Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.416
Filter
Add more filters

Publication year range
1.
Cell ; 173(2): 355-370.e14, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625052

ABSTRACT

We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer.


Subject(s)
Germ Cells/metabolism , Neoplasms/pathology , DNA Copy Number Variations , Databases, Genetic , Gene Deletion , Gene Frequency , Genetic Predisposition to Disease , Genotype , Germ Cells/cytology , Germ-Line Mutation , Humans , Loss of Heterozygosity/genetics , Mutation, Missense , Neoplasms/genetics , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-ret/genetics , Tumor Suppressor Proteins/genetics
2.
Nature ; 606(7916): 984-991, 2022 06.
Article in English | MEDLINE | ID: mdl-35705804

ABSTRACT

Gains and losses of DNA are prevalent in cancer and emerge as a consequence of inter-related processes of replication stress, mitotic errors, spindle multipolarity and breakage-fusion-bridge cycles, among others, which may lead to chromosomal instability and aneuploidy1,2. These copy number alterations contribute to cancer initiation, progression and therapeutic resistance3-5. Here we present a conceptual framework to examine the patterns of copy number alterations in human cancer that is widely applicable to diverse data types, including whole-genome sequencing, whole-exome sequencing, reduced representation bisulfite sequencing, single-cell DNA sequencing and SNP6 microarray data. Deploying this framework to 9,873 cancers representing 33 human cancer types from The Cancer Genome Atlas6 revealed a set of 21 copy number signatures that explain the copy number patterns of 97% of samples. Seventeen copy number signatures were attributed to biological phenomena of whole-genome doubling, aneuploidy, loss of heterozygosity, homologous recombination deficiency, chromothripsis and haploidization. The aetiologies of four copy number signatures remain unexplained. Some cancer types harbour amplicon signatures associated with extrachromosomal DNA, disease-specific survival and proto-oncogene gains such as MDM2. In contrast to base-scale mutational signatures, no copy number signature was associated with many known exogenous cancer risk factors. Our results synthesize the global landscape of copy number alterations in human cancer by revealing a diversity of mutational processes that give rise to these alterations.


Subject(s)
DNA Copy Number Variations , DNA Mutational Analysis , Neoplasms , Aneuploidy , Chromothripsis , DNA Copy Number Variations/genetics , Haploidy , Homologous Recombination/genetics , Humans , Loss of Heterozygosity/genetics , Mutation , Neoplasms/genetics , Neoplasms/pathology , Exome Sequencing
3.
Am J Hum Genet ; 111(10): 2283-2298, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39299239

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is an inherited disorder of vascular malformations characterized by mucocutaneous telangiectases and arteriovenous malformations (AVMs) in internal organs. HHT is caused by inheritance of a loss of function mutation in one of three genes. Although individuals with HHT are haploinsufficient for one of these genes throughout their entire body, rather than exhibiting a systemic vascular phenotype, vascular malformations occur as focal lesions in discrete anatomic locations. The inconsistency between genotype and phenotype has provoked debate over whether haploinsufficiency or a different mechanism gives rise to the vascular malformations. We previously showed that HHT-associated skin telangiectases develop by a two-hit mutation mechanism in an HHT gene. However, somatic mutations were identified in only half of the telangiectases, raising the question whether a second-hit somatic mutation is a necessary (required) event in HHT pathogenesis. Here, we show that another mechanism for the second hit is loss of heterozygosity across the chromosome bearing the germline mutation. Secondly, we investigate the two-hit mutation mechanism for internal organ AVMs, the source of much of the morbidity of HHT. Here, we identified somatic molecular genetic events in eight liver telangiectases, including point mutations and a loss of heterozygosity event. We also identified somatic mutations in one pulmonary AVM and two brain AVMs, confirming that mucocutaneous and internal organ vascular malformations undergo the same molecular mechanisms. Together, these data argue that bi-allelic loss of function in an HHT gene is a required event in the pathogenesis of HHT-associated vascular malformations.


Subject(s)
Alleles , Arteriovenous Malformations , Mutation , Telangiectasia, Hereditary Hemorrhagic , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Humans , Arteriovenous Malformations/genetics , Arteriovenous Malformations/pathology , Female , Male , Loss of Heterozygosity/genetics , Adult , Activin Receptors, Type II/genetics , Germ-Line Mutation , Phenotype , Middle Aged
4.
Nature ; 592(7853): 302-308, 2021 04.
Article in English | MEDLINE | ID: mdl-33762732

ABSTRACT

Our knowledge of copy number evolution during the expansion of primary breast tumours is limited1,2. Here, to investigate this process, we developed a single-cell, single-molecule DNA-sequencing method and performed copy number analysis of 16,178 single cells from 8 human triple-negative breast cancers and 4 cell lines. The results show that breast tumours and cell lines comprise a large milieu of subclones (7-22) that are organized into a few (3-5) major superclones. Evolutionary analysis suggests that after clonal TP53 mutations, multiple loss-of-heterozygosity events and genome doubling, there was a period of transient genomic instability followed by ongoing copy number evolution during the primary tumour expansion. By subcloning single daughter cells in culture, we show that tumour cells rediversify their genomes and do not retain isogenic properties. These data show that triple-negative breast cancers continue to evolve chromosome aberrations and maintain a reservoir of subclonal diversity during primary tumour growth.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation , Clone Cells/metabolism , Clone Cells/pathology , Evolution, Molecular , Base Sequence , Cell Line, Tumor , Cell Lineage , Chromosome Aberrations , DNA Copy Number Variations/genetics , DNA Mutational Analysis , Genomic Instability/genetics , Humans , Loss of Heterozygosity/genetics , Models, Genetic , Mutation Rate , Single Molecule Imaging , Single-Cell Analysis , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
5.
Nature ; 587(7832): 126-132, 2020 11.
Article in English | MEDLINE | ID: mdl-32879494

ABSTRACT

Chromosomal instability in cancer consists of dynamic changes to the number and structure of chromosomes1,2. The resulting diversity in somatic copy number alterations (SCNAs) may provide the variation necessary for tumour evolution1,3,4. Here we use multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types to show that continuous chromosomal instability results in pervasive SCNA heterogeneity. Parallel evolutionary events, which cause disruption in the same genes (such as BCL9, MCL1, ARNT (also known as HIF1B), TERT and MYC) within separate subclones, were present in 37% of tumours. Most recurrent losses probably occurred before whole-genome doubling, that was found as a clonal event in 49% of tumours. However, loss of heterozygosity at the human leukocyte antigen (HLA) locus and loss of chromosome 8p to a single haploid copy recurred at substantial subclonal frequencies, even in tumours with whole-genome doubling, indicating ongoing karyotype remodelling. Focal amplifications that affected chromosomes 1q21 (which encompasses BCL9, MCL1 and ARNT), 5p15.33 (TERT), 11q13.3 (CCND1), 19q12 (CCNE1) and 8q24.1 (MYC) were frequently subclonal yet appeared to be clonal within single samples. Analysis of an independent series of 1,024 metastatic samples revealed that 13 focal SCNAs were enriched in metastatic samples, including gains in chromosome 8q24.1 (encompassing MYC) in clear cell renal cell carcinoma and chromosome 11q13.3 (encompassing CCND1) in HER2+ breast cancer. Chromosomal instability may enable the continuous selection of SCNAs, which are established as ordered events that often occur in parallel, throughout tumour evolution.


Subject(s)
Chromosomal Instability/genetics , Evolution, Molecular , Karyotype , Neoplasm Metastasis/genetics , Neoplasms/genetics , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 8/genetics , Clone Cells/metabolism , Clone Cells/pathology , Cyclin E/genetics , DNA Copy Number Variations/genetics , Female , Humans , Loss of Heterozygosity/genetics , Male , Mutagenesis , Neoplasm Metastasis/pathology , Neoplasms/pathology , Oncogene Proteins/genetics
6.
Nature ; 587(7834): 420-425, 2020 11.
Article in English | MEDLINE | ID: mdl-33177709

ABSTRACT

Genome introgressions drive evolution across the animal1, plant2 and fungal3 kingdoms. Introgressions initiate from archaic admixtures followed by repeated backcrossing to one parental species. However, how introgressions arise in reproductively isolated species, such as yeast4, has remained unclear. Here we identify a clonal descendant of the ancestral yeast hybrid that founded the extant Saccharomyces cerevisiae Alpechin lineage5, which carries abundant Saccharomyces paradoxus introgressions. We show that this clonal descendant, hereafter defined as a 'living ancestor', retained the ancestral genome structure of the first-generation hybrid with contiguous S. cerevisiae and S. paradoxus subgenomes. The ancestral first-generation hybrid underwent catastrophic genomic instability through more than a hundred mitotic recombination events, mainly manifesting as homozygous genome blocks generated by loss of heterozygosity. These homozygous sequence blocks rescue hybrid fertility by restoring meiotic recombination and are the direct origins of the introgressions present in the Alpechin lineage. We suggest a plausible route for introgression evolution through the reconstruction of extinct stages and propose that genome instability allows hybrids to overcome reproductive isolation and enables introgressions to emerge.


Subject(s)
Evolution, Molecular , Genetic Introgression/genetics , Genome, Fungal/genetics , Genomics , Phylogeny , Saccharomyces cerevisiae/genetics , Saccharomyces/genetics , Crosses, Genetic , Fertility/genetics , Genetic Fitness/genetics , Genomic Instability/genetics , Homologous Recombination/genetics , Loss of Heterozygosity/genetics , Meiosis/genetics , Mitosis/genetics , Reproduction, Asexual/genetics , Saccharomyces/classification , Saccharomyces/cytology , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/cytology
7.
Nature ; 584(7819): 136-141, 2020 08.
Article in English | MEDLINE | ID: mdl-32581363

ABSTRACT

Clonally expanded blood cells that contain somatic mutations (clonal haematopoiesis) are commonly acquired with age and increase the risk of blood cancer1-9. The blood clones identified so far contain diverse large-scale mosaic chromosomal alterations (deletions, duplications and copy-neutral loss of heterozygosity (CN-LOH)) on all chromosomes1,2,5,6,9, but the sources of selective advantage that drive the expansion of most clones remain unknown. Here, to identify genes, mutations and biological processes that give selective advantage to mutant clones, we analysed genotyping data from the blood-derived DNA of 482,789 participants from the UK Biobank10. We identified 19,632 autosomal mosaic chromosomal alterations and analysed these for relationships to inherited genetic variation. We found 52 inherited, rare, large-effect coding or splice variants in 7 genes that were associated with greatly increased vulnerability to clonal haematopoiesis with specific acquired CN-LOH mutations. Acquired mutations systematically replaced the inherited risk alleles (at MPL) or duplicated them to the homologous chromosome (at FH, NBN, MRE11, ATM, SH2B3 and TM2D3). Three of the genes (MRE11, NBN and ATM) encode components of the MRN-ATM pathway, which limits cell division after DNA damage and telomere attrition11-13; another two (MPL and SH2B3) encode proteins that regulate the self-renewal of stem cells14-16. In addition, we found that CN-LOH mutations across the genome tended to cause chromosomal segments with alleles that promote the expansion of haematopoietic cells to replace their homologous (allelic) counterparts, increasing polygenic drive for blood-cell proliferation traits. Readily acquired mutations that replace chromosomal segments with their homologous counterparts seem to interact with pervasive inherited variation to create a challenge for lifelong cytopoiesis.


Subject(s)
Clonal Evolution/genetics , Clone Cells/metabolism , Hematopoiesis/genetics , Multifactorial Inheritance/genetics , Adult , Aged , Alleles , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Cell Division/genetics , Chromosome Aberrations , Clone Cells/cytology , Clone Cells/pathology , Female , Genetic Predisposition to Disease , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Humans , Loss of Heterozygosity/genetics , Male , Middle Aged , Mosaicism , United Kingdom
8.
Hum Mol Genet ; 32(7): 1175-1183, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36349694

ABSTRACT

Loss of heterozygosity (LOH) is a genetic alteration that results from the loss of one allele at a heterozygous locus. In particular, copy neutral LOH (CN-LOH) events are generated, for example, by mitotic homologous recombination after monoallelic defection or gene conversion, resulting in novel homozygous locus having two copies of the normal counterpart allele. This phenomenon can serve as a source of genome diversity and is associated with various diseases. To clarify the nature of the CN-LOH such as the frequency, genomic distribution and inheritance pattern, we made use of whole-genome sequencing data of the three-generation CEPH/Utah family cohort, with the pedigree consisting of grandparents, parents and offspring. We identified an average of 40.7 CN-LOH events per individual taking advantage of 285 healthy individuals from 33 families in the cohort. On average 65% of them were classified as gonosomal-mosaicism-associated CN-LOH, which exists in both germline and somatic cells. We also confirmed that the incidence of the CN-LOH has little to do with the parents' age and sex. Furthermore, through the analysis of the genomic region including the CN-LOH, we found that the chance of the occurrence of the CN-LOH tends to increase at the GC-rich locus and/or on the chromosome having a relatively close inter-homolog distance. We expect that these results provide significant insights into the association between genetic alteration and spatial position of chromosomes as well as the intrinsic genetic property of the CN-LOH.


Subject(s)
DNA Copy Number Variations , Loss of Heterozygosity , Humans , DNA Copy Number Variations/genetics , Mutation , Loss of Heterozygosity/genetics , Mosaicism , Chromosomes
9.
J Med Genet ; 61(10): 939-942, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39103207

ABSTRACT

BACKGROUND: It has long been observed that there are families in which non-medullary thyroid cancer (NMTC) occurs, but few syndromes and genes have been described to date. Proteins in the shelterin complex have been implied in cancer. Here, we have studied shelterin genes in families affected by NMTC (FNMTC). METHODS: We performed whole-exome sequencing (WES) in 10 affected individuals from four families with at least three affected members. Polymerase chain reaction (PCR) and Sanger sequencing were performed to search for variants in the TINF2 gene in 40 FNMTC families. TINF2 transcripts and loss of heterozygosity (LOH) were studied in several affected patients of one family. RESULTS: We found the c.507G>T variant in heterozygosis in the TINF2 gene in one family, co-segregating in all five affected members. This variant affects the normal splicing. LOH was not observed. CONCLUSIONS: Our results reinforce the TINF2 gene as a susceptibility cause of FNMTC suggesting the importance of location of frameshift variants in TINF2. According to our data and previous literature, TINF2 pathogenic variants appear to be a significant risk factor for the development of NMTC and/or melanoma.


Subject(s)
Exome Sequencing , Genetic Predisposition to Disease , Germ-Line Mutation , Pedigree , Thyroid Neoplasms , Humans , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Female , Male , Germ-Line Mutation/genetics , Adult , Middle Aged , Telomere-Binding Proteins/genetics , Loss of Heterozygosity/genetics , Aged
10.
Mod Pathol ; 37(10): 100572, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39033963

ABSTRACT

Sarcomas rarely develop in bones previously compromised by infarcts. These infarct-associated sarcomas often present as undifferentiated pleomorphic sarcomas (UPS), and their genetic characteristics are poorly understood. High-grade UPS of bone are typically treated with a combination of surgery and chemotherapy, similar to osteosarcoma. We conducted a detailed clinicopathologic and genomic analysis of 6 cases of intraosseous sarcomas arising from histologically and radiographically confirmed bone infarcts. We analyzed 523 genes for sequence-level mutations using next-generation sequencing with the TruSight Oncology 500 panel and utilized whole-genome single nucleotide polymorphism Microarray (OncoScan CNV) to detect copy number alterations and loss of heterozygosity (LOH). Genomic instability was assessed through homologous recombination deficiency (HRD) metrics, incorporating LOH, telomeric allelic imbalance, and large-scale state transitions. Fluorescence in situ hybridization and immunohistochemistry validated the findings. The cohort included 3 men and 3 women, with a median age of 70 years, and tumors located in the femur and tibia. Five of the 6 patients developed distant metastases. Treatment involved surgery and chemotherapy or immune checkpoint inhibitors. Genomic analysis revealed significant complexity and high HRD scores, ranging from 32 to 57 (with a cutoff of 32). Chromosome 12 alterations, including segmental amplification or chromothripsis, were observed in 4 cases. Notably, MDM2 amplification, confirmed by fluorescence in situ hybridization, was detected in 2 cases. Homozygous deletion of CDKN2A/B was observed in all six cases. Tumor mutational burden levels ranged from 2.4 to 7.9 mutations per megabase. Notable pathogenic mutations included H3-3A mutations (p.G35R and p.G35W), and mutations in HRAS, DNMT3A, NF2, PIK3CA, POLE, and TP53, each in one case. These results suggest that high-grade infarct-associated sarcomas of bone, whereas sharing high levels of structural variations with osteosarcoma, may exhibit potentially less frequent TP53 mutations and more common CDKN2A/B deletions. This points to the possibility that the mutation spectrum and disrupted pathways could be distinct from conventional osteosarcoma.


Subject(s)
Bone Neoplasms , Humans , Male , Female , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Aged , Middle Aged , Infarction/genetics , Infarction/pathology , Osteosarcoma/genetics , Osteosarcoma/pathology , Sarcoma/genetics , Sarcoma/pathology , Mutation , Genomics , Aged, 80 and over , Loss of Heterozygosity/genetics , Biomarkers, Tumor/genetics
11.
Acta Neuropathol ; 147(1): 85, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38758238

ABSTRACT

Pituitary neuroendocrine tumors (PitNETs) exhibiting aggressive, treatment-refractory behavior are the rare subset that progress after surgery, conventional medical therapies, and an initial course of radiation and are characterized by unrelenting growth and/or metastatic dissemination. Two groups of patients with PitNETs were sequenced: a prospective group of patients (n = 66) who consented to sequencing prior to surgery and a retrospective group (n = 26) comprised of aggressive/higher risk PitNETs. A higher mutational burden and fraction of loss of heterozygosity (LOH) was found in the aggressive, treatment-refractory PitNETs compared to the benign tumors (p = 1.3 × 10-10 and p = 8.5 × 10-9, respectively). Within the corticotroph lineage, a characteristic pattern of recurrent chromosomal LOH in 12 specific chromosomes was associated with treatment-refractoriness (occurring in 11 of 14 treatment-refractory versus 1 of 14 benign corticotroph PitNETs, p = 1.7 × 10-4). Across the cohort, a higher fraction of LOH was identified in tumors with TP53 mutations (p = 3.3 × 10-8). A machine learning approach identified loss of heterozygosity as the most predictive variable for aggressive, treatment-refractory behavior, outperforming the most common gene-level alteration, TP53, with an accuracy of 0.88 (95% CI: 0.70-0.96). Aggressive, treatment-refractory PitNETs are characterized by significant aneuploidy due to widespread chromosomal LOH, most prominently in the corticotroph tumors. This LOH predicts treatment-refractoriness with high accuracy and represents a novel biomarker for this poorly defined PitNET category.


Subject(s)
Loss of Heterozygosity , Neuroendocrine Tumors , Pituitary Neoplasms , Humans , Loss of Heterozygosity/genetics , Pituitary Neoplasms/genetics , Pituitary Neoplasms/pathology , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/therapy , Male , Female , Middle Aged , Adult , Aged , Retrospective Studies , Mutation/genetics , Prospective Studies
12.
Exp Mol Pathol ; 139: 104920, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39033589

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is reported to be amongst the cancers with the lowest survival rate at 5 years. In the present study we aimed to validate a targeted next-generation sequencing (tNGS) panel to use in clinical routine, investigating genes important for PDAC diagnostic, prognostic and potential theragnostic aspect. In this NGS panel we also designed target regions to inquire about loss of heterozygosity (LOH) of chromosome 18 that has been described to be possibly linked to a worse disease progression. Copy number alteration has also been explored for a subset of genes. The last two methods are not commonly used for routine diagnostic with tNGS panels and we investigated their possible contribution to better characterize PDAC. A series of 140 formalin-fixed paraffin-embedded (FFPE) PDAC samples from 140 patients was characterized using this panel. Ninety-two % of patients showed alterations in at least one of the investigated genes (most frequent KRAS, TP53, SMAD4, CDKN2A and RNF43). Regarding LOH evaluation, we were able to detect chr18 LOH starting at 20% cell tumor percentage. The presence of LOH on chr18 is associated with a worse disease- and metastasis-free survival, in uni- and multivariate analyses. The present study validates the use of a tNGS panel for PDAC characterization, also evaluating chr18 LOH status for prognostic stratification.


Subject(s)
Carcinoma, Pancreatic Ductal , High-Throughput Nucleotide Sequencing , Loss of Heterozygosity , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/diagnosis , High-Throughput Nucleotide Sequencing/methods , Male , Female , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/diagnosis , Middle Aged , Aged , Loss of Heterozygosity/genetics , Prognosis , Adult , Aged, 80 and over , DNA Copy Number Variations/genetics , Biomarkers, Tumor/genetics , Smad4 Protein/genetics , Mutation/genetics
13.
J Immunol ; 208(2): 371-383, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34965965

ABSTRACT

Monoallelic AgR gene expression underlies specific adaptive immune responses. AgR allelic exclusion is achieved by sequential initiation of V(D)J recombination between alleles and resultant protein from one allele signaling to prevent recombination of the other. The ATM kinase, a regulator of the DNA double-strand break (DSB) response, helps enforce allelic exclusion through undetermined mechanisms. ATM promotes repair of RAG1/RAG2 (RAG) endonuclease-induced DSBs and transduces signals from RAG DSBs during Igk gene rearrangement on one allele to transiently inhibit RAG1 protein expression, Igk accessibility, and RAG cleavage of the other allele. Yet, the relative contributions of ATM functions in DSB repair versus signaling to enforce AgR allelic exclusion remain undetermined. In this study, we demonstrate that inactivation in mouse pre-B cells of the NF-κB essential modulator (Nemo) protein, an effector of ATM signaling, diminishes RAG DSB-triggered repression of Rag1/Rag2 transcription and Igk accessibility but does not result in aberrant repair of RAG DSBs like ATM inactivation. We show that Nemo deficiency increases simultaneous biallelic Igk cleavage in pre-B cells and raises the frequency of B cells expressing Igκ proteins from both alleles. In contrast, the incidence of biallelic Igκ expression is not elevated by inactivation of the SpiC transcriptional repressor, which is induced by RAG DSBs in an ATM-dependent manner and suppresses Igk accessibility. Thus, we conclude that Nemo-dependent, ATM-mediated DNA damage signals enforce Igκ allelic exclusion by orchestrating transient repression of RAG expression and feedback inhibition of additional Igk rearrangements in response to RAG cleavage on one Igk allele.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair/genetics , Immunoglobulins/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Loss of Heterozygosity/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cells, Cultured , Clonal Anergy/genetics , Clonal Anergy/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Immunoglobulins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , V(D)J Recombination/genetics
14.
Int J Med Sci ; 21(13): 2430-2436, 2024.
Article in English | MEDLINE | ID: mdl-39439464

ABSTRACT

Loss of heterozygosity (LOH) on chromosome 6p, where the HLA genes are located, can result in incorrect homozygosity findings during HLA genotyping in patients with hematologic malignancies. The degree of HLA compatibility between donor and recipient is crucial in hematopoietic stem cell transplantation. Therefore, we present a case of false homozygosity in HLA genotyping due to LOH on chromosome 6p in a patient diagnosed with acute myeloid leukemia (AML). HLA molecular typing was conducted on both peripheral blood and buccal swab samples. The analysis included sequence-based typing (SBT) and next-generation sequencing-based typing. Additionally, chromosomal microarray analysis (CMA) was performed. A 68-year-old male presented with anemia and thrombocytopenia. Subsequent bone marrow examination confirmed AML. High-resolution HLA genotyping of Peripheral blood during blast crisis revealed homozygosity at the -A, -B, and -C loci. Conventional karyotyping showed a normal karyotype, 46,XY[20]. Retesting of HLA genotyping one week later confirmed the homozygous results. Subsequently, HLA typing was repeated using buccal swab specimens, confirming heterozygosity at all 4 HLA loci. CMA on peripheral blood samples during blast crisis revealed a large terminal region of copy-neutral LOH spanning approximately 43.5 Mb in the chromosome region 6p25.3p21.1. LOH at the HLA gene locus can significantly impact donor selection, potentially leading to the selection of mistakenly identified homozygous donors. Clinicians and laboratory personnel should be aware of these issues to prevent erroneous HLA typing results in patients with hematologic malignancies. It is advisable to confirm the HLA typing of recipients with hematologic malignancies whenever homozygosity is detected at any locus. This can be achieved through careful interpretation of low peaks in SBT, and by using buccal swab samples or peripheral blood collected after achieving remission.


Subject(s)
Hematopoietic Stem Cell Transplantation , Histocompatibility Testing , Homozygote , Leukemia, Myeloid, Acute , Loss of Heterozygosity , Humans , Male , Aged , Histocompatibility Testing/methods , Loss of Heterozygosity/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/blood , Hematologic Neoplasms/genetics , Hematologic Neoplasms/blood , Chromosomes, Human, Pair 6/genetics , HLA Antigens/genetics , Genotype
15.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34607954

ABSTRACT

BRCA1 germline mutations are associated with an increased risk of breast and ovarian cancer. Recent findings of others suggest that BRCA1 mutation carriers also bear an increased risk of esophageal and gastric cancer. Here, we employ a Brca1/Trp53 mouse model to show that unresolved replication stress (RS) in BRCA1 heterozygous cells drives esophageal tumorigenesis in a model of the human equivalent. This model employs 4-nitroquinoline-1-oxide (4NQO) as an RS-inducing agent. Upon drinking 4NQO-containing water, Brca1 heterozygous mice formed squamous cell carcinomas of the distal esophagus and forestomach at a much higher frequency and speed (∼90 to 120 d) than did wild-type (WT) mice, which remained largely tumor free. Their esophageal tissue, but not that of WT control mice, revealed evidence of overt RS as reflected by intracellular CHK1 phosphorylation and 53BP1 staining. These Brca1 mutant tumors also revealed higher genome mutation rates than those of control animals; the mutational signature SBS4, which is associated with tobacco-induced tumorigenesis; and a loss of Brca1 heterozygosity (LOH). This uniquely accelerated Brca1 tumor model is also relevant to human esophageal squamous cell carcinoma, an often lethal tumor.


Subject(s)
BRCA1 Protein/genetics , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Loss of Heterozygosity/genetics , Tumor Suppressor Protein p53/genetics , 4-Nitroquinoline-1-oxide/toxicity , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Checkpoint Kinase 1/metabolism , Disease Models, Animal , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/chemically induced , Esophageal Squamous Cell Carcinoma/pathology , Female , Germ-Line Mutation/genetics , Heterozygote , Humans , Loss of Heterozygosity/drug effects , Male , Mice , Mice, Knockout , Tumor Suppressor p53-Binding Protein 1/metabolism
16.
Am J Hum Genet ; 107(3): 514-526, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32791035

ABSTRACT

Multiple morphological abnormalities of the sperm flagella (MMAF) is a severe form of asthenoteratozoospermia. Although recent studies have revealed several MMAF-associated genes and demonstrated MMAF to be a genetically heterogeneous disease, at least one-third of the cases are still not well understood for their etiology. Here, we identified bi-allelic loss-of-function variants in CFAP58 by using whole-exome sequencing in five (5.6%) unrelated individuals from a cohort of 90 MMAF-affected Chinese men. Each of the men harboring bi-allelic CFAP58 variants presented typical MMAF phenotypes. Transmission electron microscopy demonstrated striking flagellar defects with axonemal and mitochondrial sheath malformations. CFAP58 is predominantly expressed in the testis and encodes a cilia- and flagella-associated protein. Immunofluorescence assays showed that CFAP58 localized at the entire flagella of control sperm and predominantly concentrated in the mid-piece. Immunoblotting and immunofluorescence assays showed that the abundances of axoneme ultrastructure markers SPAG6 and SPEF2 and a mitochondrial sheath protein, HSP60, were significantly reduced in the spermatozoa from men harboring bi-allelic CFAP58 variants. We generated Cfap58-knockout mice via CRISPR/Cas9 technology. The male mice were infertile and presented with severe flagellar defects, consistent with the sperm phenotypes in MMAF-affected men. Overall, our findings in humans and mice strongly suggest that CFAP58 plays a vital role in sperm flagellogenesis and demonstrate that bi-allelic loss-of-function variants in CFAP58 can cause axoneme and peri-axoneme malformations leading to male infertility. This study provides crucial insights for understanding and counseling of MMAF-associated asthenoteratozoospermia.


Subject(s)
Abnormalities, Multiple/genetics , Asthenozoospermia/genetics , Axoneme/genetics , Infertility, Male/genetics , Intercellular Signaling Peptides and Proteins/genetics , Abnormalities, Multiple/pathology , Alleles , Animals , Asthenozoospermia/physiopathology , Axoneme/pathology , CRISPR-Cas Systems/genetics , Cell Cycle Proteins/genetics , Homozygote , Humans , Infertility, Male/pathology , Loss of Function Mutation/genetics , Loss of Heterozygosity/genetics , Male , Mice , Mice, Knockout , Microtubule Proteins/genetics , Mitochondria/genetics , Sperm Tail/metabolism , Sperm Tail/pathology , Testis/metabolism , Testis/pathology , Exome Sequencing
17.
J Mol Evol ; 91(3): 369-377, 2023 06.
Article in English | MEDLINE | ID: mdl-36752826

ABSTRACT

Loss of heterozygosity (LOH) is a mitotic recombination event that converts heterozygous loci to homozygous loci. This mutation event is widespread in organisms that have asexual reproduction like budding yeasts, and is also an important and frequent mutation event in tumorigenesis. Mutation accumulation studies have demonstrated that LOH occurs at a rate higher than the point mutation rate, and can impact large portions of the genome. Laboratory evolution experiments of heterozygous yeasts have revealed that LOH often unmasks beneficial recessive alleles that can confer large fitness advantages. Here, I highlight advances in understanding dominance, fitness, and phenotypes in laboratory evolved heterozygous yeast strains. I discuss best practices for detecting LOH in intraspecific and interspecific evolved clones and populations. Utilizing heterozygous strain backgrounds in laboratory evolution experiments offers an opportunity to advance our understanding of this important mutation type in shaping adaptation and genome evolution in wild, domesticated, and clinical populations.


Subject(s)
Loss of Heterozygosity , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Mutation/genetics , Loss of Heterozygosity/genetics , Mutation Rate , Genome
18.
Neuroendocrinology ; 113(9): 915-923, 2023.
Article in English | MEDLINE | ID: mdl-36907174

ABSTRACT

INTRODUCTION: Small intestinal neuroendocrine tumours (siNETs) are rare neoplasms which present with low mutational burden and can be subtyped based on copy number variation (CNV). Currently, siNETs can be molecularly classified as having chromosome 18 loss of heterozygosity (18LOH), multiple CNVs (MultiCNV), or no CNVs. 18LOH tumours have better progression-free survival when compared to MultiCNV and NoCNV tumours, however, the mechanism underlying this is unknown, and clinical practice does not currently consider CNV status. METHODS: Here, we use genome-wide tumour DNA methylation (n = 54) and gene expression (n = 20 matched to DNA methylation) to better understand how gene regulation varies by 18LOH status. We then use multiple cell deconvolution methods to analyse how cell composition varies between 18LOH status and determine potential associations with progression-free survival. RESULTS: We identified 27,464 differentially methylated CpG sites and 12 differentially expressed genes between 18LOH and non-18LOH (MultiCNV + NoCNV) siNETs. Although few differentially expressed genes were identified, these genes were highly enriched with the differentially methylated CpG sites compared to the rest of the genome. We identified differences in tumour microenvironment between 18LOH and non-18LOH tumours, including CD14+ infiltration in a subset of non-18LOH tumours which had the poorest clinical outcomes. CONCLUSIONS: We identify a small number of genes which appear to be linked to the 18LOH status of siNETs, and find evidence of potential epigenetic dysregulation of these genes. We also find a potential prognostic marker for worse progression-free outcomes in the form of higher CD14 infiltration in non-18LOH siNETs.


Subject(s)
Intestinal Neoplasms , Neuroendocrine Tumors , Humans , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Multiomics , DNA Copy Number Variations/genetics , Chromosomes, Human, Pair 18 , Intestinal Neoplasms/genetics , DNA Methylation/genetics , Loss of Heterozygosity/genetics , Tumor Microenvironment
19.
J Pathol ; 256(1): 38-49, 2022 01.
Article in English | MEDLINE | ID: mdl-34561860

ABSTRACT

Germ cell tumors (GCTs) originate during the histogenesis of primordial germ cells to mature gametes. Previous studies identified five histogenic mechanisms in ovarian mature teratomas (type I: failure of meiosis I; type II: failure of meiosis II; type III: duplication of the genome of a mature gamete; type IV: no meiosis; and type V: fusion of two different ova), but those of other GCTs remain elusive. In this study, we analyzed 84 GCTs of various pathologic types to identify the histogenesis using single-nucleotide polymorphism array by analyzing copy-neutral loss of heterozygosity (CN-LOH) and copy number alterations (CNAs). We detected types I and II in ovarian teratomas, type III in ovarian teratomas and yolk sac tumors (YSTs), and type IV in all GCT types. The GCTs with multiple-type histogenesis (I-IV) (ovarian mature/immature teratomas and YST) show meiotic CN-LOH with scant CNAs. Type IV-only GCTs are either with mitotic CN-LOH and abundant CNAs (seminoma, dysgerminoma, testicular mixed GCTs) or with scant CNAs and no CN-LOH (pediatric testicular and mediastinal teratomas). The development sequences of CN-LOH and CNA are different between the multiple type (I-IV) GCTs and type IV-only GCTs. We analyzed two different histologic areas in eight GCTs (one mature teratoma with a mucin-secreting adenoma, two immature teratomas, and five mixed GCTs). We found that GCTs (mature teratoma, immature teratoma, and mixed GCT) showed different genomic alterations between histologic areas, suggesting that genomic differences within a GCT could accompany histologic differentiation. Of note, we found evidence for collision tumors in a mixed GCT. Our data indicate that GCTs may have various histogenesis and intratumoral genomic differences, which might provide important information for the identification of GCTs, especially for those with different histologic areas. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms, Germ Cell and Embryonal/pathology , Ovarian Neoplasms/genetics , Seminoma/genetics , Teratoma/genetics , Humans , Loss of Heterozygosity/genetics , Male , Molecular Biology/methods , Ovarian Neoplasms/pathology , Seminoma/pathology , Teratoma/pathology , Testicular Neoplasms/genetics
20.
Nature ; 545(7653): 229-233, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28445466

ABSTRACT

Human pluripotent stem cells (hPS cells) can self-renew indefinitely, making them an attractive source for regenerative therapies. This expansion potential has been linked with the acquisition of large copy number variants that provide mutated cells with a growth advantage in culture. The nature, extent and functional effects of other acquired genome sequence mutations in cultured hPS cells are not known. Here we sequence the protein-coding genes (exomes) of 140 independent human embryonic stem cell (hES cell) lines, including 26 lines prepared for potential clinical use. We then apply computational strategies for identifying mutations present in a subset of cells in each hES cell line. Although such mosaic mutations were generally rare, we identified five unrelated hES cell lines that carried six mutations in the TP53 gene that encodes the tumour suppressor P53. The TP53 mutations we observed are dominant negative and are the mutations most commonly seen in human cancers. We found that the TP53 mutant allelic fraction increased with passage number under standard culture conditions, suggesting that the P53 mutations confer selective advantage. We then mined published RNA sequencing data from 117 hPS cell lines, and observed another nine TP53 mutations, all resulting in coding changes in the DNA-binding domain of P53. In three lines, the allelic fraction exceeded 50%, suggesting additional selective advantage resulting from the loss of heterozygosity at the TP53 locus. As the acquisition and expansion of cancer-associated mutations in hPS cells may go unnoticed during most applications, we suggest that careful genetic characterization of hPS cells and their differentiated derivatives be carried out before clinical use.


Subject(s)
Genes, Dominant/genetics , Genes, p53 , Human Embryonic Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics , Selection, Genetic , Tumor Suppressor Protein p53/genetics , Alleles , Cell Count , Cell Differentiation/genetics , Cell Division/genetics , Cell Line , DNA/metabolism , DNA Mutational Analysis , Exome/genetics , Human Embryonic Stem Cells/cytology , Humans , Loss of Heterozygosity/genetics , Mosaicism , Neoplasms/genetics , Protein Domains , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL