Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
Add more filters

Country/Region as subject
Publication year range
1.
N Engl J Med ; 387(4): 321-331, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35939578

ABSTRACT

BACKGROUND: Blood dendritic cell antigen 2 (BDCA2) is a receptor that is exclusively expressed on plasmacytoid dendritic cells, which are implicated in the pathogenesis of lupus erythematosus. Whether treatment with litifilimab, a humanized monoclonal antibody against BDCA2, would be efficacious in reducing disease activity in patients with cutaneous lupus erythematosus has not been extensively studied. METHODS: In this phase 2 trial, we randomly assigned adults with histologically confirmed cutaneous lupus erythematosus with or without systemic manifestations in a 1:1:1:1 ratio to receive subcutaneous litifilimab (at a dose of 50, 150, or 450 mg) or placebo at weeks 0, 2, 4, 8, and 12. We used a dose-response model to assess whether there was a response across the four groups on the basis of the primary end point, which was the percent change from baseline to 16 weeks in the Cutaneous Lupus Erythematosus Disease Area and Severity Index-Activity score (CLASI-A; scores range from 0 to 70, with higher scores indicating more widespread or severe skin involvement). Safety was also assessed. RESULTS: A total of 132 participants were enrolled; 26 were assigned to the 50-mg litifilimab group, 25 to the 150-mg litifilimab group, 48 to the 450-mg litifilimab group, and 33 to the placebo group. Mean CLASI-A scores for the groups at baseline were 15.2, 18.4, 16.5, and 16.5, respectively. The difference from placebo in the change from baseline in CLASI-A score at week 16 was -24.3 percentage points (95% confidence interval [CI] -43.7 to -4.9) in the 50-mg litifilimab group, -33.4 percentage points (95% CI, -52.7 to -14.1) in the 150-mg group, and -28.0 percentage points (95% CI, -44.6 to -11.4) in the 450-mg group. The least squares mean changes were used in the primary analysis of a best-fitting dose-response model across the three drug-dose levels and placebo, which showed a significant effect. Most of the secondary end points did not support the results of the primary analysis. Litifilimab was associated with three cases each of hypersensitivity and oral herpes infection and one case of herpes zoster infection. One case of herpes zoster meningitis occurred 4 months after the participant received the last dose of litifilimab. CONCLUSIONS: In a phase 2 trial involving participants with cutaneous lupus erythematosus, treatment with litifilimab was superior to placebo with regard to a measure of skin disease activity over a period of 16 weeks. Larger and longer trials are needed to determine the effect and safety of litifilimab for the treatment of cutaneous lupus erythematosus. (Funded by Biogen; LILAC ClinicalTrials.gov number, NCT02847598.).


Subject(s)
Antibodies, Monoclonal, Humanized , Lectins, C-Type , Lupus Erythematosus, Cutaneous , Membrane Glycoproteins , Receptors, Immunologic , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dose-Response Relationship, Drug , Double-Blind Method , Herpes Zoster/etiology , Humans , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/immunology , Lupus Erythematosus, Cutaneous/drug therapy , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/immunology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/immunology , Severity of Illness Index , Treatment Outcome
2.
Small ; 20(19): e2307045, 2024 May.
Article in English | MEDLINE | ID: mdl-38100142

ABSTRACT

Since WHO has declared the COVID-19 outbreak a global pandemic, nearly seven million deaths have been reported. This efficient spread of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is facilitated by the ability of the spike glycoprotein to bind multiple cell membrane receptors. Although ACE2 is identified as the main receptor for SARS-CoV-2, other receptors could play a role in viral entry. Among others, C-type lectins such as DC-SIGN are identified as efficient trans-receptor for SARS-CoV-2 infection, so the use of glycomimetics to inhibit the infection through the DC-SIGN blockade is an encouraging approach. In this regard, multivalent nanostructures based on glycosylated [60]fullerenes linked to a central porphyrin scaffold have been designed and tested against DC-SIGN-mediated SARS-CoV-2 infection. First results show an outstanding inhibition of the trans-infection up to 90%. In addition, a deeper understanding of nanostructure-receptor binding is achieved through microscopy techniques, high-resolution NMR experiments, Quartz Crystal Microbalance experiments, and molecular dynamic simulations.


Subject(s)
Cell Adhesion Molecules , Fullerenes , Lectins, C-Type , Porphyrins , Receptors, Cell Surface , SARS-CoV-2 , Humans , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/antagonists & inhibitors , COVID-19/virology , COVID-19 Drug Treatment , Fullerenes/chemistry , Fullerenes/pharmacology , Lectins, C-Type/metabolism , Lectins, C-Type/antagonists & inhibitors , Molecular Dynamics Simulation , Porphyrins/chemistry , Porphyrins/pharmacology , Protein Binding , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry
3.
Cell Commun Signal ; 22(1): 337, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898461

ABSTRACT

Killer cell lectin-like receptor G1 (KLRG1) is an immune checkpoint receptor expressed predominantly in NK and T-cell subsets that downregulates the activation and proliferation of immune cells and participates in cell-mediated immune responses. Accumulating evidence has demonstrated the importance of KLRG1 as a noteworthy disease marker and therapeutic target that can influence disease onset, progression, and prognosis. Blocking KLRG1 has been shown to effectively mitigate the effects of downregulation in various mouse tumor models, including solid tumors and hematologic malignancies. However, KLRG1 inhibitors have not yet been approved for human use, and the understanding of KLRG1 expression and its mechanism of action in various diseases remains incomplete. In this review, we explore alterations in the distribution, structure, and signaling pathways of KLRG1 in immune cells and summarize its expression patterns and roles in the development and progression of autoimmune diseases, infectious diseases, and cancers. Additionally, we discuss the potential applications of KLRG1 as a tool for tumor immunotherapy.


Subject(s)
Lectins, C-Type , Neoplasms , Receptors, Immunologic , Humans , Receptors, Immunologic/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/antagonists & inhibitors , Animals , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/immunology , Biomarkers/metabolism , Signal Transduction , Autoimmune Diseases/metabolism , Autoimmune Diseases/immunology , Autoimmune Diseases/drug therapy , Immunotherapy
4.
Biochem Soc Trans ; 49(1): 441-453, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33616615

ABSTRACT

Glycosylation represents one of the most abundant posttranslational modification of proteins. Glycosylation products are diverse and are regulated by the cooperative action of various glycosyltransferases, glycosidases, substrates thereof: nucleoside sugars and their transporters, and chaperons. In this article, we focus on a glycosyltransferase, α1,6-fucosyltransferase (Fut8) and its product, the core fucose structure on N-glycans, and summarize the potential protective functions of this structure against emphysema and chronic obstructive pulmonary disease (COPD). Studies of FUT8 and its enzymatic product, core fucose, are becoming an emerging area of interest in various fields of research including inflammation, cancer and therapeutics. This article discusses what we can learn from studies of Fut8 and core fucose by using knockout mice or in vitro studies that were conducted by our group as well as other groups. We also include a discussion of the potential protective functions of the keratan sulfate (KS) disaccharide, namely L4, against emphysema and COPD as a glycomimetic. Glycomimetics using glycan analogs is one of the more promising therapeutics that compensate for the usual therapeutic strategy that involves targeting the genome and the proteome. These typical glycans using KS derivatives as glycomimetics, will likely become a clue to the development of novel and effective therapeutic strategies.


Subject(s)
Biomimetic Materials/therapeutic use , Keratan Sulfate/chemistry , Pulmonary Disease, Chronic Obstructive/drug therapy , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Surface/genetics , Antigens, Surface/metabolism , Antigens, Surface/physiology , Biomimetic Materials/chemistry , Fucose/metabolism , Fucosyltransferases/physiology , Glycosylation , Humans , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Lectins, C-Type/physiology , Mannose-Binding Lectins/antagonists & inhibitors , Mannose-Binding Lectins/genetics , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/physiology , Mice , Mice, Knockout , Molecular Targeted Therapy/methods , Polysaccharides/chemistry , Polysaccharides/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism
5.
Bioorg Chem ; 107: 104566, 2021 02.
Article in English | MEDLINE | ID: mdl-33387733

ABSTRACT

The design and synthesis of efficient ligands for DC-SIGN is a topic of high interest, because this C-type lectin has been implicated in the early stages of many infection processes. DC-SIGN membrane-protein presents four carbohydrate-binding domains (CRD) that specifically recognize mannose and fucose. Therefore, antagonists of minimal disaccharide epitope Manα(1,2)Man, represent potentially interesting antibacterial and antiviral agents. In the recent past, we were able to develop efficient antagonists, mimics of the natural moiety, characterized by the presence of a real d-carbamannose unit which confers greater stability to enzymatic breakdown than the corresponding natural disaccharide ligand. Herein, we present the challenging stereoselective synthesis of four new amino or azide glycomimetic DC-SIGN antagonists with attractive orthogonal lipophilic substituents in C(3), C(4) or C(6) positions of the real carba unit, which were expected to establish crucial interactions with lipophilic areas of DC-SIGN CRD. The activity of the new ligands was evaluated by SPR binding inhibition assays. The interesting results obtained, allow to acquire important information about the influence of the lipophilic substituents present in specific positions of the carba scaffold. Furthermore, C(6) benzyl C(4) tosylamide pseudodisaccharide displayed a good affinity for DC-SIGN with a more favorable IC50 value than those of the previously described real carba-analogues. This study provides valuable knowledge for the implementation of further structural modifications towards improved inhibitors.


Subject(s)
Cell Adhesion Molecules/antagonists & inhibitors , Lectins, C-Type/antagonists & inhibitors , Ligands , Receptors, Cell Surface/antagonists & inhibitors , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Bacteria/metabolism , Cell Adhesion Molecules/metabolism , Disaccharides/chemical synthesis , Disaccharides/chemistry , Disaccharides/metabolism , Humans , Lectins, C-Type/metabolism , Protein Binding , Receptors, Cell Surface/metabolism , Stereoisomerism , Surface Plasmon Resonance
6.
Biol Pharm Bull ; 44(5): 714-723, 2021.
Article in English | MEDLINE | ID: mdl-33952827

ABSTRACT

Ischemia-reperfusion injury (IRI) is the major cause of acute kidney injury (AKI). The previous studies demonstrated that Oridonin can protect kidney against IRI-induced AKI, but the underlying molecular mechanism is unclear. In this study, it showed that Oridonin significantly improved kidney damage, and inhibited the expression of interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α and MCP-1, as well as macrophage marker F4/80 in kidney and the secretion of inflammatory cytokins in serum of AKI mice in vivo. In addition, Oridonin also effectively reduced the expression and secretion of lipopolysaccharide (LPS)-induced inflammatory factors in macrophage cell line RAW264.7 in vitro. Notably, Oridonin strongly downregulated Mincle and AKT/nuclear factor-kappaB (NF-κB) signaling both in vivo and in vitro, and the results of cellular recovery experiments of overexpression of Mincle in macrophage suggested that Oridonin suppressed inflammatory response of macrophage through inhibiting Mincle, which may be the underlying mechanism of Oridonin improving injury in kidney of AKI mice. In summary, the above results indicated that Oridonin can protect kidney from IRI-induced inflammation and injury by inhibiting the expression of Mincle in macrophage.


Subject(s)
Acute Kidney Injury/prevention & control , Diterpenes, Kaurane/pharmacology , Macrophages/drug effects , Reperfusion Injury/drug therapy , Acute Kidney Injury/immunology , Acute Kidney Injury/pathology , Animals , Disease Models, Animal , Diterpenes, Kaurane/therapeutic use , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Kidney/blood supply , Kidney/drug effects , Kidney/immunology , Kidney/pathology , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/metabolism , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/immunology , Macrophages/immunology , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Mice , RAW 264.7 Cells , Reperfusion Injury/complications , Reperfusion Injury/immunology
7.
Platelets ; 32(6): 744-752, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-33406951

ABSTRACT

GPVI and CLEC-2 have emerged as promising targets for long-term prevention of both arterial thrombosis and thrombo-inflammation with a decreased bleeding risk relative to current drugs. However, while there are potent blocking antibodies of both receptors, their protein nature comes with decreased bioavailability, making formulation for oral medication challenging. Small molecules are able to overcome these limitations, but there are many challenges in developing antagonists of nanomolar potency, which is necessary when considering the structural features that underlie the interaction of CLEC-2 and GPVI with their protein ligands. In this review, we describe current small-molecule inhibitors for both receptors and strategies to overcome such limitations, including considerations when it comes to in silico drug design and the importance of complex compound library selection.


Subject(s)
Blood Platelets/metabolism , High-Throughput Screening Assays/methods , Lectins, C-Type/antagonists & inhibitors , Platelet Activation/genetics , Platelet Membrane Glycoproteins/antagonists & inhibitors , Animals , Humans , Models, Molecular
8.
Glycobiology ; 30(5): 301-311, 2020 04 20.
Article in English | MEDLINE | ID: mdl-31742327

ABSTRACT

The sulfated polysaccharide fucoidan displays excellent anticancer properties with low toxicity in many kinds of cancers. However, its detailed pharmacological effect and mechanism of action in gastric carcinoma remains unclear. In this study, we found that fucoidan could suppress gastric cancer (GC) cell growth, as well as cell migration and invasion. A cytokine expression screen demonstrated that transforming growth factor beta 1 (TGF-ß1) secretion was decreased in fucoidan-treated cells. Fucoidan has been reported to be a platelet agonist for the C-type lectin-like receptor 2 (CLEC-2), and our previous research found that upregulation of CLEC-2 inhibited GC progression. Here, we confirmed that fucoidan, combined with CLEC-2, significantly increased CLEC-2 expression in GC cells via the transcription factor caudal type homeobox transcription factor 2, an important regulator of gut homeostasis. In addition, the inhibitory effect of fucoidan on the GC cell malignant phenotype and TGF-ß1 secretion could be restored by knocking down CLEC-2. Thus, our data suggest that fucoidan targets CLEC-2 to exert antitumorigenesis and antimetastatic activity, suggesting that fucoidan is a promising treatment for gastric carcinoma.


Subject(s)
Antineoplastic Agents/pharmacology , Lectins, C-Type/antagonists & inhibitors , Membrane Glycoproteins/antagonists & inhibitors , Polysaccharides/pharmacology , Stomach Neoplasms/drug therapy , Transforming Growth Factor beta1/antagonists & inhibitors , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Phenotype , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Transforming Growth Factor beta1/biosynthesis , Tumor Cells, Cultured
9.
Prostate ; 80(10): 742-752, 2020 07.
Article in English | MEDLINE | ID: mdl-32449811

ABSTRACT

BACKGROUND: Docetaxel is an effective first-line chemotherapy agent used in the treatment of castration-resistant prostate cancer (CRPC) patients. However, most times chemotherapy with docetaxel eventually fails due to the development of docetaxel resistance. Natural killer (NK) cells are the first line of defense against cancer and infections. NK cell function is determined by a delicate balance between signals received via activating and inhibitory receptors. The aim of this study is to explore whether the potential docetaxel-resistant mechanism is associated with impaired NK cell cytotoxicity toward CRPC cells. METHODS: By performing MTT assay, we explored the role of docetaxel in regulating NK cells' cytotoxicity. Western blot and quantitative real-time polymerase chain reaction analysis were used to measure messenger RNA and protein levels separately. Luciferase reporter assay and chromatin immunoprecipitation assay were performed to analyze the mechanism. RESULTS: We found that docetaxel could suppress the immunotherapy efficacy of NK cells toward CRPC cells via the androgen receptor (AR)-lectin-like transcript 1 (LLT1) signals in vitro. Analysis of the mechanism revealed that docetaxel functioned through increasing AR to upregulate LLT1 expression in CRPC cells. AR transcriptionally activated LLT1 expression by binding to its promoter region. Furthermore, targeting AR with ASC-J9 or blocking LL1 by anti-human LLT1 monoclonal antibody could reverse the suppressive effect of docetaxel on the immunotherapy efficacy of NK cells toward CRPC cells. CONCLUSIONS: We concluded that chemotherapy agent docetaxel could increase AR that transcriptionally regulated the expression of NK inhibitory ligand LLT1 on CRPC cells. An increase of LL1 may further suppress the immunological efficacy of NK cells to kill CRPC cells. Additionally, targeting AR or blocking LL1 could enhance the immunotherapy efficacy of NK cells toward CRPC cells which might be considered as a new therapeutic option for the prevention or treatment of docetaxel resistance.


Subject(s)
Docetaxel/adverse effects , Killer Cells, Natural/drug effects , Lectins, C-Type/immunology , Prostatic Neoplasms, Castration-Resistant/immunology , Prostatic Neoplasms, Castration-Resistant/therapy , Receptors, Androgen/immunology , Receptors, Cell Surface/immunology , Androgen Receptor Antagonists/pharmacology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Coculture Techniques , Combined Modality Therapy , Curcumin/analogs & derivatives , Curcumin/pharmacology , Docetaxel/therapeutic use , HEK293 Cells , Humans , Immunotherapy, Adoptive/methods , Killer Cells, Natural/immunology , Killer Cells, Natural/transplantation , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/biosynthesis , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/biosynthesis , Receptors, Androgen/genetics , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cell Surface/biosynthesis , Up-Regulation/drug effects
10.
J Virol ; 93(19)2019 10 01.
Article in English | MEDLINE | ID: mdl-31315995

ABSTRACT

CD69 is highly expressed on the leukocyte surface upon viral infection, and its regulatory role in the vaccinia virus (VACV) immune response has been recently demonstrated using CD69-/- mice. Here, we show augmented control of VACV infection using the anti-human CD69 monoclonal antibody (MAb) 2.8 as both preventive and therapeutic treatment for mice expressing human CD69. This control was related to increased natural killer (NK) cell reactivity and increased numbers of cytokine-producing T and NK cells in the periphery. Moreover, similarly increased immunity and protection against VACV were reproduced over both long and short periods in anti-mouse CD69 MAb 2.2-treated immunocompetent wild-type (WT) mice and immunodeficient Rag2-/- CD69+/+ mice. This result was not due to synergy between infection and anti-CD69 treatment since, in the absence of infection, anti-human CD69 targeting induced immune activation, which was characterized by mobilization, proliferation, and enhanced survival of immune cells as well as marked production of several innate proinflammatory cytokines by immune cells. Additionally, we showed that the rapid leukocyte effect induced by anti-CD69 MAb treatment was dependent on mTOR signaling. These properties suggest the potential of CD69-targeted therapy as an antiviral adjuvant to prevent derived infections.IMPORTANCE In this study, we demonstrate the influence of human and mouse anti-CD69 therapies on the immune response to VACV infection. We report that targeting CD69 increases the leukocyte numbers in the secondary lymphoid organs during infection and improves the capacity to clear the viral infection. Targeting CD69 increases the numbers of gamma interferon (IFN-γ)- and tumor necrosis factor alpha (TNF-α)-producing NK and T cells. In mice expressing human CD69, treatment with an anti-CD69 MAb produces increases in cytokine production, survival, and proliferation mediated in part by mTOR signaling. These results, together with the fact that we have mainly worked with a human-CD69 transgenic model, reveal CD69 as a treatment target to enhance vaccine protectiveness.


Subject(s)
Immunologic Factors/antagonists & inhibitors , Killer Cells, Natural/immunology , Lectins, C-Type/antagonists & inhibitors , T-Lymphocytes/immunology , Vaccinia virus/immunology , Vaccinia/prevention & control , Animals , Antibodies, Monoclonal/administration & dosage , Antigens, CD/administration & dosage , Antigens, CD/genetics , Antigens, Differentiation, T-Lymphocyte/administration & dosage , Antigens, Differentiation, T-Lymphocyte/genetics , Disease Models, Animal , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/genetics , Lectins, C-Type/administration & dosage , Lectins, C-Type/genetics , Mice , Mice, Transgenic , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Vaccinia/immunology , Vaccinia/therapy
11.
Nature ; 505(7481): 103-7, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24256734

ABSTRACT

Human body-surface epithelia coexist in close association with complex bacterial communities and are protected by a variety of antibacterial proteins. C-type lectins of the RegIII family are bactericidal proteins that limit direct contact between bacteria and the intestinal epithelium and thus promote tolerance to the intestinal microbiota. RegIII lectins recognize their bacterial targets by binding peptidoglycan carbohydrate, but the mechanism by which they kill bacteria is unknown. Here we elucidate the mechanistic basis for RegIII bactericidal activity. We show that human RegIIIα (also known as HIP/PAP) binds membrane phospholipids and kills bacteria by forming a hexameric membrane-permeabilizing oligomeric pore. We derive a three-dimensional model of the RegIIIα pore by docking the RegIIIα crystal structure into a cryo-electron microscopic map of the pore complex, and show that the model accords with experimentally determined properties of the pore. Lipopolysaccharide inhibits RegIIIα pore-forming activity, explaining why RegIIIα is bactericidal for Gram-positive but not Gram-negative bacteria. Our findings identify C-type lectins as mediators of membrane attack in the mucosal immune system, and provide detailed insight into an antibacterial mechanism that promotes mutualism with the resident microbiota.


Subject(s)
Anti-Bacterial Agents/metabolism , Antigens, Neoplasm/metabolism , Biomarkers, Tumor/metabolism , Intestines/chemistry , Lectins, C-Type/metabolism , Porins/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/immunology , Anti-Bacterial Agents/pharmacology , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/immunology , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/immunology , Cell Membrane Permeability/drug effects , Cryoelectron Microscopy , Crystallography, X-Ray , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/immunology , Gram-Negative Bacteria/metabolism , Humans , Immunity, Mucosal/drug effects , Immunity, Mucosal/immunology , Intestines/immunology , Intestines/microbiology , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/chemistry , Lectins, C-Type/immunology , Lipopolysaccharides/pharmacology , Listeria monocytogenes/drug effects , Listeria monocytogenes/immunology , Listeria monocytogenes/metabolism , Microbial Viability/drug effects , Models, Molecular , Pancreatitis-Associated Proteins , Peptidoglycan/metabolism , Phospholipids/metabolism , Porins/antagonists & inhibitors , Porins/chemistry , Symbiosis
12.
J Pharmacokinet Pharmacodyn ; 47(3): 255-266, 2020 06.
Article in English | MEDLINE | ID: mdl-32335844

ABSTRACT

A population pharmacokinetic/pharmacodynamic (popPK/PD) model for BIIB059 (anti-blood dendritic cell antigen 2 [anti-BDCA2]), a humanized immunoglobulin G1 monoclonal antibody currently under development for the treatment of SLE and CLE, is presented. BIIB059 binds BDCA2, a plasmacytoid dendritic cell (pDC)-specific receptor that inhibits the production of IFN-I and other inflammatory mediators when ligated. Phase 1 PK and PD data of healthy adult volunteers (HV, n = 87) and SLE subjects (n = 22) were utilized for the development of the popPK/PD model. The data included single and multiple dosing of intravenous and subcutaneous BIIB059. BDCA2 internalization (PD marker) was measured for all subjects by monitoring reduction of BDCA2 on pDC cell surface and used for development of the popPD model. A two-compartment popPK model with linear plus non-linear elimination was found to best describe BIIB059 PK. BDCA2 levels were best captured using an indirect response model with stimulation of the elimination of BDCA2. Clearance in SLE subjects was 25% higher compared to HV (6.87 vs 5.52 mL/h). Bodyweight was identified as only other covariate on clearance and central volume. The estimates of EC50 and Emax were 0.35 µg/mL and 8.92, respectively. No difference in EC50 and Emax was observed between SLE and HV. The popPK/PD model described the data accurately, as evaluated by pcVPCs and bootstrap. The presented popPK/PD model for BIIB059 provides valuable insight into the dynamics and dose-response relationship of BIIB059 for the treatment of SLE and CLE and was used to guide dose selection for the Phase 2 clinical study (NCT02847598).


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacokinetics , Lectins, C-Type/antagonists & inhibitors , Lupus Erythematosus, Cutaneous/drug therapy , Lupus Erythematosus, Systemic/drug therapy , Membrane Glycoproteins/antagonists & inhibitors , Models, Biological , Receptors, Immunologic/antagonists & inhibitors , Administration, Intravenous , Adult , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Area Under Curve , Biological Availability , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Half-Life , Humans , Injections, Subcutaneous , Lectins, C-Type/immunology , Lupus Erythematosus, Cutaneous/blood , Lupus Erythematosus, Cutaneous/immunology , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/immunology , Male , Membrane Glycoproteins/immunology , Metabolic Clearance Rate , Middle Aged , Receptors, Immunologic/immunology
13.
Int J Mol Sci ; 21(18)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32961891

ABSTRACT

Airway exposure to 1,3-ß-D-glucan (ß-glucan), an essential component of the cell wall of several pathogenic fungi, causes various adverse responses, such as pulmonary inflammation and airway hypersensitivity. The former response has been intensively investigated; however, the mechanism underlying ß-glucan-induced airway hypersensitivity is unknown. Capsaicin-sensitive lung vagal (CSLV) afferents are very chemosensitive and stimulated by various insults to the lungs. Activation of CSLV afferents triggers several airway reflexes, such as cough. Furthermore, the sensitization of these afferents is known to contribute to the airway hypersensitivity during pulmonary inflammation. This study was carried out to determine whether ß-glucan induces airway hypersensitivity and the role of the CSLV neurons in this hypersensitivity. Our results showed that the intratracheal instillation of ß-glucan caused not only a distinctly irregular pattern in baseline breathing, but also induced a marked enhancement in the pulmonary chemoreflex responses to capsaicin in anesthetized, spontaneously breathing rats. The potentiating effect of ß-glucan was found 45 min later and persisted at 90 min. However, ß-glucan no longer caused the irregular baseline breathing and the potentiating of pulmonary chemoreflex responses after treatment with perineural capsaicin treatment that blocked the conduction of CSLV fibers. Besides, the potentiating effect of ß-glucan on pulmonary chemoreflex responses was significantly attenuated by N-acetyl-L-cysteine (a ROS scavenger), HC-030031 (a TRPA1 antagonist), and Laminarin (a Dectin-1 antagonist). A combination of Laminarin and HC-030031 further reduced the ß-glucan-induced effect. Indeed, our fiber activity results showed that the baseline fiber activity and the sensitivity of CSLV afferents were markedly elevated by ß-glucan instillation, with a similar timeframe in anesthetized, artificially ventilated rats. Moreover, this effect was reduced by treatment with HC-030031. In isolated rat CSLV neurons, the ß-glucan perfusion caused a similar pattern of potentiating effects on capsaicin-induced Ca2+ transients, and ß-glucan-induced sensitization was abolished by Laminarin pretreatment. Furthermore, the immunofluorescence results showed that there was a co-localization of TRPV1 and Dectin-1 expression in the DiI-labeled lung vagal neurons. These results suggest that CSLV afferents play a vital role in the airway hypersensitivity elicited by airway exposure to ß-glucan. The TRPA1 and Dectin-1 receptors appear to be primarily responsible for generating ß-glucan-induced airway hypersensitivity.


Subject(s)
Acetylcysteine/pharmacology , Capsaicin/pharmacology , Lung/metabolism , Respiratory Hypersensitivity/metabolism , Sensory Receptor Cells/drug effects , TRPA1 Cation Channel/metabolism , beta-Glucans/pharmacology , Acetanilides/pharmacology , Animals , Cells, Cultured , Glucans/pharmacology , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/metabolism , Lung/cytology , Lung/drug effects , Male , Neurons, Afferent/drug effects , Purines/pharmacology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Reflex/drug effects , Respiration/drug effects , TRPA1 Cation Channel/antagonists & inhibitors , Vagus Nerve/drug effects , Vagus Nerve/metabolism
14.
Angew Chem Int Ed Engl ; 59(6): 2204-2210, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31724281

ABSTRACT

Fragment-based drug discovery (FBDD) is a popular method in academia and the pharmaceutical industry for the discovery of early lead candidates. Despite its wide-spread use, the approach still suffers from laborious screening workflows and a limited diversity in the fragments applied. Presented here is the design, synthesis, and biological evaluation of the first fragment library specifically tailored to tackle both these challenges. The 3F library of 115 fluorinated, Fsp3 -rich fragments is shape diverse and natural-product-like with desirable physicochemical properties. The library is perfectly suited for rapid and efficient screening by NMR spectroscopy in a two-stage workflow of 19 F NMR and subsequent 1 H NMR methods. Hits against four diverse protein targets are widely distributed among the fragment scaffolds in the 3F library and a 67 % validation rate was achieved using secondary assays. This collection is the first synthetic fragment library tailor-made for 19 F NMR screening and the results demonstrate that the approach should find broad application in the FBDD community.


Subject(s)
Drug Discovery/methods , Fluorine/chemistry , Magnetic Resonance Spectroscopy , Small Molecule Libraries/chemistry , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Cell Adhesion Molecules/antagonists & inhibitors , Cell Adhesion Molecules/metabolism , Cycloaddition Reaction , Halogenation , Humans , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/metabolism , Quantum Theory , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cell Surface/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 70-kDa/metabolism
15.
J Proteome Res ; 18(5): 2206-2220, 2019 05 03.
Article in English | MEDLINE | ID: mdl-30958009

ABSTRACT

The genus Trimeresurus comprises a group of venomous pitvipers endemic to Southeast Asia and the Pacific Islands. Of these, Trimeresurus insularis, the White-lipped Island Pitviper, is a nocturnal, arboreal species that occurs on nearly every major island of the Lesser Sunda archipelago. In the current study, venom phenotypic characteristics of T. insularis sampled from eight Lesser Sunda Islands (Flores, Lembata, Lombok, Pantar, Sumba, Sumbawa, Timor, and Wetar) were evaluated via SDS-PAGE, enzymatic activity assays, fibrinogenolytic assays, gelatin zymography, and RP-HPLC, and the Sumbawa sample was characterized by venomic analysis. For additional comparative analyses, venoms were also examined from several species in the Trimeresurus complex, including T. borneensis, T. gramineus, T. puniceus, T. purpureomaculatus, T. stejnegeri, and Protobothrops flavoviridis. Despite the geographical isolation, T. insularis venoms from all eight islands demonstrated remarkable similarities in gel electrophoretic profiles and RP-HPLC patterns, and all populations had protein bands in the mass ranges of phosphodiesterases (PDE), l-amino acid oxidases (LAAO), P-III snake venom metalloproteinases (SVMP), serine proteases, cysteine-rich secretory proteins (CRISP), phospholipases A2 (PLA2), and C-type lectins. An exception was observed in the Lombok sample, which lacked protein bands in the mass range of serine protease and CRISP. Venomic analysis of the Sumbawa venom also identified these protein families, in addition to several proteins of lesser abundance (<1%), including glutaminyl cyclase, aminopeptidase, PLA2 inhibitor, phospholipase B, cobra venom factor, 5'-nucleotidase, vascular endothelial growth factor, and hyaluronidase. All T. insularis venoms exhibited similarities in thrombin-like and PDE activities, while significant differences were observed for LAAO, SVMP, and kallikrein-like activities, though these differences were only observed for a few islands. Slight but noticeable differences were also observed with fibrinogen and gelatin digestion activities. Trimeresurus insularis venoms exhibited overall similarity to the other Trimeresurus complex species examined, with the exception of P. flavoviridis venom, which showed the greatest overall differentiation. Western blot analysis revealed that all major T. insularis venom proteins were recognized by Green Pitviper ( T. albolabris) antivenom, and reactivity was also seen with most venom proteins of the other Trimeresurus species, but incomplete antivenom-venom recognition was observed against P. flavoviridis venom proteins. These results demonstrate significant conservation in the venom composition of T. insularis across the Lesser Sunda archipelago relative to the other Trimeresurus species examined.


Subject(s)
Crotalid Venoms/chemistry , L-Amino Acid Oxidase/isolation & purification , Metalloproteases/isolation & purification , Phosphoric Diester Hydrolases/isolation & purification , Serine Proteases/isolation & purification , Trimeresurus/metabolism , Animals , Antivenins/pharmacology , Conserved Sequence , Crotalid Venoms/isolation & purification , Electrophoresis, Polyacrylamide Gel , Fibrinogen/chemistry , Gelatin/chemistry , Gene Expression , Indonesia , Islands , L-Amino Acid Oxidase/antagonists & inhibitors , L-Amino Acid Oxidase/genetics , L-Amino Acid Oxidase/metabolism , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/genetics , Lectins, C-Type/isolation & purification , Lectins, C-Type/metabolism , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/genetics , Membrane Glycoproteins/isolation & purification , Membrane Glycoproteins/metabolism , Metalloproteases/antagonists & inhibitors , Metalloproteases/genetics , Metalloproteases/metabolism , Phenotype , Phospholipases A2/genetics , Phospholipases A2/isolation & purification , Phospholipases A2/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Phylogeny , Proteolysis , Serine Proteases/genetics , Serine Proteases/metabolism , Trimeresurus/genetics
16.
Clin Exp Immunol ; 197(1): 95-110, 2019 07.
Article in English | MEDLINE | ID: mdl-30793298

ABSTRACT

The pivotal role of inflammatory processes in human parturition is well known, but not completely understood. We have performed a study to examine the role of macrophage-inducible C-type lectin (Mincle) in inflammation-associated parturition. Using human samples, we show that spontaneous labour is associated with up-regulated Mincle expression in the myometrium and fetal membranes. Mincle expression was also increased in fetal membranes and myometrium in the presence of pro-labour mediators, the proinflammatory cytokines interleukin (IL)-1B and tumour necrosis factor (TNF), and Toll-like receptor (TLR) ligands fsl-1, poly(I:C), lipopolysaccharide (LPS) and flagellin. These clinical studies are supported by mouse studies, where an inflammatory challenge in a mouse model of preterm birth increased Mincle expression in the uterus. Importantly, elimination of Mincle decreased the effectiveness of proinflammatory cytokines and TLR ligands to induce the expression of pro-labour mediators; namely, proinflammatory cytokines and chemokines, contraction-associated proteins and prostaglandins, and extracellular matrix remodelling enzymes, matrix metalloproteinases. The data presented in this study suggest that Mincle is required when inflammatory activation precipitates parturition.


Subject(s)
Extraembryonic Membranes/immunology , Lectins, C-Type/immunology , Myometrium/immunology , Parturition/immunology , Receptors, Immunologic/immunology , Animals , Chemokines/metabolism , Cytokines/metabolism , Extracellular Matrix/enzymology , Extraembryonic Membranes/cytology , Extraembryonic Membranes/metabolism , Female , Gene Knockdown Techniques , Humans , In Vitro Techniques , Inflammation Mediators/metabolism , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/genetics , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Myometrium/cytology , Myometrium/metabolism , Parturition/genetics , Parturition/metabolism , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/genetics , Receptors, Pattern Recognition/metabolism , Up-Regulation
17.
Cell Commun Signal ; 17(1): 107, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31455323

ABSTRACT

BACKGROUND: Ligands of the C-type lectin CLEC10A such as Tn and sialyl-Tn representing early intermediates of O-glycosylation are hallmarks of many human malignancies. A variety of regulatory mechanisms underlying their expression are being discussed. METHODS: CLEC10A ligands were detected in various tissues and cells using the recombinant glycan-binding domain of CLEC10A. In normal breast and endometrium, presence of ligands was correlated to the female cycle. Estrogen- and stress dependent induction of CLEC10A ligands was analyzed in MCF7 and T47D cells exposed to 4-hydroxy-tamoxifen (Tam), zeocin and hydrogen peroxide. The expression and localization of CLEC10A ligands was analyzed by Western blot and immunofluorescence. In breast cancer patients CLEC10A ligand expression and survival was correlated by Kaplan-Meyer analysis. RESULT: We observed binding of CLEC10A in normal endometrial and breast tissues during the late phase of the female hormonal cycle suggesting a suppressive effect of female sex hormones on CLEC10A ligand expression. Accordingly, CLEC10A ligands were induced in MCF7- and T47D breast cancer cells after Tam treatment and accumulated on the cell surface and in the endosomal/lysosomal compartment. Phagocytosis experiments indicate that macrophages preferentially internalize CLEC10A ligands coated beads and Tam treated MCF7 cells. CLEC10A ligands were also expressed after the addition of zeocin and hydrogen-peroxide. Each substance induced the production of ROS indicating reactive oxygen species as a unifying mechanism of CLEC10A ligand induction. Mechanistically, increased expression of GalNAc-transferase 6 (GalNT6) and translocation of GalNT2 and GalNT6 from cis- towards trans-Golgi compartment was observed, while protein levels of COSMC and T-synthase remained unaffected. In breast cancer patients, positivity for CLEC10A staining in tumor tissues was associated with improved outcome and survival. CONCLUSION: CLEC10A ligands are inducible by hormone depletion, 4-hydroxy-tamoxifen and agents inducing DNA damage and oxidative stress. Our results indicate that CLEC10A acts as a receptor for damaged and dead cells and may play an important role in the uptake of cell debris by macrophages and dendritic cells.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Lectins, C-Type/antagonists & inhibitors , Polysaccharides/analysis , Tamoxifen/analogs & derivatives , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage , Drug Screening Assays, Antitumor , Female , HEK293 Cells , Humans , Lectins, C-Type/metabolism , Ligands , MCF-7 Cells , Oxidative Stress/drug effects , Recombinant Proteins/metabolism , Signal Transduction , Tamoxifen/pharmacology
18.
Crit Rev Immunol ; 38(6): 479-489, 2018.
Article in English | MEDLINE | ID: mdl-31002602

ABSTRACT

Killer cell lectin-like receptors (KLRs) are C-type lectin-like glycoproteins encoded by genes clustered in the natural killer gene complex (NKC) located on the short arm of human chromosome 12. In addition to the NKG2 subfamily, the NKC includes a less characterized group of genes coding for NKRP1 receptors and their ligands of the C-type lectin (CLEC) subfamily. Among this group, the best recognized is the NKRP1A/LLT1 pair encoded respectively by the KLRB1 and CLEC2D genes. Both molecules are type II transmembrane-signaling glycoproteins with an extracellular C-type lectin domain. NKRP1A is predominantly expressed on NK cells, where it acts as an inhibitory receptor. However, it stimulates T cells, which results in release of IL-17 and inflammatory cytokines. Triggering LLT1 on NK cells stimulates IFN-γ production. Similarly, it stimulates activation of B cells. LLT1 is also expressed by osteoblasts and chondrocytes and inhibits bone degradation. Expression of LLT1 by tumor cells may facilitate their escape from NK cell surveillance. On the other hand, NKRP1A may be involved in activation of T and B lymphocytes in the course of inflammatory reactions and pathogenesis of autoimmune disorders. Thus, the NKRP1A/LLT1 receptor/ligand system appears to be a new therapeutic target that may be useful in the treatment of cancer as well as some autoinflammatory disorders.


Subject(s)
Lectins, C-Type/immunology , NK Cell Lectin-Like Receptor Subfamily B/immunology , Neoplasms/immunology , Receptors, Cell Surface/immunology , Humans , Inflammation/immunology , Inflammation/therapy , Killer Cells, Natural/immunology , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/genetics , Ligands , NK Cell Lectin-Like Receptor Subfamily B/antagonists & inhibitors , NK Cell Lectin-Like Receptor Subfamily B/genetics , Neoplasms/therapy , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cell Surface/genetics
19.
J Am Chem Soc ; 140(44): 14915-14925, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30303367

ABSTRACT

Glycan-binding proteins are key components of central physiological and cellular processes such as self-/non-self-recognition, cellular tissue homing, and protein homeostasis. Herein, C-type lectins are a diverse protein family that play important roles in the immune system, rendering them attractive drug targets. To evaluate C-type lectin receptors as target proteins for small-molecule effectors, chemical probes are required, which are, however, still lacking. To overcome the supposedly poor druggability of C-type lectin receptors and to identify starting points for chemical probe development, we screened murine langerin using 1H and 19F NMR against a library of 871 drug-like fragments. Subsequently, hits were validated by surface plasmon resonance and enzyme-linked lectin assay. Using structure-activity relationship studies and chemical synthesis, we identified thiazolopyrimidine derivatives with double-digit micromolar activity that displayed langerin selectivity. Based on 1H-15N HSQC NMR and competitive binding and inhibition experiments, we demonstrate that thiazolopyrimidines allosterically inhibit langerin. To the best of our knowledge, this is the first report of drug-like allosteric inhibitors of a mammalian lectin.


Subject(s)
Lectins, C-Type/antagonists & inhibitors , Mannose-Binding Lectins/antagonists & inhibitors , Pyrimidines/pharmacology , Allosteric Site/drug effects , Animals , Antigens, Surface/metabolism , Lectins, C-Type/metabolism , Mannose-Binding Lectins/metabolism , Mice , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Surface Plasmon Resonance
20.
J Virol ; 91(20)2017 10 15.
Article in English | MEDLINE | ID: mdl-28768873

ABSTRACT

The predominant types of dendritic cells (DC) in the skin and mucosa are Langerhans cells (LC) and interstitial dermal DC (iDDC). LC and iDDC process cutaneous antigens and migrate out of the skin and mucosa to the draining lymph nodes to present antigens to T and B cells. Because of the strategic location of LC and iDDC and the ability of these cells to capture and process pathogens, we hypothesized that they could be infected with human herpesvirus 8 (HHV-8) (Kaposi's sarcoma [KS]-associated herpesvirus) and have an important role in the development of KS. We have previously shown that HHV-8 enters monocyte-derived dendritic cells (MDDC) through DC-SIGN, resulting in nonproductive infection. Here we show that LC and iDDC generated from pluripotent cord blood CD34+ cell precursors support productive infection with HHV-8. Anti-DC-SIGN monoclonal antibody (MAb) inhibited HHV-8 infection of iDDC, as shown by low expression levels of viral proteins and DNA. In contrast, blocking of both langerin and the receptor protein tyrosine kinase ephrin A2 was required to inhibit HHV-8 infection of LC. Infection with HHV-8 did not alter the cell surface expression of langerin on LC but downregulated the expression of DC-SIGN on iDDC, as we previously reported for MDDC. HHV-8-infected LC and iDDC had a reduced ability to stimulate allogeneic CD4+ T cells in the mixed-lymphocyte reaction. These results indicate that HHV-8 can target both LC and iDDC for productive infection via different receptors and alter their function, supporting their potential role in HHV-8 pathogenesis and KS.IMPORTANCE Here we show that HHV-8, a DNA tumor virus that causes Kaposi's sarcoma, infects three types of dendritic cells: monocyte-derived dendritic cells, Langerhans cells, and interstitial dermal dendritic cells. We show that different receptors are used by this virus to infect these cells. DC-SIGN is a major receptor for infection of both monocyte-derived dendritic cells and interstitial dermal dendritic cells, yet the virus fully replicates only in the latter. HHV-8 uses langerin and the ephrin A2 receptor to infect Langerhans cells, which support full HHV-8 lytic replication. This infection of Langerhans cells and interstitial dermal dendritic cells results in an impaired ability to stimulate CD4+ helper T cell responses. Taken together, our data show that HHV-8 utilizes alternate receptors to differentially infect and replicate in these tissue-resident DC and support the hypothesis that these cells play an important role in HHV-8 infection and pathogenesis.


Subject(s)
Dendritic Cells/virology , Herpesvirus 8, Human/physiology , Langerhans Cells/virology , Antigens, CD/metabolism , Cell Adhesion Molecules/immunology , Cell Adhesion Molecules/metabolism , Cell Differentiation , Cells, Cultured , Dendritic Cells/immunology , Ephrin-A2/antagonists & inhibitors , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/immunology , Herpesvirus 8, Human/pathogenicity , Humans , Langerhans Cells/immunology , Langerhans Cells/pathology , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/immunology , Lectins, C-Type/metabolism , Lymphocyte Culture Test, Mixed , Mannose-Binding Lectins/antagonists & inhibitors , Mannose-Binding Lectins/metabolism , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , Sarcoma, Kaposi/virology , Skin/cytology , Skin/immunology , Skin/virology , T-Lymphocytes, Helper-Inducer/immunology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL