Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Development ; 149(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-35132995

ABSTRACT

Distinct neural stem cells (NSCs) reside in different regions of the subventricular zone (SVZ) and generate multiple olfactory bulb (OB) interneuron subtypes in the adult brain. However, the molecular mechanisms underlying such NSC heterogeneity remain largely unknown. Here, we show that the basic helix-loop-helix transcription factor Olig2 defines a subset of NSCs in the early postnatal and adult SVZ. Olig2-expressing NSCs exist broadly but are most enriched in the ventral SVZ along the dorsoventral axis complementary to dorsally enriched Gsx2-expressing NSCs. Comparisons of Olig2-expressing NSCs from early embryonic to adult stages using single cell transcriptomics reveal stepwise developmental changes in their cell cycle and metabolic properties. Genetic studies further show that cross-repression contributes to the mutually exclusive expression of Olig2 and Gsx2 in NSCs/progenitors during embryogenesis, but that their expression is regulated independently from each other in adult NSCs. Finally, lineage-tracing and conditional inactivation studies demonstrate that Olig2 plays an important role in the specification of OB interneuron subtypes. Altogether, our study demonstrates that Olig2 defines a unique subset of adult NSCs enriched in the ventral aspect of the adult SVZ.


Subject(s)
Interneurons/metabolism , Lateral Ventricles/growth & development , Lateral Ventricles/metabolism , Neural Stem Cells/metabolism , Olfactory Bulb/growth & development , Olfactory Bulb/metabolism , Oligodendrocyte Transcription Factor 2/metabolism , Animals , Cell Cycle/genetics , Cell Lineage/genetics , Cells, Cultured , Female , Gene Knockout Techniques , Lateral Ventricles/embryology , Male , Mice , Mice, Knockout , Neurogenesis/genetics , Olfactory Bulb/embryology , Oligodendrocyte Transcription Factor 2/genetics , Signal Transduction/genetics , Transcriptome/genetics
2.
Development ; 148(3)2021 02 05.
Article in English | MEDLINE | ID: mdl-33462112

ABSTRACT

Microtubules (MTs) regulate numerous cellular processes, but their roles in brain morphogenesis are not well known. Here, we show that CAMSAP3, a non-centrosomal microtubule regulator, is important for shaping the lateral ventricles. In differentiating ependymal cells, CAMSAP3 became concentrated at the apical domains, serving to generate MT networks at these sites. Camsap3-mutated mice showed abnormally narrow lateral ventricles, in which excessive stenosis or fusion was induced, leading to a decrease of neural stem cells at the ventricular and subventricular zones. This defect was ascribed at least in part to a failure of neocortical ependymal cells to broaden their apical domain, a process necessary for expanding the ventricular cavities. mTORC1 was required for ependymal cell growth but its activity was downregulated in mutant cells. Lysosomes, which mediate mTORC1 activation, tended to be reduced at the apical regions of the mutant cells, along with disorganized apical MT networks at the corresponding sites. These findings suggest that CAMSAP3 supports mTORC1 signaling required for ependymal cell growth via MT network regulation, and, in turn, shaping of the lateral ventricles.


Subject(s)
Brain/metabolism , Cell Cycle , Ependyma/growth & development , Lateral Ventricles/growth & development , Mechanistic Target of Rapamycin Complex 1/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Animals , Brain/growth & development , Ependyma/metabolism , Epithelial Cells/cytology , Female , Lysosomes , Male , Mice , Mice, Inbred C57BL , Microtubules/metabolism , Neuroglia/metabolism
3.
Semin Cell Dev Biol ; 112: 61-68, 2021 04.
Article in English | MEDLINE | ID: mdl-32771376

ABSTRACT

Within the adult mammalian central nervous system, the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles houses neural stem cells (NSCs) that continue to produce neurons throughout life. Developmentally, the V-SVZ neurogenic niche arises during corticogenesis following the terminal differentiation of telencephalic radial glial cells (RGCs) into either adult neural stem cells (aNSCs) or ependymal cells. In mice, these two cellular populations form rosettes during the late embryonic and early postnatal period, with ependymal cells surrounding aNSCs. These aNSCs and ependymal cells serve a number of key purposes, including the generation of neurons throughout life (aNSCs), and acting as a barrier between the CSF and the parenchyma and promoting CSF bulk flow (ependymal cells). Interestingly, the development of this neurogenic niche, as well as its ongoing function, has been shown to be reliant on different aspects of lipid biology. In this review we discuss the developmental origins of the rodent V-SVZ neurogenic niche, and highlight research which has implicated a role for lipids in the physiology of this part of the brain. We also discuss the role of lipids in the maintenance of the V-SVZ niche, and discuss new research which has suggested that alterations to lipid biology could contribute to ependymal cell dysfunction in aging and disease.


Subject(s)
Aging/genetics , Ependyma/metabolism , Lipids/genetics , Neural Stem Cells/metabolism , Aging/pathology , Animals , Cell Proliferation/genetics , Central Nervous System/growth & development , Central Nervous System/metabolism , Central Nervous System/pathology , Ependyma/growth & development , Ependyma/pathology , Humans , Lateral Ventricles/growth & development , Lateral Ventricles/metabolism , Lateral Ventricles/pathology , Mice , Neural Stem Cells/physiology , Neurogenesis/genetics , Neurons/metabolism , Neurons/pathology , Telencephalon/metabolism , Telencephalon/pathology
4.
Development ; 147(10)2020 05 26.
Article in English | MEDLINE | ID: mdl-32253238

ABSTRACT

The transcription factor Zeb2 controls fate specification and subsequent differentiation and maturation of multiple cell types in various embryonic tissues. It binds many protein partners, including activated Smad proteins and the NuRD co-repressor complex. How Zeb2 subdomains support cell differentiation in various contexts has remained elusive. Here, we studied the role of Zeb2 and its domains in neurogenesis and neural differentiation in the young postnatal ventricular-subventricular zone (V-SVZ), in which neural stem cells generate olfactory bulb-destined interneurons. Conditional Zeb2 knockouts and separate acute loss- and gain-of-function approaches indicated that Zeb2 is essential for controlling apoptosis and neuronal differentiation of V-SVZ progenitors before and after birth, and we identified Sox6 as a potential downstream target gene of Zeb2. Zeb2 genetic inactivation impaired the differentiation potential of the V-SVZ niche in a cell-autonomous fashion. We also provide evidence that its normal function in the V-SVZ also involves non-autonomous mechanisms. Additionally, we demonstrate distinct roles for Zeb2 protein-binding domains, suggesting that Zeb2 partners co-determine neuronal output from the mouse V-SVZ in both quantitative and qualitative ways in early postnatal life.


Subject(s)
Lateral Ventricles/embryology , Lateral Ventricles/growth & development , Neurogenesis/genetics , Olfactory Bulb/embryology , Olfactory Bulb/growth & development , Zinc Finger E-box Binding Homeobox 2/metabolism , Animals , Apoptosis/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Gene Knockout Techniques , Interneurons/metabolism , Lateral Ventricles/metabolism , Mice , Mice, Knockout , Neural Stem Cells/metabolism , Olfactory Bulb/metabolism , SOXD Transcription Factors/metabolism , Signal Transduction/immunology , Zinc Finger E-box Binding Homeobox 2/genetics
5.
Proc Natl Acad Sci U S A ; 116(14): 7089-7094, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30894491

ABSTRACT

The primate cerebrum is characterized by a large expansion of cortical surface area, the formation of convolutions, and extraordinarily voluminous subcortical white matter. It was recently proposed that this expansion is primarily driven by increased production of superficial neurons in the dramatically enlarged outer subventricular zone (oSVZ). Here, we examined the development of the parietal cerebrum in macaque monkey and found that, indeed, the oSVZ initially adds neurons to the superficial layers II and III, increasing their thickness. However, as the oSVZ grows in size, its output changes to production of astrocytes and oligodendrocytes, which in primates outnumber cerebral neurons by a factor of three. After the completion of neurogenesis around embryonic day (E) 90, when the cerebrum is still lissencephalic, the oSVZ enlarges and contains Pax6+/Hopx+ outer (basal) radial glial cells producing astrocytes and oligodendrocytes until after E125. Our data indicate that oSVZ gliogenesis, rather than neurogenesis, correlates with rapid enlargement of the cerebrum and development of convolutions, which occur concomitantly with the formation of cortical connections via the underlying white matter, in addition to neuronal growth, elaboration of dendrites, and amplification of neuropil in the cortex, which are primary factors in the formation of cerebral convolutions in primates.


Subject(s)
Cerebrum/growth & development , Cerebrum/metabolism , Lateral Ventricles/growth & development , Lateral Ventricles/metabolism , Neurogenesis/physiology , Neurons/metabolism , Animals , Astrocytes/metabolism , Cerebrum/cytology , Cerebrum/embryology , Embryo, Mammalian , Homeodomain Proteins/metabolism , Lateral Ventricles/cytology , Lateral Ventricles/embryology , Macaca , Oligodendroglia/cytology , Oligodendroglia/metabolism , PAX6 Transcription Factor/metabolism , Primates , Tumor Suppressor Proteins/metabolism
6.
Differentiation ; 119: 1-9, 2021.
Article in English | MEDLINE | ID: mdl-33848959

ABSTRACT

Taxol (paclitaxel), a chemotherapeutic agent for several cancers, can adversely affect the peripheral nervous system. Recently, its negative impact on cognitive function in cancer patients has become evident. In rodents, taxol impaired learning and memory, with other possible negative effects on the brain. In this study, we investigated the effects of taxol on cultured neural stem cells (NSCs) from the mouse neurogenic region, the subventricular zone (SVZ). Taxol significantly decreased both proliferation and neuronal differentiation of NSCs. Transient treatment with taxol for one day during a 4-day differentiation greatly decreased neurogenesis along with an abnormal cell cycle progression. Yet, taxol did not kill differentiated Tuj1+ neurons and those neurons had longer neurites than neurons under control conditions. For glial differentiation, taxol significantly reduced oligodendrogenesis as observed by immunostaining for Olig2 and O4. However, differentiation of astrocytes was not affected by taxol. In contrast, differentiated oligodendrocytes were extremely sensitive to taxol. Almost no Olig2-positive cells were observed after three days of treatment with taxol. Taxol has distinct effects on neurons and glial cells during their production through differentiation from NSCs as well as post-differentiation. Thus, we suggest that taxol might interfere with neurogenesis of NSCs possibly through a disturbance in the cell cycle and may eliminate differentiated oligodendrocytes.


Subject(s)
Cell Differentiation/genetics , Neural Stem Cells/cytology , Neurons/cytology , Oligodendrocyte Transcription Factor 2/genetics , Tubulin/genetics , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Gene Expression Regulation, Developmental/drug effects , Lateral Ventricles/drug effects , Lateral Ventricles/growth & development , Mice , Nerve Tissue Proteins/genetics , Neural Stem Cells/drug effects , Neurites/metabolism , Neurogenesis/drug effects , Neurogenesis/genetics , Neurons/metabolism , Paclitaxel/pharmacology
7.
Cereb Cortex ; 30(3): 1318-1329, 2020 03 14.
Article in English | MEDLINE | ID: mdl-31402374

ABSTRACT

The multiplex role of cadherin-based adhesion complexes during development of pallial excitatory neurons has been thoroughly characterized. In contrast, much less is known about their function during interneuron development. Here, we report that conditional removal of N-cadherin (Cdh2) from postmitotic neuroblasts of the subpallium results in a decreased number of Gad65-GFP-positive interneurons in the adult cortex. We also found that interneuron precursor migration into the pallium was already delayed at E14. Using immunohistochemistry and TUNEL assay in the embryonic subpallium, we excluded decreased mitosis and elevated cell death as possible sources of this defect. Moreover, by analyzing the interneuron composition of the adult somatosensory cortex, we uncovered an unexpected interneuron-type-specific defect caused by Cdh2-loss. This was not due to a fate-switch between interneuron populations or altered target selection during migration. Instead, potentially due to the migration delay, part of the precursors failed to enter the cortical plate and consequently got eliminated at early postnatal stages. In summary, our results indicate that Cdh2-mediated interactions are necessary for migration and survival during the postmitotic phase of interneuron development. Furthermore, we also propose that unlike in pallial glutamatergic cells, Cdh2 is not universal, rather a cell type-specific factor during this process.


Subject(s)
Cadherins/physiology , Cell Movement , Interneurons/physiology , Neural Stem Cells/physiology , Somatosensory Cortex/growth & development , Animals , Lateral Ventricles/growth & development , Mice , Mice, Transgenic , Mitosis
8.
Cereb Cortex ; 30(3): 1382-1392, 2020 03 14.
Article in English | MEDLINE | ID: mdl-31504276

ABSTRACT

Brahma-related gene 1 (Brg1) is one of the two mutually exclusive catalytic subunits of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex. Several roles of Brg1 have been described including acting as a tumor suppressor but also functioning in neural stem cell (NSC) maintenance, neural crest development, or differentiation of oligodendrocytes and Schwann cells. Here, we generated human glial fibrillary acidic protein (hGFAP)-cre::Brg1fl/fl mice to analyze the function of Brg1 in multipotential NSCs during late stages of neural development. hGFAP-cre::Brg1fl/fl mice died approximately 2 weeks after birth. Macroscopic examination revealed a severe hydrocephalus and a decreased brain weight caused by the loss of Brg1. The cerebellum of hGFAP-cre::Brg1fl/fl mice displayed disorganized cortical layers as well as a massive hypoplasia due to a dramatically reduced number of granule neurons. The cerebrum presented with less proliferative and more apoptotic precursor cells in the subventricular zone (SVZ). Furthermore, the cerebral cortex stood out with significantly thinned upper layers and with impressive dendrite pathology. Finally, the hippocampus was severely underdeveloped with only a sparse number of detectable neurons. We conclude that NSCs depend on Brg1 to give rise to major essential brain structures including the cerebellum, the cerebral cortex, and the hippocampus.


Subject(s)
Cerebellum/growth & development , Cerebral Cortex/growth & development , DNA Helicases/physiology , Neural Stem Cells/physiology , Nuclear Proteins/physiology , Transcription Factors/physiology , Animals , Cerebellum/pathology , Cerebral Cortex/pathology , Female , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Hippocampus/growth & development , Hippocampus/physiology , Humans , Lateral Ventricles/growth & development , Lateral Ventricles/pathology , Male , Mice, Transgenic , Neural Stem Cells/pathology , Neurons/pathology , Neurons/physiology
9.
Cereb Cortex ; 30(7): 4092-4109, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32108222

ABSTRACT

Even after birth, neuronal production continues in the ventricular-subventricular zone (V-SVZ) and hippocampus in many mammals. The immature new neurons ("neuroblasts") migrate and then mature at their final destination. In humans, neuroblast production and migration toward the neocortex and the olfactory bulb (OB) occur actively only for a few months after birth and then sharply decline with age. However, the precise spatiotemporal profiles and fates of postnatally born neurons remain unclear due to methodological limitations. We previously found that common marmosets, small nonhuman primates, share many features of V-SVZ organization with humans. Here, using marmosets injected with thymidine analogue(s) during various postnatal periods, we demonstrated spatiotemporal changes in neurogenesis during development. V-SVZ progenitor proliferation and neuroblast migration toward the OB and neocortex sharply decreased by 4 months, most strikingly in a V-SVZ subregion from which neuroblasts migrated toward the neocortex. Postnatally born neurons matured within a few months in the OB and hippocampus but remained immature until 6 months in the neocortex. While neurogenic activity was sustained for a month after birth, the distribution and/or differentiation diversity was more restricted in 1-month-born cells than in the neonatal-born population. These findings shed light on distinctive features of postnatal neurogenesis in primates.


Subject(s)
Cell Proliferation , Hippocampus/growth & development , Lateral Ventricles/growth & development , Neocortex/growth & development , Neural Stem Cells/cytology , Neurogenesis , Olfactory Bulb/growth & development , Animals , Brain/cytology , Brain/growth & development , Callithrix , Cell Movement , Cerebral Ventricles/cytology , Cerebral Ventricles/growth & development , Hippocampus/cytology , Lateral Ventricles/cytology , Neocortex/cytology , Olfactory Bulb/cytology , Spatio-Temporal Analysis
10.
Biochem Biophys Res Commun ; 498(4): 824-829, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29530528

ABSTRACT

In the mouse olfactory bulb (OB), interneurons such as granule cells and periglomerular cells are continuously replaced by adult-born neurons, which are generated in the subventricular zone (SVZ) of the brain. We have now investigated the role of commensal bacteria in regulation of such neuronal cell turnover in the adult mouse brain. Administration of mixture of antibiotics to specific pathogen-free (SPF) mice markedly attenuated the incorporation of bromodeoxyuridine (BrdU) into the SVZ cells. The treatment with antibiotics also reduced newly generated BrdU-positive neurons in the mouse OB. In addition, the incorporation of BrdU into the SVZ cells of germ-free (GF) mice was markedly reduced compared to that apparent for SPF mice. In contrast, the reduced incorporation of BrdU into the SVZ cells of GF mice was recovered by their co-housing with SPF mice, suggesting that commensal bacteria promote the incorporation of BrdU into the SVZ cells. Finally, we found that administration of ampicillin markedly attenuated the incorporation of BrdU into the SVZ cells of SPF mice. Our results thus suggest that ampicillin-sensitive commensal bacteria regulate the neurogenesis in the SVZ of adult mouse brain.


Subject(s)
Bacterial Physiological Phenomena , Lateral Ventricles/growth & development , Lateral Ventricles/microbiology , Neurogenesis , Olfactory Bulb/growth & development , Olfactory Bulb/microbiology , Symbiosis , Ampicillin/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/metabolism , Bacterial Physiological Phenomena/drug effects , Interneurons/cytology , Interneurons/microbiology , Male , Mice , Mice, Inbred C57BL , Neurons/cytology , Neurons/microbiology
11.
Development ; 142(12): 2109-20, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26081572

ABSTRACT

Neurogenesis does not stop abruptly at birth, but persists in specific brain regions throughout life. The neural stem cells (NSCs) located in the largest germinal region of the forebrain, the ventricular-subventricular zone (V-SVZ), replenish olfactory neurons throughout life. However, V-SVZ NSCs are heterogeneous: they have different embryonic origins and give rise to distinct neuronal subtypes depending on their location. In this Review, we discuss how this spatial heterogeneity arises, how it affects NSC biology, and why its consideration in future studies is crucial for understanding general principles guiding NSC self-renewal, differentiation and specification.


Subject(s)
Body Patterning/physiology , Lateral Ventricles/growth & development , Neural Stem Cells/cytology , Neurogenesis/physiology , Prosencephalon/growth & development , Humans , Prosencephalon/cytology
12.
Stem Cells ; 35(7): 1860-1865, 2017 07.
Article in English | MEDLINE | ID: mdl-28406573

ABSTRACT

Human neural progenitor cell (NPC) migration within the subventricular zone (SVZ) of the lateral ganglionic eminence is an active process throughout early brain development. The migration of human NPCs from the SVZ to the olfactory bulb during fetal stages resembles what occurs in adult rodents. As the human brain develops during infancy, this migratory stream is drastically reduced in cell number and becomes barely evident in adults. The mechanisms regulating human NPC migration are unknown. The Slit-Robo signaling pathway has been defined as a chemorepulsive cue involved in axon guidance and neuroblast migration in rodents. Slit and Robo proteins expressed in the rodent brain help guide neuroblast migration from the SVZ through the rostral migratory stream to the olfactory bulb. Here, we present the first study on the role that Slit and Robo proteins play in human-derived fetal neural progenitor cell migration (hfNPC). We describe that Robo1 and Robo2 isoforms are expressed in the human fetal SVZ. Furthermore, we demonstrate that Slit2 is able to induce a chemorepellent effect on the migration of hfNPCs derived from the human fetal SVZ. In addition, when Robo1 expression is inhibited, hfNPCs are unable to migrate to the olfactory bulb of mice when injected in the anterior SVZ. Our findings indicate that the migration of human NPCs from the SVZ is partially regulated by the Slit-Robo axis. This pathway could be regulated to direct the migration of NPCs in human endogenous neural cell therapy. Stem Cells 2017;35:1860-1865.


Subject(s)
Gene Expression Regulation, Developmental , Intercellular Signaling Peptides and Proteins/genetics , Lateral Ventricles/metabolism , Nerve Tissue Proteins/genetics , Neural Stem Cells/metabolism , Olfactory Bulb/metabolism , Receptors, Immunologic/genetics , Animals , Cell Movement , Fetus , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Lateral Ventricles/cytology , Lateral Ventricles/growth & development , Median Eminence/cytology , Median Eminence/growth & development , Median Eminence/metabolism , Mice , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/transplantation , Neurogenesis/genetics , Neurons/cytology , Neurons/metabolism , Olfactory Bulb/cytology , Olfactory Bulb/growth & development , Primary Cell Culture , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Signal Transduction , Roundabout Proteins
13.
Stem Cells ; 35(2): 458-472, 2017 02.
Article in English | MEDLINE | ID: mdl-27538853

ABSTRACT

The phosphodiesterase 7 (PDE7) enzyme is one of the enzymes responsible for controlling intracellular levels of cyclic adenosine 3',5'-monophosphate in the immune and central nervous system. We have previously shown that inhibitors of this enzyme are potent neuroprotective and anti-inflammatory agents. In addition, we also demonstrated that PDE7 inhibition induces endogenous neuroregenerative processes toward a dopaminergic phenotype. Here, we show that PDE7 inhibition controls stem cell expansion in the subgranular zone of the dentate gyrus of the hippocampus (SGZ) and the subventricular zone (SVZ) in the adult rat brain. Neurospheres cultures obtained from SGZ and SVZ of adult rats treated with PDE7 inhibitors presented an increased proliferation and neuronal differentiation compared to control cultures. PDE7 inhibitors treatment of neurospheres cultures also resulted in an increase of the levels of phosphorylated cAMP response element binding protein, suggesting that their effects were indeed mediated through the activation of the cAMP/PKA signaling pathway. In addition, adult rats orally treated with S14, a specific inhibitor of PDE7, presented elevated numbers of proliferating progenitor cells, and migrating precursors in the SGZ and the SVZ. Moreover, long-term treatment with this PDE7 inhibitor shows a significant increase in newly generated neurons in the olfactory bulb and the hippocampus. Also a better performance in memory tests was observed in S14 treated rats, suggesting a functional relevance for the S14-induced increase in SGZ neurogenesis. Taken together, our results indicate for the first time that inhibition of PDE7 directly regulates proliferation, migration and differentiation of neural stem cells, improving spatial learning and memory tasks. Stem Cells 2017;35:458-472.


Subject(s)
Aging/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 7/antagonists & inhibitors , Hippocampus/enzymology , Hippocampus/growth & development , Lateral Ventricles/enzymology , Lateral Ventricles/growth & development , Neurogenesis , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 7/metabolism , Dentate Gyrus/cytology , Hippocampus/drug effects , Lateral Ventricles/drug effects , Male , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurogenesis/drug effects , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Phenotype , Phosphodiesterase Inhibitors/pharmacology , Rats, Wistar , Spheroids, Cellular/cytology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism
14.
Eur J Neurosci ; 46(2): 1768-1778, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28612959

ABSTRACT

Neurogenesis in the subependymal zone (SEZ) declines across the human lifespan, and reduced local neurotrophic support is speculated to be a contributing factor. While tyrosine receptor kinase B (TrkB) signalling is critical for neuronal differentiation, maturation and survival, little is known about subependymal TrkB expression changes during postnatal human life. In this study, we used quantitative PCR and in situ hybridisation to determine expression of the cell proliferation marker Ki67, the immature neuron marker doublecortin (DCX) and both full-length (TrkB-TK+) and truncated TrkB receptors (TrkB-TK-) in the human SEZ from infancy to middle age (n = 26-35, 41 days to 43 years). We further measured TrkB-TK+ and TrkB-TK- mRNAs in the SEZ from young adulthood into ageing (n = 50, 21-103 years), and related their transcript levels to neurogenic and glial cell markers. Ki67, DCX and both TrkB splice variant mRNAs significantly decreased in the SEZ from infancy to middle age. In contrast, TrkB-TK- mRNA increased in the SEZ from young adulthood into ageing, whereas TrkB-TK+ mRNA remained stable. TrkB-TK- mRNA positively correlated with expression of neural precursor (glial fibrillary acidic protein delta and achaete-scute homolog 1) and glial cell markers (vimentin and pan glial fibrillary acidic protein). TrkB-TK+ mRNA positively correlated with expression of neuronal cell markers (DCX and tubulin beta 3 class III). Our results indicate that cells residing in the human SEZ maintain their responsiveness to neurotrophins; however, this capability may change across postnatal life. We suggest that TrkB splice variants may differentially influence neuronal and glial differentiation in the human SEZ.


Subject(s)
Aging/metabolism , Lateral Ventricles/growth & development , Lateral Ventricles/metabolism , Membrane Glycoproteins/metabolism , Neurogenesis/physiology , Receptor, trkB/metabolism , Stem Cell Niche/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Caudate Nucleus/growth & development , Caudate Nucleus/metabolism , Cohort Studies , Doublecortin Domain Proteins , Doublecortin Protein , Female , Humans , Infant , Ki-67 Antigen/metabolism , Male , Microtubule-Associated Proteins/metabolism , Middle Aged , Neuropeptides/metabolism , Protein Isoforms , RNA, Messenger/metabolism , Young Adult
15.
Sheng Li Xue Bao ; 69(4): 485-497, 2017 Aug 25.
Article in Zh | MEDLINE | ID: mdl-28825108

ABSTRACT

During the evolution from primates to humans, the size of cerebral cortex is increased by forming more gyri and sulci, which is believed to be highly associated with cognitive abilities and the basis of higher brain functions in humans. Accumulating lines of evidence have shown that the cortical size is regulated both by protein-coding genes and non-coding RNAs. In particular, the recently identified outer radial glial cells (oRGs) distributed in the outer subventricular zone (oSVZ) of gyrencephalic brains, have been considered to be important for cortical expansion and folding. This review summarizes recent progresses in the understanding of cortex expansion and discusses the potential molecular and cellular mechanisms of cortical folding.


Subject(s)
Biological Evolution , Cerebral Cortex/growth & development , Animals , Humans , Lateral Ventricles/growth & development , Neuroglia
16.
J Neurosci ; 35(17): 6836-48, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25926459

ABSTRACT

The ERK/MAPK pathway is an important developmental signaling pathway. Mutations in upstream elements of this pathway result in neuro-cardio-facial cutaneous (NCFC) syndromes, which are typified by impaired neurocognitive abilities that are reliant upon hippocampal function. The role of ERK signaling during hippocampal development has not been examined and may provide critical insight into the cause of hippocampal dysfunction in NCFC syndromes. In this study, we have generated ERK1 and conditional ERK2 compound knock-out mice to determine the role of ERK signaling during development of the hippocampal dentate gyrus. We found that loss of both ERK1 and ERK2 resulted in 60% fewer granule cells and near complete absence of neural progenitor pools in the postnatal dentate gyrus. Loss of ERK1/2 impaired maintenance of neural progenitors as they migrate from the dentate ventricular zone to the dentate gyrus proper, resulting in premature depletion of neural progenitor cells beginning at E16.5, which prevented generation of granule cells later in development. Finally, loss of ERK2 alone does not impair development of the dentate gyrus as animals expressing only ERK1 developed a normal hippocampus. These findings establish that ERK signaling regulates maintenance of progenitor cells required for development of the dentate gyrus.


Subject(s)
Dentate Gyrus , Feedback, Physiological/physiology , Gene Expression Regulation, Developmental/physiology , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinase 1/metabolism , Stem Cells/physiology , Animals , Animals, Newborn , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Dentate Gyrus/embryology , Dentate Gyrus/enzymology , Dentate Gyrus/growth & development , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental/genetics , Lateral Ventricles/cytology , Lateral Ventricles/embryology , Lateral Ventricles/growth & development , MAP Kinase Signaling System/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitogen-Activated Protein Kinase 1/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurogenesis/genetics , Neurons/metabolism , Proto-Oncogene Proteins c-raf/genetics , Proto-Oncogene Proteins c-raf/metabolism
17.
Mol Cell Neurosci ; 67: 75-83, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26051800

ABSTRACT

Transforming growth factor beta 1 (TGF-beta1), an anti-inflammatory cytokine, has been shown to have pro-neurogenic effects on adult Neural Stem Cells (aNSC) from the dentate gyrus and in vivo models. Here, we expanded the observation of the pro-neurogenic effect of TGF-beta1 on aNSC from the subventricular zone (SVZ) of adult rats and performed a functional genomic analysis to identify candidate genes to mediate its effect. 10 candidate genes were identified by microarray analysis and further validated by qRT-PCR. Of these, Fibulin-2 was increased 477-fold and its inhibition by siRNA blocks TGF-beta1 pro-neurogenic effect. Curiously, Fibulin-2 was not expressed by aNSC but by a GFAP-positive population in the culture, suggesting an indirect mechanism of action. TGF-beta1 also induced Fibulin-2 in the SVZ in vivo. Interestingly, 5 out of the 10 candidate genes identified are known to interact with integrins, paving the way for exploring their functional role in adult neurogenesis. In conclusion, we have identified 10 genes with putative pro-neurogenic effects, 5 of them related to integrins and provided proof that Fibulin-2 is a major mediator of the pro-neurogenic effects of TGF-beta1. These data should contribute to further exploring the molecular mechanism of adult neurogenesis of the genes identified and the involvement of the integrin pathway on adult neurogenesis.


Subject(s)
Adult Stem Cells/metabolism , Calcium-Binding Proteins/metabolism , Extracellular Matrix Proteins/metabolism , Neural Stem Cells/metabolism , Neurogenesis , Transforming Growth Factor beta1/pharmacology , Adult Stem Cells/cytology , Adult Stem Cells/drug effects , Animals , Astrocytes/metabolism , Calcium-Binding Proteins/genetics , Cells, Cultured , Extracellular Matrix Proteins/genetics , Integrins/metabolism , Lateral Ventricles/cytology , Lateral Ventricles/growth & development , Lateral Ventricles/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Rats , Rats, Wistar , Transforming Growth Factor beta1/metabolism
18.
J Neurosci ; 34(41): 13801-10, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25297106

ABSTRACT

The circuitry of the olfactory bulb contains a precise anatomical map that links isofunctional regions within each olfactory bulb. This intrabulbar map forms perinatally and undergoes activity-dependent refinement during the first postnatal weeks. Although this map retains its plasticity throughout adulthood, its organization is remarkably stable despite the addition of millions of new neurons to this circuit. Here we show that the continuous supply of new neuroblasts from the subventricular zone is necessary for both the restoration and maintenance of this precise central circuit. Using pharmacogenetic methods to conditionally ablate adult neurogenesis in transgenic mice, we find that the influx of neuroblasts is required for recovery of intrabulbar map precision after disruption due to sensory block. We further demonstrate that eliminating adult-born interneurons in naive animals leads to an expansion of tufted cell axons that is identical to the changes caused by sensory block, thus revealing an essential role for new neurons in circuit maintenance under baseline conditions. These findings show, for the first time, that inhibiting adult neurogenesis alters the circuitry of projection neurons in brain regions that receive new interneurons and points to a critical role for adult-born neurons in stabilizing a brain circuit that exhibits high levels of plasticity.


Subject(s)
Nerve Net/physiology , Neurogenesis/physiology , Animals , Axons/physiology , Cell Proliferation/physiology , Glial Fibrillary Acidic Protein , Lateral Ventricles/growth & development , Lateral Ventricles/physiology , Male , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Nestin/genetics , Nestin/physiology , Neural Stem Cells/physiology , Olfactory Bulb/growth & development , Olfactory Bulb/physiology
19.
J Neurosci ; 34(41): 13790-800, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25297105

ABSTRACT

The maintenance of a neural stem cell (NSC) population in mammalian postnatal and adult life is crucial for continuous neurogenesis and neural repair. However, the molecular mechanism of how NSC populations are maintained remains unclear. Gangliosides are important cellular membrane components in the nervous system. We previously showed that ganglioside GD3 plays a crucial role in the maintenance of the self-renewal capacity of NSCs in vitro. Here, we investigated its role in postnatal and adult neurogenesis in GD3-synthase knock-out (GD3S-KO) and wild-type mice. GD3S-KO mice with deficiency in GD3 and the downstream b-series gangliosides showed a progressive loss of NSCs both at the SVZ and the DG of the hippocampus. The decrease of NSC populations in the GD3S-KO mice resulted in impaired neurogenesis at the granular cell layer of the olfactory bulb and the DG in the adult. In addition, defects of the self-renewal capacity and radial glia-like stem cell outgrowth of postnatal GD3S-KO NSCs could be rescued by restoration of GD3 expression in these cells. Our study demonstrates that the b-series gangliosides, especially GD3, play a crucial role in the long-term maintenance NSC populations in postnatal mouse brain. Moreover, the impaired neurogenesis in the adult GD3S-KO mice led to depression-like behaviors. Thus, our results provide convincing evidence linking b-series gangliosides deficiency and neurogenesis defects to behavioral deficits, and support a crucial role of gangliosides in the long-term maintenance of NSCs in adult mice.


Subject(s)
Brain/growth & development , Gangliosides/physiology , Neural Stem Cells/physiology , Neurogenesis/physiology , Animals , Behavior, Animal/physiology , Brain/cytology , Depression/genetics , Depression/psychology , Female , Ganglia, Spinal/cytology , Ganglia, Spinal/growth & development , Ganglia, Spinal/physiology , Gangliosides/genetics , Lateral Ventricles/cytology , Lateral Ventricles/growth & development , Lateral Ventricles/physiology , Male , Mice , Mice, Knockout
20.
Glycobiology ; 25(8): 869-80, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25922361

ABSTRACT

Protein glycosylation has received much attention due to its multiple functional roles in physiological and pathophysiological conditions. Paucimannose is a common mannosidic N-glycoepitope in invertebrates and plants but has only recently been detected in vertebrates. Herein, we demonstrate the presence of paucimannosidic epitopes specifically in early postnatal neural progenitor cells (NPCs) between postnatal day 0 and 7 in mouse brain suggesting a possible role in the development of NPCs. Paucimannosidic epitopes were also detected in human glioblastoma cells and human macrophages by immunofluorescence and mass spectrometric analysis. Its expression was significantly increased after proliferation arrest indicating its importance in the regulation of cell proliferation. This hypothesis was further strengthened by reduced cell proliferation after the application of paucimannose-reactive Mannitou antibody into culture medium of growing cells. Most interestingly, this reduction in cell proliferation upon the administration of Mannitou antibody could also be observed in vivo in the subventricular zone of early postnatal mouse brain. Taken together, these observations demonstrate that paucimannosylation directly influences cell proliferation in various vertebrate cell types including early postnatal neural stem cells.


Subject(s)
Epitopes/metabolism , Lateral Ventricles/metabolism , Mannose/metabolism , Neural Stem Cells/metabolism , Animals , Animals, Newborn , Antibodies/pharmacology , Cell Differentiation , Cell Line , Cell Line, Tumor , Cell Proliferation , Epitopes/chemistry , Glioblastoma/metabolism , Glioblastoma/pathology , Glycosylation , Humans , Lateral Ventricles/cytology , Lateral Ventricles/growth & development , Macrophages/cytology , Macrophages/metabolism , Mannose/analogs & derivatives , Mannose/antagonists & inhibitors , Mice , Neural Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL