Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.134
Filter
Add more filters

Publication year range
1.
Plant J ; 116(4): 1152-1171, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37285370

ABSTRACT

Legumes represent an important component of human and livestock diets; they are rich in macro- and micronutrients such as proteins, dietary fibers and polyunsaturated fatty acids. Whilst several health-promoting and anti-nutritional properties have been associated with grain content, in-depth metabolomics characterization of major legume species remains elusive. In this article, we used both gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) to assess the metabolic diversity in the five legume species commonly grown in Europe, including common bean (Phaseolus vulgaris), chickpea (Cicer arietinum), lentil (Lens culinaris), white lupin (Lupinus albus) and pearl lupin (Lupinus mutabilis), at the tissue level. We were able to detect and quantify over 3400 metabolites covering major nutritional and anti-nutritional compounds. Specifically, the metabolomics atlas includes 224 derivatized metabolites, 2283 specialized metabolites and 923 lipids. The data generated here will serve the community as a basis for future integration to metabolomics-assisted crop breeding and facilitate metabolite-based genome-wide association studies to dissect the genetic and biochemical bases of metabolism in legume species.


Subject(s)
Cicer , Lens Plant , Lupinus , Phaseolus , Humans , Lipidomics , Genome-Wide Association Study , Plant Breeding , Allergens
2.
BMC Plant Biol ; 24(1): 722, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075363

ABSTRACT

BACKGROUND: White lupin (Lupinus albus L.) is a high-protein Old World grain legume with remarkable food and feed production interest. It is sown in autumn or early spring, depending on the local agroclimatic conditions. This study aimed to identify allelic variants associated with vernalization responsiveness, in order to improve our knowledge of legume flowering regulatory pathways and develop molecular selection tools for the desired phenology as required for current breeding and adaptation to the changing climate. RESULTS: Some 120 white lupin accessions originating from a wide range of environments of Europe, Africa, and Asia were phenotyped under field conditions in three environments with different intensities of vernalization, namely, a Mediterranean and a subcontinental climate sites of Italy under autumn sowing, and a suboceanic climate site of France under spring sowing. Two hundred sixty-two individual genotypes extracted from them were phenotyped in a greenhouse under long-day photoperiod without vernalization. Phenology data, and marker data generated by Diversity Arrays Technology sequencing (DArT-seq) and by PCR-based screening targeting published quantitative trait loci (QTLs) from linkage map and newly identified insertion/deletion polymorphisms in the promoter region of the FLOWERING LOCUS T homolog, LalbFTc1 gene (Lalb_Chr14g0364281), were subjected to a genome-wide association study (GWAS). Population structure followed differences in phenology and isolation by distance pattern. The GWAS highlighted numerous loci significantly associated with flowering time, including four LalbFTc1 gene promoter deletions: 2388 bp and 2126 bp deletions at the 5' end, a 264 bp deletion in the middle and a 28 bp deletion at the 3' end of the promoter. Besides LalbFTc1 deletions, this set contained DArT-seq markers that matched previously published major QTLs in chromosomes Lalb_Chr02, Lalb_Chr13 and Lalb_Chr16, and newly discovered QTLs in other chromosomes. CONCLUSIONS: This study highlighted novel QTLs for flowering time and validated those already published, thereby providing novel evidence on the convergence of FTc1 gene functional evolution into the vernalization pathway in Old World lupin species. Moreover, this research provided the set of loci specific for extreme phenotypes (the earliest or the latest) awaiting further implementation in marker-assisted selection for spring- or winter sowing.


Subject(s)
Flowers , Genome-Wide Association Study , INDEL Mutation , Lupinus , Promoter Regions, Genetic , Quantitative Trait Loci , Flowers/genetics , Flowers/physiology , Flowers/growth & development , Lupinus/genetics , Promoter Regions, Genetic/genetics , Quantitative Trait Loci/genetics , Plant Proteins/genetics , Phenotype , Genes, Plant , Genotype
3.
Mol Ecol ; 33(3): e17232, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38205900

ABSTRACT

The importance and prevalence of recent ice-age and post-glacial speciation and species diversification during the Pleistocene across many organismal groups and physiographic settings are well established. However, the extent to which Pleistocene diversification can be attributed to climatic oscillations and their effects on distribution ranges and population structure remains debatable. In this study, we use morphologic, geographic and genetic (RADseq) data to document Pleistocene speciation and intra-specific diversification of the unifoliolate-leaved clade of Florida Lupinus, a small group of species largely restricted to inland and coastal sand ridges across the Florida peninsula and panhandle. Phylogenetic and demographic analyses alongside morphological and geographic evidence suggest that recent speciation and intra-specific divergence within this clade were driven by a combination of non-adaptive allopatric divergence caused by edaphic niche conservatism and opportunities presented by the emergence of new post-glacial sand ridge habitats. These results highlight the central importance of even modest geographic isolation and short periods of allopatric divergence following range expansion in the emergence of new taxa and add to the growing evidence that Pleistocene climatic oscillations may contribute to rapid diversification in a myriad of physiographic settings. Furthermore, our results shed new light on long-standing taxonomic debate surrounding the number of species in the Florida unifoliate Lupinus clade providing support for recognition of five species and a set of intra-specific variants. The important conservation implications for the narrowly restricted, highly endangered species Lupinus aridorum, which we show to be genetically distinct from its sister species Lupinus westianus, are discussed.


Subject(s)
Lupinus , Phylogeny , Florida , Sand , Ecosystem
4.
Plant Cell Environ ; 47(4): 1416-1431, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38226783

ABSTRACT

White lupin (lupinus albus L.) forms special bottlebrush-like root structures called cluster roots (CR) when phosphorus is low, to remobilise sparingly soluble phosphates in the soil. The molecular mechanisms that control the CR formation remain unknown. Root development in other plants is regulated by CLE  (CLAVATA3/ EMBRYO SURROUNDING REGION (ESR)-RELATED) peptides, which provide more precise control mechanisms than common phytohormones. This makes these peptides interesting candidates to be involved in CR formation, where fine tuning to environmental factors is required. In this study we present an analysis of CLE peptides in white lupin. The peptides LaCLE35 (RGVHy PSGANPLHN) and LaCLE55 (RRVHy PSCHy PDPLHN) reduced root growth and altered CR in hydroponically cultured white lupins. We demonstrate that rootlet density and rootlet length were locally, but not systemically, impaired by exogenously applied CLE35. The peptide was identified in the xylem sap. The inhibitory effect of CLE35 on root growth was attributed to arrested cell elongation in root tips. Taken together, CLE peptides affect both rootlet density and rootlet length, which are two critical factors for CR formation, and may be involved in fine tuning this peculiar root structure that is present in a few crops and many Proteaceae species, under low phosphorus availability.


Subject(s)
Lupinus , Plant Roots , Gene Expression Regulation, Plant , Phosphorus/metabolism , Peptides
5.
J Exp Bot ; 75(16): 4891-4903, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38686677

ABSTRACT

During germination plants rely entirely on their seed storage compounds to provide energy and precursors for the synthesis of macromolecular structures until the seedling has emerged from the soil and photosynthesis can be established. Lupin seeds use proteins as their major storage compounds, accounting for up to 40% of the seed dry weight. Lupins are therefore a valuable complement to soy as a source of plant protein for human and animal nutrition. The aim of this study was to elucidate how storage protein metabolism is coordinated with other metabolic processes to meet the requirements of the growing seedling. In a quantitative approach, we analysed seedling growth, as well as alterations in biomass composition, the proteome, and metabolite profiles during germination and seedling establishment in Lupinus albus. The reallocation of nitrogen resources from seed storage proteins to functional seed proteins was mapped based on a manually curated functional protein annotation database. Although classified as a protein crop, Lupinus albus does not use amino acids as a primary substrate for energy metabolism during germination. However, fatty acid and amino acid metabolism may be integrated at the level of malate synthase to combine stored carbon from lipids and proteins into gluconeogenesis.


Subject(s)
Amino Acids , Germination , Lupinus , Plant Proteins , Proteome , Seedlings , Lupinus/metabolism , Lupinus/growth & development , Amino Acids/metabolism , Proteome/metabolism , Seedlings/metabolism , Seedlings/growth & development , Plant Proteins/metabolism , Seeds/metabolism , Seeds/growth & development
6.
Theor Appl Genet ; 137(7): 155, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858311

ABSTRACT

White lupin (Lupinus albus L.) is a high-protein grain legume alternative to soybean in Central Europe, but its cultivation is risky due to the fungal disease anthracnose that can cause severe yield damage. In addition, management of seed alkaloids is critical for human nutrition and animal feed. We report on a white lupin collection of genebank accessions, advanced breeding lines and cultivars that was genotyped and phenotypically characterized for anthracnose resistance and seed alkaloids and protein levels. Using genotyping by sequencing (GBS), SeqSNP-targeted GBS, BiomarkX genotyping and Sanger sequencing, a genetic resource of genome-wide SNPs for white lupin was established. We determined anthracnose resistance in two years field trials at four locations with infection rows and measured seed alkaloids and protein levels by near-infrared spectroscopy (NIRS). Few white lupin breeding lines showed anthracnose resistance comparable or better than Celina and Frieda, currently the best commercial cultivars in Germany. NIRS estimates for seed alkaloids and protein levels revealed variation in the white lupin collection. Using genome-wide association studies (GWAS), we identified SNPs significantly associated with anthracnose resistance in the field representing known and new genomic regions. We confirmed the pauper locus and detected new SNP markers significantly associated with seed alkaloids. For the first time, we present loci associated with total grain protein content. Finally, we tested the potential of genomic prediction (GP) in predicting the phenotype of these three quantitative traits. Application of results and resources are discussed in the context of fostering breeding programs for white lupin.


Subject(s)
Alkaloids , Disease Resistance , Lupinus , Phenotype , Plant Diseases , Polymorphism, Single Nucleotide , Seeds , Lupinus/genetics , Lupinus/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Seeds/genetics , Seeds/chemistry , Genotype , Plant Proteins/genetics , Plant Proteins/metabolism , Genome-Wide Association Study , Quantitative Trait Loci , Plant Breeding , Genetic Association Studies
7.
Physiol Plant ; 176(4): e14385, 2024.
Article in English | MEDLINE | ID: mdl-38956782

ABSTRACT

The main purpose of this study was to demonstrate that the course of anther development, including post-meiotic maturation, dehiscence and senescence, is ensured by the interdependencies between jasmonic acid (JA) and indole-3-acetic acid (IAA) in yellow lupin (Lupinus luteus L.). The concentration of JA peaked during anther dehiscence when IAA level was low, whereas the inverse relationship was specific to anther senescence. Cellular and tissue localization of JA and IAA, in conjunction with broad expression profile for genes involved in biosynthesis, signalling, response, and homeostasis under different conditions, allowed to complete and define the role of studied phytohormones during late anther development, as well as predict events triggered by them. The development/degeneration of septum and anther wall cells, dehydration of epidermis, and rupture of stomium may involve JA signalling, while the formation of secondary thickening in endothecial cell walls is rather JA independent. The IAA is involved in programmed cell death (PCD)-associated processes during anther senescence but does not exclude its participation in the anther dehiscence processes, mainly related to cell disintegration and degeneration. A detailed understanding of these multistage processes, especially at the level of phytohormonal interplay, can contribute to the effective control of male fertility, potentially revolutionizing the breeding of L. luteus.


Subject(s)
Cyclopentanes , Flowers , Gene Expression Regulation, Plant , Indoleacetic Acids , Lupinus , Oxylipins , Plant Growth Regulators , Indoleacetic Acids/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Lupinus/metabolism , Lupinus/growth & development , Lupinus/drug effects , Flowers/metabolism , Flowers/growth & development , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant/drug effects , Signal Transduction
8.
Curr Allergy Asthma Rep ; 24(9): 527-548, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38990406

ABSTRACT

PURPOSE OF THE REVIEW: In the last decade, an increasing trend towards a supposedly healthier vegan diet could be observed. However, recently, more cases of allergic reactions to plants and plant-based products such as meat-substitution products, which are often prepared with legumes, were reported. Here, we provide the current knowledge on legume allergen sources and the respective single allergens. We answer the question of which legumes beside the well-known food allergen sources peanut and soybean should be considered for diagnostic and therapeutic measures. RECENT FINDINGS: These "non-priority" legumes, including beans, pea, lentils, chickpea, lupine, cowpea, pigeon pea, and fenugreek, are potentially new important allergen sources, causing mild-to-severe allergic reactions. Severe reactions have been described particularly for peas and lupine. An interesting aspect is the connection between anaphylactic reactions and exercise (food-dependent exercise-induced anaphylaxis), which has only recently been highlighted for legumes such as soybean, lentils and chickpea. Most allergic reactions derive from IgE cross-reactions to homologous proteins, for example between peanut and lupine, which is of particular importance for peanut-allergic individuals ignorant to these cross-reactions. From our findings we conclude that there is a need for large-scale studies that are geographically distinctive because most studies are case reports, and geographic differences of allergic diseases towards these legumes have already been discovered for well-known "Big 9" allergen sources such as peanut and soybean. Furthermore, the review illustrates the need for a better molecular diagnostic for these emerging non-priority allergen sources to evaluate IgE cross-reactivities to known allergens and identify true allergic reactions.


Subject(s)
Allergens , Cicer , Cross Reactions , Fabaceae , Food Hypersensitivity , Lens Plant , Lupinus , Humans , Allergens/immunology , Food Hypersensitivity/immunology , Food Hypersensitivity/diagnosis , Food Hypersensitivity/therapy , Lupinus/immunology , Lupinus/adverse effects , Lens Plant/immunology , Cicer/immunology , Cicer/adverse effects , Cross Reactions/immunology , Fabaceae/immunology , Fabaceae/adverse effects , Immunoglobulin E/immunology , Pisum sativum/immunology
9.
Food Microbiol ; 122: 104555, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839234

ABSTRACT

Fermentation contributes to the taste and odor of plant cheeses. The selection of functional cultures for the fermentation of plant cheeses, however, is in its infancy. This study aimed to select lactic acid bacteria for ripening of soy and lupin cheese analogues. Bacillus velezensis and B. amyloliquefaciens were used for germination of seeds to produce proteolytic enzymes; Lactococcus lactis and Lactiplantibacillus plantarum served as primary acidifying cultures. Levilactobacillus hammesii, Furfurilactobacillus milii, or Lentilactobacillus buchneri were assessed as adjunct cultures for the ripening of plant cheese. Growth of bacilli was inhibited at low pH. Both Lc. lactis and Lp. plantarum were inactived during plant cheese ripening. Cell counts of Lv. hammesii remained stable over 45 d of ripening while Ff. milii and Lt. buchneri grew slowly. Sequencing of full length 16S rRNA genes confirmed that the inocula the plant cheeses accounted for more than 98% of the bacterial communities. HPLC analysis revealed that Lt. buchneri metabolized lactate to acetate and 1,2-propanediol during ripening. Bacilli enhanced proteolysis as measured by quantification of free amino nitrogen, and the release of glutamate. LC-MS/MS analysis quantified kokumi-active dipeptides. The concentrations of γ-Glu-Leu, γ-Glu-Ile, and γ-Glu-Ala, γ-Glu-Cys in unripened cheeses were increased by seed germination but γ-Glu-Phe was degraded. Lt. buchneri but not Lv. hammesii or Ff. milii accumulated γ-Glu-Val, γ-Glu-Ile or γ-Glu-Leu during ripening, indicating strain-specific differences. In conclusion, a consortium of bacilli, acidification cultures and adjunct cultures accumulates taste- and kokumi-active compounds during ripening of plant cheeses.


Subject(s)
Cheese , Fermentation , Food Microbiology , Cheese/microbiology , Cheese/analysis , Lupinus/microbiology , Lupinus/growth & development , Glycine max/microbiology , Glycine max/growth & development , Taste , Bacillus/metabolism , Bacillus/genetics , Bacillus/growth & development , Hydrogen-Ion Concentration , Lactobacillales/metabolism , Lactobacillales/genetics , Lactobacillales/growth & development , Lactococcus lactis/metabolism , Lactococcus lactis/growth & development , Lactococcus lactis/genetics , RNA, Ribosomal, 16S/genetics
10.
Plant Dis ; 108(8): 2542-2549, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38568787

ABSTRACT

Stem rot caused by Sclerotinia sclerotiorum is a serious and sometimes devastating disease of lupin (Lupinus spp.). A total of 236 lupin accessions from across 12 Lupinus species were screened against the prevalent S. sclerotiorum isolate MBRS-1 (pathotype 76). L. angustifolius accession 21655 and L. albus var. albus accession 20589 showed immune and "near-immune" responses, respectively. Thirteen accessions of L. angustifolius, three accessions each of L. albus and L. albus var. albus, and a single accession each of L. albus var. graecus, L. mutabilis, L. palaestinus, and L. pilosus (totaling ∼4%) showed a highly resistant (HR) response. A further 19 accessions of L. angustifolius, 2 accessions each of L. albus and L. pilosus, and a single accession of L. mutabilis (totaling ∼10%) showed a resistant (R) response. The reactions of 16 (15 L. angustifolius, 1 L. digitatus) of these 236 accessions were also compared with their reactions to a different isolate, Walkaway-3 (WW-3; pathotype 10). Against this isolate, five L. angustifolius accessions showed an HR response and four showed an R response, and the L. digitatus accession showed a moderate resistance response. Overall, isolate WW-3 caused significantly (P < 0.05) smaller lesions than MBRS-1 across tested accessions in common. In addition, 328 plants in a "wild" naturalized field population of L. cosentinii were screened in situ in the field against isolate MBRS-1. Five (∼1.5%) of the 328 plants of wild lupin showed an immune response, 63 (∼19%) showed an HR response, and 146 (∼45%) showed an R response. We believe this is the first examination of diverse Lupinus spp. germplasm responses to a prevalent pathotype of S. sclerotiorum. Lupin genotypes exhibiting high-level resistance to Sclerotinia stem rot identified in this study can be used as parental lines for crosses in lupin breeding programs and/or directly as improved cultivars to reduce the adverse impact of this disease on lupin crops.


Subject(s)
Ascomycota , Disease Resistance , Lupinus , Plant Diseases , Lupinus/microbiology , Ascomycota/physiology , Plant Diseases/microbiology , Plant Diseases/immunology
11.
Plant Dis ; 108(8): 2303-2308, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38537136

ABSTRACT

Sclerotinia sclerotiorum (Lib.) de Bary, an economically devastating soilborne fungal pathogen known to cause disease across a wide range of plants, produces long-term inoculum called sclerotia that can germinate either carpogenically by ascospores infecting aboveground plant parts or myceliogenically to infect stem base and roots. Typically, for research purposes, S. sclerotiorum diseases are initiated by direct contact methods, using S. sclerotiorum mycelium agar plugs wrapped around the stem or sclerotia placed directly beneath root mass. However, reproducible noncontact methods leading to basal stem infection are not currently available. Therefore, the objective of this study was to develop effective noncontact protocols that consistently generate basal plant stem infection from S. sclerotiorum in the soil. Using three host plant species (canola, lupin, and lettuce), we determined two methods that reliably produced basal stem infection. The first method, where mycelial agar plugs were positioned just below the soil surface at a distance of 5 mm from each seedling, led to 100% infection in all plants. The second method used pathogen-infested soil by mixing the soil with dry inoculum in the form of a powder prepared from mycelium-colonized organic substrates. Four substrates consistently produced 100% seedling infection at 4 days after inoculation (DAI): wheat bran, wheat grain, red rice, and hulled millet. In contrast, chia, canary, sesame, and ryegrass seed substrates resulted in less than 50% seedling infection at 10 DAI, and infection levels did not progress further. The two soil inoculation methods outlined in this study will enhance future research on the progression of S. sclerotiorum diseases, with the potential to screen disease-resistant host genotypes to basal S. sclerotiorum infection and, in particular, to test the effectiveness of soil applications of fungicides or biocontrol agents against S. sclerotiorum basal infection.


Subject(s)
Ascomycota , Plant Diseases , Plant Stems , Seedlings , Ascomycota/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Seedlings/microbiology , Plant Stems/microbiology , Lupinus/microbiology , Lactuca/microbiology , Brassica napus/microbiology , Plant Roots/microbiology
12.
Int J Mol Sci ; 25(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39062943

ABSTRACT

Phosphorus (P) and iron (Fe) deficiency are major limiting factors for plant productivity worldwide. White lupin (Lupinus albus L.) has become a model plant for understanding plant adaptations to P and Fe deficiency, because of its ability to form cluster roots, bottle-brush-like root structures play an important role in the uptake of P and Fe from soil. However, little is known about the signaling pathways involved in sensing and responding to P and Fe deficiency. Sucrose, sent in increased concentrations from the shoot to the root, has been identified as a long-distance signal of both P and Fe deficiency. To unravel the responses to sucrose as a signal, we performed Oxford Nanopore cDNA sequencing of white lupin roots treated with sucrose for 10, 15, or 20 min compared to untreated controls. We identified a set of 17 genes, including 2 bHLH transcription factors, that were up-regulated at all three time points of sucrose treatment. GO (gene ontology) analysis revealed enrichment of auxin and gibberellin responses as early as 10 min after sucrose addition, as well as the emerging of ethylene responses at 20 min of sucrose treatment, indicating a sequential involvement of these hormones in plant responses to sucrose.


Subject(s)
Gene Expression Regulation, Plant , Lupinus , Phosphorus , Signal Transduction , Sucrose , Lupinus/metabolism , Lupinus/genetics , Sucrose/metabolism , Phosphorus/metabolism , Phosphorus/deficiency , Iron Deficiencies , Transcriptome , Plant Roots/metabolism , Plant Roots/genetics , Adaptation, Physiological/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Profiling , Iron/metabolism
13.
Molecules ; 29(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338327

ABSTRACT

Quinolizidine alkaloids (QAs) are toxic secondary metabolites of the Lupinus species, the presence of which limits the expansion of lupin beans consumption, despite their high protein content. Evaluation of the level of alkaloids in edible Lupinus species is crucial from a food safety point of view. However, quantitation of QAs is complicated by the fact that not all important alkaloids used for quantitation are commercially available. In this context, we developed a method for the simultaneous quantitation of eight major lupin alkaloids using quantitative NMR spectroscopy (qNMR). Quantitation and analysis were performed in 15 different seed extracts of 11 Lupinus spp. some of which belonged to the same species, with different geographical origins and time of harvest, as well as in all aerial parts of L. pilosus. The mature seeds of L. pilosus were found to be a uniquely rich source of multiflorine. Additionally, we developed a protocol using adsorption or ionic resins for easy, fast, and efficient debittering of the lupine seeds. The protocol was applied to L. albus, leading to a decrease of the time required for alkaloids removal as well as water consumption and to a method for QA isolation from the debittering wastewater.


Subject(s)
Alkaloids , Lupinus , Quinolizidine Alkaloids , Lupinus/chemistry , Alkaloids/analysis , Seeds/chemistry
14.
Molecules ; 29(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39202806

ABSTRACT

The effect of the diet modification (soybean and lupine addition) on the content of protein and amino acids (AA) in eggs was studied. Both the sampling day and the diet influenced the total protein content. In albumen, the lowest protein content (10.6%) was noted after administering a diet containing 25% lupine; in the same egg the yolk contained the most proteins (16.7%). In the content of nonessential AA (NAA) in egg yolks, differences were noted only for cysteine, with its the highest content in the yolks of the control group. The stable content of essential yolk amino acids (EAA) was observed only for isoleucine, leucine, tryptophan and phenylalanine. The highest contents of EAA and NAA were recorded in the yolks of the control group (~47 and ~53 g/100 g of protein, respectively) and in the group with 25% additions of lupine (~42 and ~51 g/100 g of protein, respectively). AA with constant content in the tested albumens were methionine, tryptophan and alanine. The highest content of EAA (>~42 g/100 g of protein) and NAA (>~62 g/100 g of protein) were determined in albumen of eggs determined in the group with at least 20% additions of lupine. The highest content of EAA for humans delivered eggs from groups 4-6 (with the addition of soy into the diet ≤5%). The protein sources used in the hen diet significantly influenced the content of protein and individual AA in the produced eggs.


Subject(s)
Amino Acids , Animal Feed , Chickens , Glycine max , Lupinus , Lupinus/chemistry , Animals , Amino Acids/analysis , Animal Feed/analysis , Glycine max/chemistry , Eggs/analysis , Egg Yolk/chemistry , Egg Proteins/analysis
15.
J Sci Food Agric ; 104(6): 3381-3391, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38100295

ABSTRACT

BACKGROUND: Several different factors underlie the molecular mechanisms of phenolic compound-protein interactions. They include the environmental conditions. In the case of γ-conglutin, pH conditions translate directly into the adoption of two distinct oligomeric assemblies, i.e. hexameric (pH 7.5) or monomeric (pH 4.5). This paper reports research on the pH-dependent oligomerization of γ-conglutin in terms of its ability to form complexes with a model flavonoid (vitexin). RESULTS: Fluorescence-quenching thermodynamic measurements indicate that hydrogen bonds, electrostatic forces, and van der Waals interactions are the main driving forces involved in the complex formation. The interaction turned out to be a spontaneous and exothermic process. Assessment of structural composition (secondary structure changes and arrangement/dynamics of aromatic amino acids), molecular size, and the thermal stability of the different oligomeric forms showed that γ-conglutin in a monomeric state was less affected by vitexin during the interaction. CONCLUSION: The data show precisely how environmental conditions might influence phenolic compound-protein complex formation directly. This knowledge is essential for the preparation of food products containing γ-conglutin. The results can contribute to a better understanding of the detailed fate of this unique health-promoting lupin seed protein after its intake. © 2023 Society of Chemical Industry.


Subject(s)
Lupinus , Plant Proteins , Plant Proteins/metabolism , Lupinus/chemistry , Apigenin/analysis , Seeds/chemistry
16.
Plant Foods Hum Nutr ; 79(1): 90-97, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38060143

ABSTRACT

Global population growth poses a threat to sustainable development. Meanwhile, the use of plant proteins as healthy and sustainable alternatives to animal proteins needs further research. Therefore, this investigation was designed to study the nutritive, structural, and thermal properties of isolated protein fractions from different legumes, i.e., faba bean (FPI), soybean (SPI), and lupine (LPI). As a prospective plant-based protein powder, an equal mixture (MPI) of the three prior legume samples was formulated to study its properties compared to each sole sample. The alkaline extraction and isoelectric precipitation (AE-IP) technique was used for protein isolation. Results showed that all protein isolates had reasonable levels of protein with maximum protein content in SPI (96.15%). The MPI sample, however, came out on top in terms of amino acid profile followed by FBI. Compared to SPI and LPI, it had the highest isoleucine content and higher methionine, valine, leucine, phenylalanine, and lysine. Moreover, MPI showed a median particle charge (-37.1 mV) compared to FPI, SPI, and LPI samples. MPI sample peak showed resistance to heat denaturation at a temperature greater than 200 °C when the DSC test was conducted. With respect to its rheological characteristics, it outperformed the other three protein isolates and exhibited the highest values of storage modulus G' and loss modulus G". Consequently, our study suggests that pulse-derived protein isolate mixture can be used as a unique type of nutritious dietary protein supplement. It could be a good nutritional alternative to proteins derived from animals.


Subject(s)
Lupinus , Vicia faba , Animals , Humans , Vegans , Glycine max , Diet, Vegan , Vegetables , Plant Proteins
17.
Plant J ; 111(5): 1252-1266, 2022 09.
Article in English | MEDLINE | ID: mdl-35779281

ABSTRACT

Narrow-leafed lupin (NLL; Lupinus angustifolius) is a key rotational crop for sustainable farming systems, whose grain is high in protein content. It is a gluten-free, non-genetically modified, alternative protein source to soybean (Glycine max) and as such has gained interest as a human food ingredient. Here, we present a chromosome-length reference genome for the species and a pan-genome assembly comprising 55 NLL lines, including Australian and European cultivars, breeding lines and wild accessions. We present the core and variable genes for the species and report on the absence of essential mycorrhizal associated genes. The genome and pan-genomes of NLL and its close relative white lupin (Lupinus albus) are compared. Furthermore, we provide additional evidence supporting LaRAP2-7 as the key alkaloid regulatory gene for NLL and demonstrate the NLL genome is underrepresented in classical NLR disease resistance genes compared to other sequenced legume species. The NLL genomic resources generated here coupled with previously generated RNA sequencing datasets provide new opportunities to fast-track lupin crop improvement.


Subject(s)
Lupinus , Australia , Chromosomes , Genomics , Humans , Lupinus/genetics , Plant Breeding
18.
Plant J ; 112(5): 1127-1140, 2022 12.
Article in English | MEDLINE | ID: mdl-36178138

ABSTRACT

Emergence of secondary roots through parental tissue is a highly controlled developmental process. Although the model plant Arabidopsis has been useful to uncover the predominant role of auxin in this process, its simple root structure is not representative of how emergence takes place in most plants, which display more complex root anatomy. White lupin is a legume crop producing structures called cluster roots, where closely spaced rootlets emerge synchronously. Rootlet primordia push their way through several cortical cell layers while maintaining the parent root integrity, reflecting more generally the lateral root emergence process in most multilayered species. In this study, we showed that lupin rootlet emergence is associated with an upregulation of cell wall pectin modifying and degrading genes under the active control of auxin. Among them, we identified LaPG3, a polygalacturonase gene typically expressed in cells surrounding the rootlet primordium and we showed that its downregulation delays emergence. Immunolabeling of pectin epitopes and their quantification uncovered a gradual pectin demethylesterification in the emergence zone, which was further enhanced by auxin treatment, revealing a direct hormonal control of cell wall properties. We also report rhamnogalacturonan-I modifications affecting cortical cells that undergo separation as a consequence of primordium outgrowth. In conclusion, we describe a model of how external tissues in front of rootlet primordia display cell wall modifications to allow for the passage of newly formed rootlets.


Subject(s)
Arabidopsis , Lupinus , Indoleacetic Acids , Gene Expression Regulation, Plant , Plant Roots/genetics , Lupinus/genetics , Arabidopsis/genetics , Pectins , Plants
19.
Plant J ; 111(2): 348-359, 2022 07.
Article in English | MEDLINE | ID: mdl-35603461

ABSTRACT

Quantifying root water uptake is essential to understanding plant water use and responses to different environmental conditions. However, non-destructive measurement of water transport and related hydraulics in the soil-root system remains a challenge. Neutron imaging, with its high sensitivity to hydrogen, has become an unparalleled tool to visualize and quantify root water uptake in vivo. In combination with isotopes (e.g., deuterated water) and a diffusion-convection model, root water uptake and hydraulic redistribution in root and soil can be quantified. Here, we review recent advances in utilizing neutron imaging to visualize and quantify root water uptake, hydraulic redistribution in roots and soil, and root hydraulic properties of different plant species. Under uniform soil moisture distributions, neutron radiographic studies have shown that water uptake was not uniform along the root and depended on both root type and age. For both tap (e.g., lupine [Lupinus albus L.]) and fibrous (e.g., maize [Zea mays L.]) root systems, water was mainly taken up through lateral roots. In mature maize, the location of water uptake shifted from seminal roots and their laterals to crown/nodal roots and their laterals. Under non-uniform soil moisture distributions, part of the water taken up during the daytime maintained the growth of crown/nodal roots in the upper, drier soil layers. Ultra-fast neutron tomography provides new insights into 3D water movement in soil and roots. We discuss the limitations of using neutron imaging and propose future directions to utilize neutron imaging to advance our understanding of root water uptake and soil-root interactions.


Subject(s)
Lupinus , Water , Biological Transport , Neutrons , Plant Roots , Soil , Water/physiology , Zea mays
20.
Biochem Biophys Res Commun ; 673: 175-178, 2023 09 17.
Article in English | MEDLINE | ID: mdl-37392481

ABSTRACT

γ-conglutin (γ-C) is a hexameric glycoprotein accumulated in lupin seeds and has long been considered as a storage protein. Recently, it has been investigated for its possible postprandial glycaemic regulating action in human nutrition and for its physiological role in plant defence. The quaternary structure of γ-C results from the assembly of six monomers in reversible pH-dependent association/dissociation equilibrium. Our working hypothesis was that the γ-C hexamer is made up of glycosylated subunits in association with not-glycosylated isoforms, that seem to have 'escaped' the correct glycosylation process in the Golgi. Here we describe the isolation of not-glycosylated γ-C monomers in native condition by two in tandem lectin-based affinity chromatography and the characterization of their oligomerization capacity. We report, for the first time, the observation that a plant multimeric protein may be formed by identical polypeptide chains that have undergone different post-translational modifications. All obtained considered, the results strongly suggest that the not-glycosylated isoform can also take part in the oligomerization equilibrium of the protein.


Subject(s)
Lupinus , Humans , Lupinus/chemistry , Lupinus/metabolism , Glycosylation , Plant Proteins/metabolism , Glycoproteins/metabolism , Seeds/metabolism , Protein Isoforms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL