Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Publication year range
1.
Lancet ; 403(10437): 1660-1670, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38583454

ABSTRACT

BACKGROUND: The RTS,S/AS01E malaria vaccine (RTS,S) was introduced by national immunisation programmes in Ghana, Kenya, and Malawi in 2019 in large-scale pilot schemes. We aimed to address questions about feasibility and impact, and to assess safety signals that had been observed in the phase 3 trial that included an excess of meningitis and cerebral malaria cases in RTS,S recipients, and the possibility of an excess of deaths among girls who received RTS,S than in controls, to inform decisions about wider use. METHODS: In this prospective evaluation, 158 geographical clusters (66 districts in Ghana; 46 sub-counties in Kenya; and 46 groups of immunisation clinic catchment areas in Malawi) were randomly assigned to early or delayed introduction of RTS,S, with three doses to be administered between the ages of 5 months and 9 months and a fourth dose at the age of approximately 2 years. Primary outcomes of the evaluation, planned over 4 years, were mortality from all causes except injury (impact), hospital admission with severe malaria (impact), hospital admission with meningitis or cerebral malaria (safety), deaths in girls compared with boys (safety), and vaccination coverage (feasibility). Mortality was monitored in children aged 1-59 months throughout the pilot areas. Surveillance for meningitis and severe malaria was established in eight sentinel hospitals in Ghana, six in Kenya, and four in Malawi. Vaccine uptake was measured in surveys of children aged 12-23 months about 18 months after vaccine introduction. We estimated that sufficient data would have accrued after 24 months to evaluate each of the safety signals and the impact on severe malaria in a pooled analysis of the data from the three countries. We estimated incidence rate ratios (IRRs) by comparing the ratio of the number of events in children age-eligible to have received at least one dose of the vaccine (for safety outcomes), or age-eligible to have received three doses (for impact outcomes), to that in non-eligible age groups in implementation areas with the equivalent ratio in comparison areas. To establish whether there was evidence of a difference between girls and boys in the vaccine's impact on mortality, the female-to-male mortality ratio in age groups eligible to receive the vaccine (relative to the ratio in non-eligible children) was compared between implementation and comparison areas. Preliminary findings contributed to WHO's recommendation in 2021 for widespread use of RTS,S in areas of moderate-to-high malaria transmission. FINDINGS: By April 30, 2021, 652 673 children had received at least one dose of RTS,S and 494 745 children had received three doses. Coverage of the first dose was 76% in Ghana, 79% in Kenya, and 73% in Malawi, and coverage of the third dose was 66% in Ghana, 62% in Kenya, and 62% in Malawi. 26 285 children aged 1-59 months were admitted to sentinel hospitals and 13 198 deaths were reported through mortality surveillance. Among children eligible to have received at least one dose of RTS,S, there was no evidence of an excess of meningitis or cerebral malaria cases in implementation areas compared with comparison areas (hospital admission with meningitis: IRR 0·63 [95% CI 0·22-1·79]; hospital admission with cerebral malaria: IRR 1·03 [95% CI 0·61-1·74]). The impact of RTS,S introduction on mortality was similar for girls and boys (relative mortality ratio 1·03 [95% CI 0·88-1·21]). Among children eligible for three vaccine doses, RTS,S introduction was associated with a 32% reduction (95% CI 5-51%) in hospital admission with severe malaria, and a 9% reduction (95% CI 0-18%) in all-cause mortality (excluding injury). INTERPRETATION: In the first 2 years of implementation of RTS,S, the three primary doses were effectively deployed through national immunisation programmes. There was no evidence of the safety signals that had been observed in the phase 3 trial, and introduction of the vaccine was associated with substantial reductions in hospital admission with severe malaria. Evaluation continues to assess the impact of four doses of RTS,S. FUNDING: Gavi, the Vaccine Alliance; the Global Fund to Fight AIDS, Tuberculosis and Malaria; and Unitaid.


Subject(s)
Feasibility Studies , Immunization Programs , Malaria Vaccines , Malaria, Cerebral , Humans , Ghana/epidemiology , Malawi/epidemiology , Infant , Female , Kenya/epidemiology , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Male , Child, Preschool , Malaria, Cerebral/epidemiology , Malaria, Cerebral/mortality , Prospective Studies , Malaria, Falciparum/prevention & control , Malaria, Falciparum/epidemiology , Meningitis/epidemiology , Meningitis/prevention & control
2.
J Infect Dis ; 230(2): e486-e495, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38438123

ABSTRACT

BACKGROUND: The RTS,S/AS01E (RTS,S) malaria vaccine is recommended for children in malaria endemic areas. This phase 2b trial evaluates RTS,S fractional- and full-dose regimens in Ghana and Kenya. METHODS: In total, 1500 children aged 5-17 months were randomized (1:1:1:1:1) to receive RTS,S or rabies control vaccine. RTS,S groups received 2 full RTS,S doses at months 0 and 1 and either full (groups R012-20, R012-14-26) or fractional doses (one-fifth; groups Fx012-14-26, Fx017-20-32). RESULTS: At month 32 post-dose 1, vaccine efficacy against clinical malaria (all episodes) ranged from 38% (R012-20; 95% confidence interval [CI]: 24%-49%) to 53% (R012-14-26; 95% CI: 42%-62%). Vaccine impact (cumulative number of cases averted/1000 children vaccinated) was 1344 (R012-20), 2450 (R012-14-26), 2273 (Fx012-14-26), and 2112 (Fx017-20-32). To account for differences in vaccine volume (fractional vs full dose; post hoc analysis), we estimated cases averted/1000 RTS,S full-dose equivalents: 336 (R012-20), 490 (R012-14-26), 874 (Fx012-14-26), and 880 (Fx017-20-32). CONCLUSIONS: Vaccine efficacy was similar across RTS,S groups. Vaccine impact accounting for full-dose equivalence suggests that using fractional-dose regimens could be a viable dose-sparing strategy. If maintained through trial end, these observations underscore the means to reduce cost per regimen thus maximizing impact and optimizing supply. CLINICAL TRIALS REGISTRATION: NCT03276962 (ClinicalTrials.gov).


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Vaccine Efficacy , Humans , Malaria Vaccines/administration & dosage , Malaria Vaccines/immunology , Ghana , Infant , Kenya , Female , Male , Malaria, Falciparum/prevention & control , Malaria, Falciparum/epidemiology , Immunization Schedule , Malaria/prevention & control , Plasmodium falciparum/immunology
3.
J Infect Dis ; 229(6): 1883-1893, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38330357

ABSTRACT

BACKGROUND: Malaria is preventable yet causes >600 000 deaths annually. RTS,S, the first marketed malaria vaccine, has modest efficacy, but improvements are needed for eradication. METHODS: We conducted an open-label, dose escalation phase 1 study of a full-length recombinant circumsporozoite protein vaccine (rCSP) administered with adjuvant glucopyranosyl lipid A-liposome Quillaja saponaria 21 formulation (GLA-LSQ) on days 1, 29, and 85 or 1 and 490 to healthy, malaria-naive adults. The primary end points were safety and reactogenicity. The secondary end points were antibody responses and Plasmodium falciparum parasitemia after homologous controlled human malaria infection. RESULTS: Participants were enrolled into 4 groups receiving rCSP/GLA-LSQ: 10 µg × 3 (n = 20), 30 µg × 3 (n = 10), 60 µg × 3 (n = 10), or 60 µg × 2 (n = 9); 10 participants received 30 µg rCSP alone × 3, and there were 6 infectivity controls. Participants experienced no serious adverse events. Rates of solicited and unsolicited adverse events were similar among groups. All 26 participants who underwent controlled human malaria infection 28 days after final vaccinations developed malaria. Increasing vaccine doses induced higher immunoglobulin G titers but did not achieve previously established RTS,S benchmarks. CONCLUSIONS: rCSP/GLA-LSQ had favorable safety results. However, tested regimens did not induce protective immunity. Further investigation could assess whether adjuvant or schedule adjustments improve efficacy. CLINICAL TRIALS REGISTRATION: NCT03589794.


Subject(s)
Adjuvants, Immunologic , Antibodies, Protozoan , Lipid A , Liposomes , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Humans , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Malaria, Falciparum/prevention & control , Malaria, Falciparum/immunology , Adult , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Female , Male , Adjuvants, Immunologic/administration & dosage , Young Adult , Lipid A/analogs & derivatives , Lipid A/administration & dosage , Lipid A/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Quillaja/chemistry , Adolescent , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Middle Aged , Glucosides
4.
BMC Med ; 22(1): 170, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649867

ABSTRACT

BACKGROUND: The stalling global progress in malaria control highlights the need for novel tools for malaria elimination, including transmission-blocking vaccines. Transmission-blocking vaccines aim to induce human antibodies that block parasite development in the mosquito and mosquitoes becoming infectious. The Pfs48/45 protein is a leading Plasmodium falciparum transmission-blocking vaccine candidate. The R0.6C fusion protein, consisting of Pfs48/45 domain 3 (6C) and the N-terminal region of P. falciparum glutamate-rich protein (R0), has previously been produced in Lactococcus lactis and elicited functional antibodies in rodents. Here, we assess the safety and transmission-reducing efficacy of R0.6C adsorbed to aluminium hydroxide with and without Matrix-M™ adjuvant in humans. METHODS: In this first-in-human, open-label clinical trial, malaria-naïve adults, aged 18-55 years, were recruited at the Radboudumc in Nijmegen, the Netherlands. Participants received four intramuscular vaccinations on days 0, 28, 56 and 168 with either 30 µg or 100 µg of R0.6C and were randomised for the allocation of one of the two different adjuvant combinations: aluminium hydroxide alone, or aluminium hydroxide combined with Matrix-M1™ adjuvant. Adverse events were recorded from inclusion until 84 days after the fourth vaccination. Anti-R0.6C and anti-6C IgG titres were measured by enzyme-linked immunosorbent assay. Transmission-reducing activity of participants' serum and purified vaccine-specific immunoglobulin G was assessed by standard membrane feeding assays using laboratory-reared Anopheles stephensi mosquitoes and cultured P. falciparum gametocytes. RESULTS: Thirty-one participants completed four vaccinations and were included in the analysis. Administration of all doses was safe and well-tolerated, with one related grade 3 adverse event (transient fever) and no serious adverse events occurring. Anti-R0.6C and anti-6C IgG titres were similar between the 30 and 100 µg R0.6C arms, but higher in Matrix-M1™ arms. Neat participant sera did not induce significant transmission-reducing activity in mosquito feeding experiments, but concentrated vaccine-specific IgGs purified from sera collected two weeks after the fourth vaccination achieved up to 99% transmission-reducing activity. CONCLUSIONS: R0.6C/aluminium hydroxide with or without Matrix-M1™ is safe, immunogenic and induces functional Pfs48/45-specific transmission-blocking antibodies, albeit at insufficient serum concentrations to result in transmission reduction by neat serum. Future work should focus on identifying alternative vaccine formulations or regimens that enhance functional antibody responses. TRIAL REGISTRATION: The trial is registered with ClinicalTrials.gov under identifier NCT04862416.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Membrane Glycoproteins , Plasmodium falciparum , Protozoan Proteins , Adolescent , Adult , Animals , Female , Humans , Male , Middle Aged , Young Adult , Adjuvants, Immunologic/administration & dosage , Aluminum Hydroxide/administration & dosage , Antibodies, Protozoan , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Malaria, Falciparum/prevention & control , Malaria, Falciparum/transmission , Malaria, Falciparum/immunology , Netherlands , Plasmodium falciparum/immunology , Protozoan Proteins/immunology
5.
Malar J ; 23(1): 182, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858779

ABSTRACT

BACKGROUND: The World Health Organization novel malaria vaccine for at-risk children has the potential to greatly reduce the current malaria burden in sub-Saharan Africa. However, most studies have reported contradictory findings regarding community willingness for the vaccine, which could easily undermine the expected benefits of the vaccine. This study aims to ascertain the current state of community readiness and acceptance for the implementation of a novel malaria vaccine (RTS,S/ASO1) among at-risk children in sub-Saharan Africa, based on available evidence. METHODS: This study will follow the Preferred Reporting Items for Systematic Reviews and Meta-analyses protocol (PRISMA-P) guidelines. Relevant studies will be comprehensively searched from PubMed, ScienceDirect, Web of Science, Google Scholar, and African journals online, in accordance with the Cochrane search guidelines. Two independent reviewers will screen titles, abstracts and full texts of eligible studies based on some specified eligibility criteria. When it is feasible to conduct a meta-analysis, a random effects model will be employed to estimate the common effect due to anticipated high heterogeneity of the data. The effect measure for readiness or acceptance will be reported as a pooled proportion with corresponding 95% confidence interval. Additionally, odds ratios with 95% confidence interval will be estimated to assess factors associated with readiness. These will be presented on a forest plot. DISSEMINATION PLANS: The findings of the study will be peer-reviewed and published in a scientific journal. Conference presentations will also be made to the different stakeholders in the malaria vaccination campaigns. SYSTEMATIC REVIEW REGISTRATION: The protocol has been registered with PROSPERO Registration Number: CRD42023480528.


Subject(s)
Malaria Vaccines , Systematic Reviews as Topic , Africa South of the Sahara , Malaria Vaccines/administration & dosage , Humans , Malaria/prevention & control , Child , Child, Preschool , Patient Acceptance of Health Care/statistics & numerical data , Patient Acceptance of Health Care/psychology
6.
Malar J ; 23(1): 117, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664783

ABSTRACT

BACKGROUND: There are giant steps taken in the introduction of the novel malaria vaccine poised towards reducing mortality and morbidity associated with malaria. OBJECTIVES: This study aimed to determine the knowledge of malaria vaccine and factors militating against willingness to accept the vaccine among mothers presenting in nine hospitals in Enugu metropolis. METHODS: This was a cross-sectional study carried out among 491 mothers who presented with their children in nine hospitals in Enugu metropolis, South-East Nigeria. A pre-tested and interviewer-administered questionnaire was used in this study. RESULTS: A majority of the respondents, 72.1% were aware of malaria vaccine. A majority of the respondents, 83.1% were willing to receive malaria vaccine. Similarly, a majority of the mothers, 92.9%, were willing to vaccinate baby with the malaria vaccine, while 81.1% were willing to vaccinate self and baby with the malaria vaccine. The subjects who belong to the low socio-economic class were five times less likely to vaccinate self and baby with malaria vaccine when compared with those who were in the high socio-economic class (AOR = 0.2, 95% CI 0.1-0.5). Mothers who had good knowledge of malaria vaccination were 3.3 times more likely to vaccinate self and baby with malaria vaccine when compared with those who had poor knowledge of malaria vaccination (AOR = 3.3, 95% CI 1-6-6.8). CONCLUSION: Although the study documented a high vaccine acceptance among the mothers, there exists a poor knowledge of the malaria vaccine among them.


Subject(s)
Health Knowledge, Attitudes, Practice , Malaria Vaccines , Patient Acceptance of Health Care , Humans , Nigeria , Cross-Sectional Studies , Female , Adult , Young Adult , Malaria Vaccines/administration & dosage , Patient Acceptance of Health Care/statistics & numerical data , Patient Acceptance of Health Care/psychology , Adolescent , Malaria/prevention & control , Mothers/psychology , Mothers/statistics & numerical data , Middle Aged , Surveys and Questionnaires , Ambulatory Care Facilities/statistics & numerical data , Infant
7.
Malar J ; 23(1): 142, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38734664

ABSTRACT

BACKGROUND: The newly developed malaria vaccine called "R21/Matrix-M malaria vaccine" showed a high safety and efficacy level, and Ghana is the first country to approve this new vaccine. The present study aimed to evaluate the rate of vaccine hesitancy (VH) towards the newly developed malaria vaccine among parents who currently have children who are not eligible for the vaccine but may be eligible in the near future. Additionally, the study aimed to identify the factors that could potentially influence VH. METHODS: A cross-sectional survey using both online-based questionnaires and face-to-face interviews was conducted in Ghana from June to August 2023. The survey specifically targeted parents of ineligible children for vaccination, including those aged less than 5 months or between 3 and 12 years. The Parent Attitudes about Childhood Vaccination (PACV) scale was used to assess parental VH. RESULTS: A total of 765 people participated in this study. Their median age was 36.0 years with an interquartile range of 31.0-41.0 years, 67.7% were females, 41.8% completed their tertiary education, 63.3% were married, 81.6% worked in non-healthcare sectors, and 59.7% reported that their monthly income was insufficient. About one-third (34.5%) of the parents were hesitant to give their children the R21/Matrix-M malaria vaccine. The following predictors were associated with VH: working in the healthcare sector (adjusted odds ratio (AOR) = 0.50; 95% confidence interval (CI) 0.30-0.80; p = 0.005), having the other parent working in the healthcare sector (AOR = 0.54; 95% CI 0.30-0.94; p = 0.034), and not taking scheduled routine vaccinations (AOR = 1.90; 95% CI 1.27-2.84; p = 0.002). CONCLUSIONS: Addressing VH is crucial for optimizing R21/Matrix-M vaccine coverage in Ghana's malaria control strategy. By tackling VH issues, Ghana can effectively safeguard children's health in malaria-prone areas.


Subject(s)
Malaria Vaccines , Parents , Humans , Ghana , Cross-Sectional Studies , Female , Male , Malaria Vaccines/administration & dosage , Adult , Parents/psychology , Child, Preschool , Child , Vaccination Hesitancy/statistics & numerical data , Vaccination Hesitancy/psychology , Infant , Surveys and Questionnaires , Vaccination/statistics & numerical data , Vaccination/psychology , Malaria/prevention & control , Middle Aged
8.
Rev Med Suisse ; 20(872): 872-875, 2024 May 01.
Article in French | MEDLINE | ID: mdl-38693799

ABSTRACT

A malaria vaccine represents an essential complementary tool to curb the stagnation, or even increase, in malaria cases observed over the last decade due to the emergence of resistance to insecticides impregnated on mosquito nets, wars and internal conflicts, as well as global warming. In October 2021, WHO recommended the use of the RTS,S/ASO1 vaccine for children aged 5-17 months in areas of moderate to high transmission. In October 2023, a second vaccine received WHO approval for deployment in the same population, following demonstration of around 70 % efficacy in protecting young children against malaria for one year. Given their partial efficacy, however, these vaccines are not generally recommended for travelers to endemic countries.


Un vaccin contre le paludisme représente une mesure complémentaire essentielle pour juguler la stagnation, voire l'augmentation des cas de paludisme observée durant cette dernière décade en raison de l'émergence de la résistance aux insecticides imprégnés sur les moustiquaires, des guerres et conflits internes ainsi que du réchauffement climatique. En octobre 2021, l'OMS a recommandé l'emploi du vaccin RTS,S/ASO1 pour les enfants de 5 à 17 mois dans les zones de transmission modérée à forte. En octobre 2023, un second vaccin a reçu l'aval de l'OMS pour son déploiement dans la même population, suite à la démonstration d'une efficacité d'environ 70 % pour protéger les jeunes enfants contre le paludisme pendant une année. Vu leur efficacité partielle, ces vaccins ne sont cependant généralement pas recommandés pour les voyageurs se rendant dans les pays d'endémie.


Subject(s)
Malaria Vaccines , Malaria , Humans , Malaria Vaccines/administration & dosage , Malaria/prevention & control , World Health Organization , Infant , Disease Eradication/methods , Disease Eradication/organization & administration
9.
BMJ Glob Health ; 9(4)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688566

ABSTRACT

In October 2021, the WHO recommended the world's first malaria vaccine-RTS,S/AS01-to prevent malaria in children living in areas with moderate-to-high transmission in sub-Saharan Africa (SSA). A second malaria vaccine, R21/Matrix-M, was recommended for use in October 2023 and added to the WHO list of prequalified vaccines in December 2023. This study analysis assessed the country status of implementation and delivery strategies for RTS,S/AS01 by searching websites for national malaria policies, guidelines and related documents. Direct contact with individuals working in malaria programmes was made to obtain documents not publicly available. 10 countries had documents with information relating to malaria vaccine implementation, 7 referencing RTS,S/AS01 and 3 (Burkina Faso, Kenya and Nigeria) referencing RTS,S/AS01 and R21/Matrix-M. Five other countries reported plans for malaria vaccine roll-out without specifying which vaccine. Ghana, Kenya and Malawi, which piloted RTS,S/AS01, have now integrated the vaccine into routine immunisation services. Cameroon and Burkina Faso are the first countries outside the pilot countries to incorporate the vaccine into national immunisation services. Uganda plans a phased RTS,S/AS01 introduction, while Guinea plans to first pilot RTS,S/AS01 in five districts. The RTS,S/AS01 schedule varied by country, with the first dose administered at 5 or 6 months in all countries but the fourth dose at either 18, 22 or 24 months. SSA countries have shown widespread interest in rolling out the malaria vaccine, the Global Alliance for Vaccines and Immunization having approved financial support for 20 of 30 countries which applied as of March 2024. Limited availability of RTS,S/AS01 means that some approved countries will not receive the required doses. Vaccine availability and equity must be addressed even as R21/Matrix-M becomes available.


Subject(s)
Malaria Vaccines , World Health Organization , Humans , Malaria Vaccines/administration & dosage , Africa South of the Sahara , Malaria/prevention & control , Immunization Programs , Health Policy
10.
Vaccine ; 42(15): 3379-3383, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38704250

ABSTRACT

The Immunization and Vaccine-related Implementation Research Advisory Committee (IVIR-AC) is the World Health Organization's key standing advisory body to conduct an independent review of research, particularly of transmission and economic modeling analyses that estimate the impact and value of vaccines. From 26th February-1st March 2024, at its first of two semi-annual meetings, IVIR-AC provided feedback and recommendations across four sessions; this report summarizes the proceedings and recommendations from that meeting. Session topics included modeling of the impact and cost-effectiveness of the R21/Matrix-M malaria vaccine, meta-analysis of economic evaluations of vaccines, a global analysis estimating the impact of vaccination over the last 50 years, and modeling the impact of different RTS,S malaria vaccine dose schedules in seasonal settings.


Subject(s)
Advisory Committees , Malaria Vaccines , World Health Organization , Humans , Malaria Vaccines/administration & dosage , Malaria Vaccines/immunology , Cost-Benefit Analysis , Vaccination/methods , Malaria/prevention & control , Immunization/methods
11.
Medicine (Baltimore) ; 103(24): e38565, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875411

ABSTRACT

Malaria remains an endemic public health concern in Africa, significantly contributing to morbidity and mortality rates. The inadequacies of traditional prevention measures, like integrated vector management and antimalarial drugs, have spurred efforts to strengthen the development and deployment of malaria vaccines. In addition to existing interventions like insecticide-treated bed nets and artemisinin-based combination therapies, malaria vaccine introduction and implementation in Africa could drastically reduce the disease burden and hasten steps toward malaria elimination. The malaria vaccine rollout is imminent as optimistic results from final clinical trials are anticipated. Thus, determining potential hurdles to malaria vaccine delivery and uptake in malaria-endemic regions of sub-Saharan Africa will enhance decisions and policymakers' preparedness to facilitate efficient and equitable vaccine delivery. A multisectoral approach is recommended to increase funding and resources, active community engagement and participation, and the involvement of healthcare providers.


Subject(s)
Malaria Vaccines , Malaria , Humans , Malaria Vaccines/administration & dosage , Malaria Vaccines/therapeutic use , Malaria/prevention & control , Africa/epidemiology , Vaccination , Africa South of the Sahara/epidemiology
12.
Expert Rev Vaccines ; 23(1): 645-654, 2024.
Article in English | MEDLINE | ID: mdl-38888098

ABSTRACT

INTRODUCTION: Malaria continues to remain a major global health problem with nearly a quarter of a billion clinical cases and more than 600,000 deaths in 2022. There has been significant progress toward vaccine development, however, poor efficacy of approved vaccines requiring multiple immunizing doses emphasizes the need for continued efforts toward improved vaccines. Progress to date, nonetheless, has provided impetus for malaria elimination. AREAS COVERED: In this review we will focus on diverse immune mechanisms targeting gametocytes in the human host and gametocyte-mediated malaria transmission via the mosquito vector. EXPERT OPINION: To march toward the goal of malaria elimination it will be critical to target the process of malaria transmission by mosquitoes, mediated exclusively by the sexual stages, i.e. male, and female gametocytes, ingested from infected vertebrate host. Studies over several decades have established antigens in the parasite sexual stages developing in the mosquito midgut as attractive targets for the development of transmission blocking vaccines (TBVs). Immune clearance of gametocytes in the vertebrate host can synergize with TBVs and directly aid in maintaining effective transmission reducing immune potential.


Subject(s)
Malaria Vaccines , Malaria , Mosquito Vectors , Vaccine Development , Humans , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Animals , Malaria/prevention & control , Malaria/transmission , Malaria/immunology , Malaria/parasitology , Mosquito Vectors/parasitology , Mosquito Vectors/immunology , Plasmodium/immunology
13.
Lancet Infect Dis ; 24(5): 465-475, 2024 May.
Article in English | MEDLINE | ID: mdl-38342107

ABSTRACT

BACKGROUND: The R21/Matrix-M vaccine has demonstrated high efficacy against Plasmodium falciparum clinical malaria in children in sub-Saharan Africa. Using trial data, we aimed to estimate the public health impact and cost-effectiveness of vaccine introduction across sub-Saharan Africa. METHODS: We fitted a semi-mechanistic model of the relationship between anti-circumsporozoite protein antibody titres and vaccine efficacy to data from 3 years of follow-up in the phase 2b trial of R21/Matrix-M in Nanoro, Burkina Faso. We validated the model by comparing predicted vaccine efficacy to that observed over 12-18 months in the phase 3 trial. Integrating this framework within a mathematical transmission model, we estimated the cases, malaria deaths, and disability-adjusted life-years (DALYs) averted and cost-effectiveness over a 15-year time horizon across a range of transmission settings in sub-Saharan Africa. Cost-effectiveness was estimated incorporating the cost of vaccine introduction (dose, consumables, and delivery) relative to existing interventions at baseline. We report estimates at a median of 20% parasite prevalence in children aged 2-10 years (PfPR2-10) and ranges from 3% to 65% PfPR2-10. FINDINGS: Anti-circumsporozoite protein antibody titres were found to satisfy the criteria for a surrogate of protection for vaccine efficacy against clinical malaria. Age-based implementation of a four-dose regimen of R21/Matrix-M vaccine was estimated to avert 181 825 (range 38 815-333 491) clinical cases per 100 000 fully vaccinated children in perennial settings and 202 017 (29 868-405 702) clinical cases per 100 000 fully vaccinated children in seasonal settings. Similar estimates were obtained for seasonal or hybrid implementation. Under an assumed vaccine dose price of US$3, the incremental cost per clinical case averted was $7 (range 4-48) in perennial settings and $6 (3-63) in seasonal settings and the incremental cost per DALY averted was $34 (29-139) in perennial settings and $30 (22-172) in seasonal settings, with lower cost-effectiveness ratios in settings with higher PfPR2-10. INTERPRETATION: Introduction of the R21/Matrix-M malaria vaccine could have a substantial public health benefit across sub-Saharan Africa. FUNDING: The Wellcome Trust, the Bill & Melinda Gates Foundation, the UK Medical Research Council, the European and Developing Countries Clinical Trials Partnership 2 and 3, the NIHR Oxford Biomedical Research Centre, and the Serum Institute of India, Open Philanthropy.


Subject(s)
Cost-Benefit Analysis , Malaria Vaccines , Malaria, Falciparum , Models, Theoretical , Public Health , Humans , Malaria Vaccines/economics , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Malaria, Falciparum/prevention & control , Malaria, Falciparum/epidemiology , Malaria, Falciparum/economics , Burkina Faso/epidemiology , Child, Preschool , Public Health/economics , Plasmodium falciparum/immunology , Child , Protozoan Proteins/immunology , Antibodies, Protozoan/blood , Vaccine Efficacy , Infant , Male , Female
14.
Front Immunol ; 15: 1372584, 2024.
Article in English | MEDLINE | ID: mdl-38745665

ABSTRACT

Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and >95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25-PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed >75% TB activity and >95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.


Subject(s)
Dependovirus , Genetic Vectors , Malaria Vaccines , Malaria, Vivax , Plasmodium vivax , Animals , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Plasmodium vivax/immunology , Plasmodium vivax/genetics , Malaria, Vivax/prevention & control , Malaria, Vivax/transmission , Malaria, Vivax/immunology , Mice , Dependovirus/genetics , Dependovirus/immunology , Female , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Disease Models, Animal , Vaccinia virus/genetics , Vaccinia virus/immunology , Humans , Mice, Inbred BALB C , Immunization, Secondary , Vaccine Efficacy
15.
Am J Trop Med Hyg ; 110(5): 892-901, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38531102

ABSTRACT

Malaria eradication efforts prioritize safe and efficient vaccination strategies, although none with high-level efficacy against malaria infection are yet available. Among several vaccine candidates, Sanaria® PfSPZ Vaccine and Sanaria PfSPZ-CVac are, respectively, live radiation- and chemo-attenuated sporozoite vaccines designed to prevent infection with Plasmodium falciparum, the leading cause of malaria-related morbidity and mortality. We are conducting a randomized normal saline placebo-controlled trial called IDSPZV1 that will analyze the safety, tolerability, immunogenicity, and efficacy of PfSPZ Vaccine and PfSPZ-CVac administered pre-deployment to malaria-naive Indonesian soldiers assigned to temporary duties in a high malaria transmission area. We describe the manifold challenges of enrolling and immunizing 345 soldier participants at their home base in western Indonesia before their nearly 6,000-km voyage to eastern Indonesia, where they are being monitored for incident P. falciparum and Plasmodium vivax malaria cases during 9 months of exposure. The unique regulatory, ethical, and operational complexities of this trial demonstrate the importance of thorough planning, frequent communication, and close follow-up with stakeholders. Effective engagement with the military community and the ability to adapt to unanticipated events have proven key to the success of this trial.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria, Vivax , Military Personnel , Plasmodium falciparum , Sporozoites , Vaccines, Attenuated , Humans , Malaria Vaccines/immunology , Malaria Vaccines/therapeutic use , Malaria Vaccines/administration & dosage , Indonesia/epidemiology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/epidemiology , Sporozoites/immunology , Vaccines, Attenuated/immunology , Vaccines, Attenuated/therapeutic use , Plasmodium falciparum/immunology , Malaria, Vivax/prevention & control , Malaria, Vivax/epidemiology , Male , Adult , Young Adult , Plasmodium vivax/immunology , Female
16.
PLoS One ; 19(7): e0302243, 2024.
Article in English | MEDLINE | ID: mdl-39046960

ABSTRACT

The sequestration of Plasmodium falciparum-infected erythrocytes to the host endothelium is central to the pathogenesis of malaria. The sequestration is mediated by the parasite´s diverse Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) variants, which bind select human receptors on the endothelium. Severe malaria is associated with PfEMP1 binding human endothelial protein C receptor (EPCR) via their CIDRα1 domains. Antibodies binding and inhibiting across the sequence diverse CIDRα1 domains are likely important in acquired immunity against severe malaria. In this study, we explored if immunization with AP205 bacteriophage capsid-virus-like particles (cVLPs) presenting a mosaic of diverse CIDRα1 protein variants would stimulate broadly reactive and inhibitory antibody responses in mice. Three different mosaic cVLP vaccines each composed of five CIDRα1 protein variants with varying degrees of sequence conservation of residues at and near the EPCR binding site, were tested. All mosaic cVLP vaccines induced functional antibodies comparable to those induced by matched cocktails of cVLPs decorated with the single CIDRα1 variant. No broadly reactive responses were observed. However, the vaccines did induce some cross-reactivity and inhibition within the CIDRα1 subclasses included in the vaccines, demonstrating potential use of the cVLP vaccine platform for the design of multivalent vaccines.


Subject(s)
Endothelial Protein C Receptor , Protozoan Proteins , Vaccines, Virus-Like Particle , Animals , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Mice , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Humans , Endothelial Protein C Receptor/immunology , Endothelial Protein C Receptor/metabolism , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Plasmodium falciparum/immunology , Antibodies, Protozoan/immunology , Female , Protein Domains , Protein Binding , Mice, Inbred BALB C , Receptors, Cell Surface/immunology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology
17.
Pan Afr Med J ; 47: 175, 2024.
Article in English | MEDLINE | ID: mdl-39036016

ABSTRACT

Introduction: in areas with intense perennial malaria transmission, limited data is available on the impact of environmental conditions especially rainfall on naturally acquired immunity against promising malaria vaccine candidates. For this reason, we have compared IgG antibody responses specific to Plasmodium spp. derived MSP3 and UB05 vaccine candidates, in plasma of children living in two areas of Cameroon differing in rainfall conditions. Methods: data about children less than 5 years old was collected during the years 2017 and 2018. Next malaria asymptomatic P. falciparum (Pf) infected children were selected following malaria test confirmation. MSP3 and UB05 specific IgG antibody responses were measured in participant´s plasma using enzyme-linked immunosorbent assay (ELISA). Results: interestingly, IgG antibody responses specific to UB05 were significantly higher (p<0.0001) in Pf-negative children when compared to their asymptomatic Pf-infected counterparts living in monomodal rainfall areas. In contrast, a significantly higher (p<0.0001) IgG response to MSP3 was observed instead in asymptomatic Pf-infected children in the same population. In addition, IgG responses specific to UB05 remained significantly higher in bimodal when compared to monomodal rainfall areas irrespective of children´s Pf infection status (p<0.0055 for Pf-positive and p<0.0001 for negative children). On the contrary, IgG antibody responses specific to MSP3 were significantly higher in bimodal relative to monomodal rainfall areas (P<0.0001) just for Pf-negative children. Conclusion: thus IgG antibody responses specific to UBO5 are a better correlate of naturally acquired immunity against malaria in Pf-negative Cameroonian children especially in monomodal rainfall areas.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Humans , Cameroon , Malaria, Falciparum/immunology , Malaria, Falciparum/epidemiology , Immunoglobulin G/blood , Child, Preschool , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Antigens, Protozoan/immunology , Antibodies, Protozoan/blood , Infant , Female , Malaria Vaccines/administration & dosage , Malaria Vaccines/immunology , Male , Rain , Recombinant Proteins/immunology
18.
Nat Commun ; 15(1): 4857, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849365

ABSTRACT

Reticulocyte-binding protein homologue 5 (RH5), a leading blood-stage Plasmodium falciparum malaria vaccine target, interacts with cysteine-rich protective antigen (CyRPA) and RH5-interacting protein (RIPR) to form an essential heterotrimeric "RCR-complex". We investigate whether RCR-complex vaccination can improve upon RH5 alone. Using monoclonal antibodies (mAbs) we show that parasite growth-inhibitory epitopes on each antigen are surface-exposed on the RCR-complex and that mAb pairs targeting different antigens can function additively or synergistically. However, immunisation of female rats with the RCR-complex fails to outperform RH5 alone due to immuno-dominance of RIPR coupled with inferior potency of anti-RIPR polyclonal IgG. We identify that all growth-inhibitory antibody epitopes of RIPR cluster within the C-terminal EGF-like domains and that a fusion of these domains to CyRPA, called "R78C", combined with RH5, improves the level of in vitro parasite growth inhibition compared to RH5 alone. These preclinical data justify the advancement of the RH5.1 + R78C/Matrix-M™ vaccine candidate to Phase 1 clinical trial.


Subject(s)
Antibodies, Monoclonal , Antibodies, Protozoan , Antigens, Protozoan , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Animals , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Female , Malaria, Falciparum/prevention & control , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Antigens, Protozoan/immunology , Rats , Antibodies, Protozoan/immunology , Antibodies, Monoclonal/immunology , Humans , Epitopes/immunology , Carrier Proteins/immunology , Carrier Proteins/metabolism
19.
Int Immunopharmacol ; 132: 111982, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38569430

ABSTRACT

RTS,S is the first malaria vaccine recommended for implementation among young children at risk. However, vaccine efficacy is modest and short-lived. To mitigate the risk of cerebral malaria (CM) among children under the age of 5, it is imperative to develop new vaccines. EVs are potential vaccine candidates as they obtain the ability of brain-targeted delivery and transfer plasmodium antigens and immunomodulators during infections. This study extracted EVs from BALB/c mice infected with Plasmodium yoelii 17XNL (P.y17XNL). C57BL/6J mice were intravenously immunized with EVs (EV-I.V. + CM group) or subcutaneously vaccinated with the combination of EVs and CpG ODN-1826 (EV + CPG ODN-S.C. + CM group) on days 0 and 20, followed by infection with Plasmodium berghei ANKA (P.bANKA) on day 20 post-second immunization. We monitored Parasitemia and survival rate. The integrity of the Blood-brain barrier (BBB) was examined using Evans blue staining.The levels of cytokines and adhesion molecules were evaluated using Luminex, RT-qPCR, and WB. Brain pathology was evaluated by hematoxylin and eosin and immunohistochemical staining. The serum levels of IgG, IgG1, and IgG2a were analyzed by enzyme-linked immunosorbent assay. Compared with those in the P.bANKA-infected group, parasitemia increased slowly, death was delayed (day 10 post-infection), and the survival rate reached 75 %-83.3 % in the EV-I.V. + ECM and EV + CPG ODN-S.C. + ECM groups. Meanwhile, compared with the EV + CPG ODN-S.C. + ECM group, although parasitemia was almost the same, the survival rate increased in the EV-I.V. + ECM group.Additionally, EVs immunization markedly downregulated inflammatory responses in the spleen and brain and ameliorated brain pathological changes, including BBB disruption and infected red blood cell (iRBC) sequestration. Furthermore, the EVs immunization group exhibited enhanced antibody responses (upregulation of IgG1 and IgG2a production) compared to the normal control group. EV immunization exerted protective effects, improving the integrity of the BBB, downregulating inflammation response of brain tissue, result in reduces the incidence of CM. The protective effects were determined by immunological pathways and brain targets elicited by EVs. Intravenous immunization exhibited better performance than subcutaneous immunization, which perhaps correlated with EVs, which can naturally cross BBB to play a better role in brain protection.


Subject(s)
Blood-Brain Barrier , Erythrocytes , Extracellular Vesicles , Malaria, Cerebral , Mice, Inbred BALB C , Mice, Inbred C57BL , Oligodeoxyribonucleotides , Plasmodium berghei , Animals , Malaria, Cerebral/immunology , Malaria, Cerebral/parasitology , Malaria, Cerebral/prevention & control , Plasmodium berghei/immunology , Extracellular Vesicles/immunology , Erythrocytes/parasitology , Erythrocytes/immunology , Blood-Brain Barrier/immunology , Mice , Oligodeoxyribonucleotides/administration & dosage , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Female , Brain/parasitology , Brain/immunology , Brain/pathology , Cytokines/metabolism , Cytokines/blood , Plasmodium yoelii/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Parasitemia/immunology , Disease Models, Animal , Immunoglobulin G/blood , Immunoglobulin G/immunology
20.
Parasites Hosts Dis ; 62(2): 193-204, 2024 May.
Article in English | MEDLINE | ID: mdl-38835260

ABSTRACT

Malaria is a global disease affecting a large portion of the world's population. Although vaccines have recently become available, their efficacies are suboptimal. We generated virus-like particles (VLPs) that expressed either apical membrane antigen 1 (AMA1) or microneme-associated antigen (MIC) of Plasmodium berghei and compared their efficacy in BALB/c mice. We found that immune sera acquired from AMA1 VLP- or MIC VLP-immunized mice specifically interacted with the antigen of choice and the whole P. berghei lysate antigen, indicating that the antibodies were highly parasite-specific. Both VLP vaccines significantly enhanced germinal center B cell frequencies in the inguinal lymph nodes of mice compared with the control, but only the mice that received MIC VLPs showed significantly enhanced CD4+ T cell responses in the blood following P. berghei challenge infection. AMA1 and MIC VLPs significantly suppressed TNF-α and interleukin-10 production but had a negligible effect on interferon-γ. Both VLPs prevented excessive parasitemia buildup in immunized mice, although parasite burden reduction induced by MIC VLPs was slightly more effective than that induced by AMA1. Both VLPs were equally effective at preventing body weight loss. Our findings demonstrated that the MIC VLP was an effective inducer of protection against murine experimental malaria and should be the focus of further development.


Subject(s)
Antigens, Protozoan , Malaria Vaccines , Membrane Proteins , Plasmodium berghei , Protozoan Proteins , Vaccines, Virus-Like Particle , Animals , Female , Mice , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Malaria/prevention & control , Malaria/immunology , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Membrane Proteins/immunology , Mice, Inbred BALB C , Parasitemia/immunology , Parasitemia/prevention & control , Plasmodium berghei/immunology , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL