaceae/growth & development , Acidosis/microbiology , Animals , Cattle , Genes, Bacterial/drug effects , Lactobacillus/drug effects , Rumen/microbiology , Selenomonas/drug effects , Streptococcus bovis/drug effects , Succinivibrionaceae/drug effects
20.
FASEB J ; 33(3): 3343-3352, 2019 03.
Article in English | MEDLINE | ID: mdl-30433825

ABSTRACT

The development of gut microbiota during infancy is an important event that affects the health status of the host; however, the mechanism governing it is not fully understood. l-Amino acid oxidase 1 (LAO1) is a flavoprotein that catalyzes the oxidative deamination of particular l-amino acids and converts them into keto acids, ammonia, and H2O2. Our previous study showed that LAO1 is present in mouse milk and exerts protection against bacteria by its production of H2O2. The data led us to consider whether LAO1, H2O2, or both could impact infant gut microbiota development via mother's milk consumption in mice. Different gut microbiota profiles were observed in the wild-type (WT) and LAO1-knockout mouse pups. The WT pups' microbiota was relatively simple and composed of only a few dominant bacteria, such as Lactobacillus, whereas the lactating knockout pups had high microbiota diversity. Cross-fostering experiments indicated that WT milk (containing LAO1) has the ability to suppress the diversity of microbiota in pups. We observed that the stomach content of pups fed WT milk had LAO1 proteins and the ability to produce H2O2. Moreover, culture experiments showed that Lactobacillus was abundant in the feces of pups fed WT milk and that Lactobacillus was more resistant to H2O2 than Bifidobacterium and Escherichia. Human breast milk produces very little H2O2, which could be the reason for Lactobacillus not being dominant in the feces of breast-fed human infants. In mouse mother's milk, H2O2 is generated from the process of free amino acid metabolism, and H2O2 may be a key player in regulating the initial acquisition and development of gut microbiota, especially growth of Lactobacillus, during infancy.-Shigeno, Y., Zhang, H., Banno, T., Usuda, K., Nochi, T., Inoue, R., Watanabe, G., Jin, W., Benno, Y., Nagaoka, K. Gut microbiota development in mice is affected by hydrogen peroxide produced from amino acid metabolism during lactation.


Subject(s)
Amino Acids/metabolism , Gastrointestinal Microbiome/drug effects , Hydrogen Peroxide/pharmacology , Lactation/drug effects , Microbiota/drug effects , Animals , Bifidobacterium/drug effects , Feces/microbiology , Female , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Lactation/metabolism , Lactobacillus/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Milk/microbiology , Probiotics/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL