ABSTRACT
Superior predatory skills led to the evolutionary triumph of jawed vertebrates. However, the mechanisms by which the vertebrate brain controls predation remain largely unknown. Here, we reveal a critical role for the central nucleus of the amygdala in predatory hunting. Both optogenetic and chemogenetic stimulation of central amygdala of mice elicited predatory-like attacks upon both insect and artificial prey. Coordinated control of cervical and mandibular musculatures, which is necessary for accurately positioning lethal bites on prey, was mediated by a central amygdala projection to the reticular formation in the brainstem. In contrast, prey pursuit was mediated by projections to the midbrain periaqueductal gray matter. Targeted lesions to these two pathways separately disrupted biting attacks upon prey versus the initiation of prey pursuit. Our findings delineate a neural network that integrates distinct behavioral modules and suggest that central amygdala neurons instruct predatory hunting across jawed vertebrates.
Subject(s)
Central Amygdaloid Nucleus/physiology , Predatory Behavior , Animals , Anxiety/metabolism , Central Amygdaloid Nucleus/anatomy & histology , Electromyography , Interneurons/metabolism , Mandible/anatomy & histology , Mandible/innervation , Mandible/physiology , Mice , Neck/anatomy & histology , Neck/innervation , Neck/physiology , Neurons/cytology , Neurons/physiology , Periaqueductal Gray/physiologyABSTRACT
Extant crocodilian jaws are subject to functional demands induced by feeding and hydrodynamics. However, the morphological and ecological diversity of extinct crocodile-line archosaurs is far greater than that of living crocodilians, featuring repeated convergence towards disparate ecologies including armoured herbivores, terrestrial macropredators and fully marine forms. Crocodile-line archosaurs, therefore, present a fascinating case study for morphological and functional divergence and convergence within a clade across a wide range of ecological scenarios. Here, we build performance landscapes of two-dimensional theoretical jaw shapes to investigate the influence of strength, speed and hydrodynamics in the morphological evolution of crocodile-line archosaur jaws, and test whether ecologically convergent lineages evolved similarly optimal jaw function. Most of the 243 sampled jaw morphologies occupy optimized regions of theoretical morphospace for either rotational efficiency, resistance to Von Mises stress, hydrodynamic efficiency or a trade-off between multiple functions, though some seemingly viable shapes remain unrealized. Jaw speed is optimized only in a narrow region of morphospace whereas many shapes possess optimal jaw strength, which may act as a minimum boundary rather than a strong driver for most taxa. This study highlights the usefulness of theoretical morphology in assessing functional optimality, and for investigating form-function relationships in diverse clades.
Subject(s)
Alligators and Crocodiles , Biological Evolution , Jaw , Animals , Alligators and Crocodiles/anatomy & histology , Alligators and Crocodiles/physiology , Jaw/anatomy & histology , Jaw/physiology , Biomechanical Phenomena , Fossils/anatomy & histology , Hydrodynamics , Mandible/anatomy & histology , Mandible/physiologyABSTRACT
Although extinct sloths exhibited a wide range of dietary habits, modes of locomotion, and occupied various niches across the Americas, modern sloths are considered quite similar in their habits. The dietary habits of living sloths can be directly observed in the wild, and understanding the mechanical behavior of their jaws during chewing through finite element analysis (FEA) provides a valuable validation tool for comparative analysis with their extinct counterparts. In this study, we used FEA to simulate the mechanical behavior of sloth mandibles under lateral mastication loads, using it as a proxy for oral processing. Our research focused on the six extant sloth species to better understand their diets and validate the use of FEA for studying their extinct relatives. We found that all living sloths have the predominancy of low-stress areas in their mandibles but with significant differences. Choloepus didactylus had larger high-stress areas, which could be linked to a reduced need for processing tougher foods as an opportunistic generalist. Bradypus variegatus and Choloepus hoffmanni are shown to be similar, displaying large low-stress areas, indicating greater oral processing capacity in a seasonal and more competitive environment. Bradypus torquatus, Bradypus pygmaeus, and Bradypus tridactylus exhibited intermediary processing patterns, which can be linked to a stable food supply in more stable environments and a reduced requirement for extensive oral processing capacity. This study sheds light on extant sloths' dietary adaptations and has implications for understanding the ecological roles and evolutionary history of their extinct counterparts.
Subject(s)
Diet , Finite Element Analysis , Mastication , Sloths , Animals , Mastication/physiology , Sloths/physiology , Sloths/anatomy & histology , Feeding Behavior/physiology , Mandible/anatomy & histology , Mandible/physiology , Jaw/anatomy & histology , Jaw/physiology , Dietary PatternsABSTRACT
Evolutionary innovations underlie the rise of diversity and complexity-the 2 long-term trends in the history of life. How does natural selection redesign multiple interacting parts to achieve a new emergent function? We investigated the evolution of a biomechanical innovation, the latch-spring mechanism of trap-jaw ants, to address 2 outstanding evolutionary problems: how form and function change in a system during the evolution of new complex traits, and whether such innovations and the diversity they beget are repeatable in time and space. Using a new phylogenetic reconstruction of 470 species, and X-ray microtomography and high-speed videography of representative taxa, we found the trap-jaw mechanism evolved independently 7 to 10 times in a single ant genus (Strumigenys), resulting in the repeated evolution of diverse forms on different continents. The trap mechanism facilitates a 6 to 7 order of magnitude greater mandible acceleration relative to simpler ancestors, currently the fastest recorded acceleration of a resettable animal movement. We found that most morphological diversification occurred after evolution of latch-spring mechanisms, which evolved via minor realignments of mouthpart structures. This finding, whereby incremental changes in form lead to a change of function, followed by large morphological reorganization around the new function, provides a model for understanding the evolution of complex biomechanical traits, as well as insights into why such innovations often happen repeatedly.
Subject(s)
Adaptation, Biological/physiology , Ants/physiology , Mandible/anatomy & histology , Animals , Ants/metabolism , Biological Evolution , Biomechanical Phenomena/physiology , Evolution, Molecular , Mandible/physiology , Movement , Phylogeny , Structure-Activity Relationship , X-Ray Microtomography/methodsABSTRACT
The primary function of the tetrapod jaw is to transmit jaw muscle forces to bite points. The routes of force transfer in the jaw have never been studied but can be quantified using load paths - the shortest, stiffest routes from regions of force application to support constraints. Here, we use load path analysis to map force transfer from muscle attachments to bite point and jaw joint, and to evaluate how different configurations of trabecular and cortical bone affect load paths. We created three models of the mandible of the Virginia opossum, Didelphis virginiana, each with a cortical bone shell, but with different material properties for the internal spaces: (1) a cortical-trabecular model, in which the interior space is modeled with bulk properties of trabecular bone; (2) a cortical-hollow model, in which trabeculae and mandibular canal are modeled as hollow; and (3) a solid-cortical model, in which the interior is modeled as cortical bone. The models were compared with published in vivo bite force and bone strain data, and the load paths calculated for each model. The trabecular model, which is preferred because it most closely approximates the actual morphology, was best validated by in vivo data. In all three models, the load path was confined to cortical bone, although its route within the cortex varied depending on the material properties of the inner model. Our analysis shows that most of the force is transferred through the cortical, rather than trabecular bone, and highlights the potential of load path analysis for understanding form-function relationships in the skeleton.
Subject(s)
Bite Force , Mandible , Models, Biological , Animals , Biomechanical Phenomena , Mandible/physiology , Mandible/anatomy & histology , Didelphis/physiology , Didelphis/anatomy & histology , Jaw/physiology , Jaw/anatomy & histology , Cortical Bone/physiology , Cortical Bone/anatomy & histology , Cancellous Bone/physiology , Cancellous Bone/anatomy & histologyABSTRACT
The evolution of the mammalian jaw is one of the most important innovations in vertebrate history, and underpins the exceptional radiation and diversification of mammals over the last 220 million years1,2. In particular, the transformation of the mandible into a single tooth-bearing bone and the emergence of a novel jaw joint-while incorporating some of the ancestral jaw bones into the mammalian middle ear-is often cited as a classic example of the repurposing of morphological structures3,4. Although it is remarkably well-documented in the fossil record, the evolution of the mammalian jaw still poses the paradox of how the bones of the ancestral jaw joint could function both as a joint hinge for powerful load-bearing mastication and as a mandibular middle ear that was delicate enough for hearing. Here we use digital reconstructions, computational modelling and biomechanical analyses to demonstrate that the miniaturization of the early mammalian jaw was the primary driver for the transformation of the jaw joint. We show that there is no evidence for a concurrent reduction in jaw-joint stress and increase in bite force in key non-mammaliaform taxa in the cynodont-mammaliaform transition, as previously thought5-8. Although a shift in the recruitment of the jaw musculature occurred during the evolution of modern mammals, the optimization of mandibular function to increase bite force while reducing joint loads did not occur until after the emergence of the neomorphic mammalian jaw joint. This suggests that miniaturization provided a selective regime for the evolution of the mammalian jaw joint, followed by the integration of the postdentary bones into the mammalian middle ear.
Subject(s)
Biological Evolution , Ear, Middle/anatomy & histology , Mammals/anatomy & histology , Mandible/anatomy & histology , Animals , Ear, Middle/physiology , Fossils , Mammals/physiology , Mandible/physiology , Models, Biological , Phylogeny , Temporomandibular Joint/anatomy & histology , Temporomandibular Joint/physiology , Tooth/anatomy & histology , Tooth/physiologyABSTRACT
During both embryonic development and adult tissue regeneration, changes in chromatin structure driven by master transcription factors lead to stimulus-responsive transcriptional programs. A thorough understanding of how stem cells in the skeleton interpret mechanical stimuli and enact regeneration would shed light on how forces are transduced to the nucleus in regenerative processes. Here we develop a genetically dissectible mouse model of mandibular distraction osteogenesis-which is a process that is used in humans to correct an undersized lower jaw that involves surgically separating the jaw bone, which elicits new bone growth in the gap. We use this model to show that regions of newly formed bone are clonally derived from stem cells that reside in the skeleton. Using chromatin and transcriptional profiling, we show that these stem-cell populations gain activity within the focal adhesion kinase (FAK) signalling pathway, and that inhibiting FAK abolishes new bone formation. Mechanotransduction via FAK in skeletal stem cells during distraction activates a gene-regulatory program and retrotransposons that are normally active in primitive neural crest cells, from which skeletal stem cells arise during development. This reversion to a developmental state underlies the robust tissue growth that facilitates stem-cell-based regeneration of adult skeletal tissue.
Subject(s)
Bone Regeneration , Mandible/cytology , Mandible/physiology , Neural Crest/cytology , Osteogenesis, Distraction , Stem Cells/cytology , Animals , Chromatin/genetics , Chromatin/metabolism , Disease Models, Animal , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Gene Expression Regulation , Male , Mandible/surgery , Mice , Mice, Inbred C57BL , Retroelements/genetics , Signal Transduction , Stem Cells/metabolism , Transcription, GeneticABSTRACT
BACKGROUND: Mandibular range of motion (MROM) variables are widely used to evaluate oral function. OBJECTIVE: The aim of this study was to establish the reliability of MROM variables in healthy children. METHODS: In this cross-sectional study, healthy children were examined 2 weeks apart. The following MROM variables were established: active maximum interincisal opening (AMIO), passive maximum interincisal opening (PMIO), protrusion and left and right laterotrusion. The reliability of the MROM measurements was determined by analysing the intra-class correlation coefficient (ICC), standard error of measurement (SEM), smallest detectable change (SDC) and limits of agreement (LoA). RESULTS: A total of 167 healthy children were examined. The ICC indicated good reliability for AMIO (0.885); excellent reliability for PMIO (0.925); and moderate reliability for protrusion (0.578), laterotrusion left (0.601) and laterotrusion right (0.634). The SDC was 0.9 mm for AMIO, 0.4 mm for PMIO, 2.2 mm for protrusion, 1.6 mm for laterotrusion left and 1.4 mm for laterotrusion right. The LoA was -5.67 to 5.82 for AMIO, -3.90 to 3.57 for PMIO, -3.89 to 3.55 for protrusion, -2.99 to 2.77 for laterotrusion left, and - 2.71 to 2.77 for laterotrusion right. CONCLUSIONS: AMIO and PMIO measurements are both highly reliable in healthy children. The low SDC indicate that AMIO and PMIO are promising longitudinal measurements. Protrusion and laterotrusion measurements had moderate reliability. These results support our clinical recommendation to measure AMIO rather than PMIO, as PMIO is more difficult and more time-consuming to perform than AMIO.
Subject(s)
Mandible , Range of Motion, Articular , Humans , Reproducibility of Results , Female , Cross-Sectional Studies , Child , Male , Range of Motion, Articular/physiology , Mandible/physiology , Healthy Volunteers , Temporomandibular Joint/physiologyABSTRACT
Rapid movements of limbs and appendages, faster than those produced by simple muscle contraction alone, are generated through mechanical networks consisting of springs and latches. The latch plays a central role in these spring-loaded mechanisms, but the structural details of the latch are not always known. The mandibles of the trap-jaw ant Odontomachus kuroiwae closes the mandible extremely quickly to capture prey or to perform mandible-powered defensive jumps to avoid potential threats. The jump is mediated by a mechanical spring and latch system embodied in the mandible. An ant can strike the tip of the mandible onto the surface of an obstacle (prey, predator or ground) in order to bounce its body away from potential threats. The angular velocity of the closing mandible was 2.3×104 rad s-1 (1.3×106 deg s-1). Latching of the joint is a key mechanism to aid the storage of energy required to power the ballistic movements of the mandibles. We have identified the fine structure of two latch systems on the mandible forming a 'ball joint' using an X-ray micro-computational tomography system (X-ray micro-CT) and X-ray live imaging with a synchrotron. Here, we describe the surface of the inner section of the socket and a projection on the lip of the ball. The X-ray live imaging and movements of the 3D model show that the ball with a detent ridge slipped into a socket and over the socket ridge before snapping back at the groove edge. Our results give insight into the complex spring-latch systems that underpin ultra-fast movements in biological systems.
Subject(s)
Ants , Animals , Ants/physiology , Biomechanical Phenomena/physiology , Mandible/physiology , Movement/physiology , Muscle ContractionABSTRACT
Bone adaptation to mechanical loading happens predominantly via modeling and remodeling, but the latter is poorly understood. Haversian remodeling (cortical bone replacement resulting in secondary osteons) is thought to occur in regions of low strain as part of bone maintenance or high strain in response to microdamage. However, analyses of remodeling in primates have revealed an unappreciated association with the number of daily load cycles. We tested this relationship by raising 30 male domestic rabbits (Oryctolagus cuniculus) on disparate diets from weaning to adulthood (48â weeks), facilitating a naturalistic perspective on mandibular bone adaptation. A control group consumed only rabbit pellets and an 'overuse' group ate hay in addition to pellets. To process hay, which is tougher and stiffer, rabbits increase chewing investment and duration without increasing bite force (i.e. corpus mean peak strain is similar for the two foods). Corpus remodeling in overuse rabbits was â¼1.5 times that of controls, measured as osteon population density and percentage Haversian bone. In the same subjects, there was a significant increase in overuse corpus bone formation (ratio of cortical area to cranial length), consistent with previous reports on the same dietary manipulation and bone formation in rabbits. This is the first evidence that both modeling and remodeling are simultaneously driven by the number of load cycles, independent of strain magnitude. This novel finding provides unique data on the feeding apparatus, challenges traditional thought on Haversian remodeling, and highlights the need for experimental studies of skeletal adaptation that examine mechanical factors beyond strain magnitude.
Subject(s)
Bone Remodeling , Lagomorpha , Animals , Rabbits , Male , Bone Remodeling/physiology , Mandible/physiology , Haversian System/physiologyABSTRACT
Chewing-side preference is one of the risk factors for temporomandibular disorders (TMD), and people with chewing-side preference is more prone to have short and displaced condyles, increased articular eminence inclination and glenoid fossa depth. The proportion of TMD patients with chewing-side preference is often higher than that of the normal subjects. Clinical studies have shown a strong correlation between chewing-side preference and TMD symptoms and signs; and animal studies have shown that chewing-side preference can affect the growth, development, damage and repair of the mandible. After long-term unilateral mastication, changes in the stress within the joint cause the imbalance of temporomandibular joint (TMJ) structural reconstruction, the transformation and even destruction of the fiber structure of masticatory muscle, resulting in uncoordinated movement of bilateral muscles. The joint neurogenic diseases caused by the increase of neuropeptide substance P and calcitonin-gene-related-peptide (CGRP) released locally by TMJ may be the mechanism of TMD. This article reviews the research progress of the influence of chewing-side preference on the structure of TMJ, the relationship between chewing-side preference and TMD, and the related mechanisms.
Subject(s)
Mastication , Temporomandibular Joint Disorders , Humans , Mastication/physiology , Temporomandibular Joint/physiology , Temporomandibular Joint Disorders/etiology , Mandible/physiologyABSTRACT
Context: Implant-supported overdentures are well-known and widely accepted treatment modality to increase retention which is a crucial factor for determining patient satisfaction. The placement of two implants in the anterior region can be selected as a first-line treatment in patients with the atrophic mandibular ridge. Aims: The purpose of this research was to assess the biomechanical effects of carbon fiber-reinforced polyetheretherketone (CFR-PEEK) implant-supported overdenture in the event of 2,000 N forefront trauma to an atrophic edentulous mandible by using the finite element analysis method. Materials and Methods: Three types of mandible models were simulated; the first one was an edentulous atrophic mandible model; in the second model, 3.5 × 11.5 mm CFR-PEEK implants; and in the third model, 4.3 × 11.5 mm CFR-PEEK implants were positioned in the region of the lateral incisor of the identical edentulous atrophic mandible. Results: Maximum Von Misses stresses 979.261 MPa, 1,454.69 MPa, and 1,940.71 MPa and maximum principal stresses 1,112.74 MPa, 1,249.88 MPa, and 1,251.33 MPa have been detected at the condylar neck area and minimum principal stresses - 1,203.38 MPa, -1,503.21 MPa, and - 1,990.34 MPa have been recorded at the symphysis and corpus regions from M1 to M3, respectively. In addition, the M2 and M3 models showed low-stress distributions around the implant-bone interface, particularly where the implants were in contact with cancellous bone. Conclusions: The results showed that the insertion of different diameters of CFR-PEEK implants led to low and homogenous stress distribution all around the implant-bone interface and stresses transferred directly to the condylar neck areas. Therefore, it was observed that CRF-PEEK implants did not change the basic behavior of the mandibula in response to frontal stresses.
Subject(s)
Dental Implants , Denture, Overlay , Humans , Carbon Fiber , Finite Element Analysis , Mandible/surgery , Mandible/physiology , Polyethylene Glycols , Ketones , Dental Materials , Dental Stress Analysis , Dental Prosthesis, Implant-SupportedABSTRACT
Small organisms use propulsive springs rather than muscles to repeatedly actuate high acceleration movements, even when constrained to tiny displacements and limited by inertial forces. Through integration of a large kinematic dataset, measurements of elastic recoil, energetic math modeling and dynamic math modeling, we tested how trap-jaw ants (Odontomachus brunneus) utilize multiple elastic structures to develop ultrafast and precise mandible rotations at small scales. We found that O. brunneus develops torque on each mandible using an intriguing configuration of two springs: their elastic head capsule recoils to push and the recoiling muscle-apodeme unit tugs on each mandible. Mandibles achieved precise, planar, circular trajectories up to 49,100â radâ s-1 (470,000â rpm) when powered by spring propulsion. Once spring propulsion ended, the mandibles moved with unconstrained and oscillatory rotation. We term this mechanism a 'dual spring force couple', meaning that two springs deliver energy at two locations to develop torque. Dynamic modeling revealed that dual spring force couples reduce the need for joint constraints and thereby reduce dissipative joint losses, which is essential to the repeated use of ultrafast, small systems. Dual spring force couples enable multifunctionality: trap-jaw ants use the same mechanical system to produce ultrafast, planar strikes driven by propulsive springs and for generating slow, multi-degrees of freedom mandible manipulations using muscles, rather than springs, to directly actuate the movement. Dual spring force couples are found in other systems and are likely widespread in biology. These principles can be incorporated into microrobotics to improve multifunctionality, precision and longevity of ultrafast systems.
Subject(s)
Ants , Animals , Ants/physiology , Biomechanical Phenomena , Mandible/physiology , Movement/physiologyABSTRACT
The intramandibular joint (IMJ) is a secondary point of movement between the two major bones of the lower jaw. It has independently evolved in several groups of teleost fishes, each time representing a departure from related species in which the mandible functions as a single structure rotating only at the quadratomandibular joint (QMJ). In this study, we examine kinematic consequences of the IMJ novelty in a freshwater characiform fish, the herbivorous Distichodus sexfasciatus. We combine traditional kinematic approaches with trajectory-based analysis of motion shapes to compare patterns of prey capture movements during substrate biting, the fish's native feeding mode, and suction of prey from the water column. We find that the IMJ enables complex jaw motions and contributes to feeding versatility by allowing the fish to modulate its kinematics in response to different prey and to various scenarios of jaw-substrate interaction. Implications of the IMJ include context-dependent movements of lower versus upper jaws, enhanced lower jaw protrusion, and the ability to maintain contact between the teeth and substrate throughout the jaw closing or biting phase of the motion. The IMJ in D. sexfasciatus appears to be an adaptation for removing attached benthic prey, consistent with its function in other groups that have evolved the joint. This study builds on our understanding of the role of the IMJ during prey capture and provides insights into broader implications of the innovative trait.
Subject(s)
Feeding Behavior , Jaw , Animals , Biomechanical Phenomena , Feeding Behavior/physiology , Fishes/physiology , Jaw/physiology , Mandible/physiology , Predatory BehaviorABSTRACT
We proposed a novel jaw movement tracking method that can measure in six degrees of freedom. The magnetic field generated by a permanent magnet paired with a small, low-power-consumption Hall effect magnetic sensor is used to estimate the relative distance between two objects-in this instance, the lower and upper jaws. By installing a microelectromechanical system (MEMS) orientation sensor in the device, we developed a mouthpiece-type sensing device that can measure voluntary mandibular movements in three-dimensional orientation and position. An evaluation of individuals wearing this device demonstrated its ability to measure mandibular movement with an accuracy of approximately 3 mm. Using the movement recording feature with six degrees of freedom also enabled the evaluation of an individual's jaw movements over time in three dimensions. In this method, all sensors are built onto the mouthpiece and the sensing is completed in the oral cavity. It does not require the fixation of a large-scale device to the head or of a jig to the teeth, unlike existing mandibular movement tracking devices. These novel features are expected to increase the accessibility of routine measurements of natural jaw movement, unrestricted by an individual's physiological movement and posture.
Subject(s)
Jaw , Movement , Humans , Movement/physiology , Jaw/physiology , Magnetics , Mandible/physiology , Magnetic PhenomenaABSTRACT
The mandible of vertebrates serves as insertion area for masticatory muscles that originate on the skull, and its functional properties are subject to selective forces related to trophic ecology. The efficiency of masticatory muscles can be measured as mechanical advantage on the mandible, which, in turn, has the property of correlating with bite force and shape. In the present work, we quantify the mechanical advantage of the mandible of akodontine rodents, which present a diverse radiation of insectivorous specialists, to assess their relationship to the estimated bite force and diet. We also tested the degree of morphofunctional convergence in response to insectivory on the group. We found the mechanical advantages to be convergent on insectivorous species, and associated with the estimated bite force, with higher mechanical advantages in species with a stronger bite and short, robust mandibles and lower mechanical advantages in insectivorous species with weaker bites and more elongated, dorso-ventrally compressed mandibles. Insectivorous species of Akodontini are functional specialists for the consumption of live prey and may exploit the resources that shrews, moles and hedgehogs consume elsewhere.
Subject(s)
Biological Evolution , Bite Force , Feeding Behavior/physiology , Mandible/physiology , Sigmodontinae/physiology , Animals , Diet , InsectaABSTRACT
The blue whale is the largest animal ever. This gigantism probably evolved to exploit seasonal krill blooms, where massive feasts allow for accumulation of large blubber reserves that can fuel their low mass specific metabolism during prolonged periods of fasting. Until recently, the physiology and biomechanics of blue whales could only be inferred from anatomical inspections, but the recent development of biologging tags now provide unique insights into how these ocean giants function and interact with their environment. Their mandibles, the largest bones ever to evolve, along with a highly expandable buccal cavity, enable an extreme and dynamic bulk feeding behavior. During a lunge feeding event, blue whales accelerate up to 5 m/s to engulf a volume prey laden water that is commensurate with the whale's gigantic body size. Perhaps due to the costs of such extreme foraging, their dive times of 10-15 min are much shorter than scaling would predict for their size. Like other diving animals, blue whales display a dive response with heart rates down to 4 BPM to prolong dive times and perhaps mitigate decompression sickness. Blue whales make the lowest and most energetic calls of any mammal with ocean traversing potential under natural ambient noise conditions. However, communication space may be severely reduced due to pervasive shipping noise. We hope that an increasing ability to study the physiology and behavior of blue whales and other marine megafauna will enable informed decisions and ensure our permanent co-existence in the face of increasing human encroachment into marine habitats.
Subject(s)
Balaenoptera/physiology , Physiology/history , Animals , Biomechanical Phenomena , Body Size , Decompression Sickness/physiopathology , Diving/physiology , Ecosystem , Energy Metabolism/physiology , Feeding Behavior/physiology , Heart Rate , History, 20th Century , History, 21st Century , Mandible/physiology , Noise , Oceans and SeasABSTRACT
Vascularized composite allografts contain various tissue components and possess relative antigenicity, eliciting different degrees of alloimmune responses. To investigate the strategies for achieving facial allograft tolerance, we established a mouse hemiface transplant model, including the skin, muscle, mandible, mucosa, and vessels. However, the immunomodulatory effects of the mandible on facial allografts remain unclear. To understand the effects of the mandible on facial allograft survival, we compared the diversities of different facial allograft-elicited alloimmunity between a facial osteomyocutaneous allograft (OMC), including skin, muscle, oral mucosa, and vessels, and especially the mandible, and a myocutaneous allograft (MC) including the skin, muscle, oral mucosa, and vessels, but not the mandible. The different facial allografts of a BALB/c donor were transplanted into a heterotopic neck defect on fully major histocompatibility complex-mismatched C57BL/6 mice. The allogeneic OMC (Allo-OMC) group exhibited significant prolongation of facial allograft survival compared to the allogeneic MC group, both in the presence and absence of FK506 immunosuppressive drugs. With the use of FK506 monotherapy (2 mg/kg) for 21 days, the allo-OMC group, including the mandible, showed prolongation of facial allograft survival of up to 65 days, whereas the myocutaneous allograft, without the mandible, only survived for 34 days. The Allo-OMC group also displayed decreased lymphocyte infiltration into the facial allograft. Both groups showed similar percentages of B cells, T cells, natural killer cells, macrophages, and dendritic cells in the blood, spleen, and lymph nodes. However, a decrease in pro-inflammatory T helper 1 cells and an increase in anti-inflammatory regulatory T cells were observed in the blood and lymph nodes of the Allo-OMC group. Significantly increased percentages of donor immune cells were also observed in three lymphoid organs of the Allo-OMC group, suggesting mixed chimerism induction. These results indicated that the mandible has the potential to induce anti-inflammatory effects and mixed chimerism for prolonging facial allograft survival. The immunomodulatory understanding of the mandible could contribute to reducing the use of immunosuppressive regimens in clinical face allotransplantation including the mandible.
Subject(s)
Facial Transplantation/adverse effects , Graft Rejection/etiology , Mandible/physiology , T-Lymphocytes, Regulatory/physiology , Animals , Facial Transplantation/methods , Graft Rejection/immunology , Graft Survival/physiology , Immunosuppressive Agents/pharmacology , Mandible/immunology , Mandible/transplantation , Mice, Inbred BALB C , Mice, Inbred C57BL , Skin Transplantation/adverse effects , Skin Transplantation/methods , Tacrolimus/pharmacology , Transplantation Chimera/physiology , Transplantation, HomologousABSTRACT
We examine the structure of the bone of the pharyngeal jaws of a large fish, the black drum (Pogonias cromis), that uses its tooth-jaw complex to crush hard-shelled bivalve mollusks. During mastication huge compressive forces are concentrated in a tiny zone at the tooth-bone interface. We report on the structure of this bone, with emphasis on its contact with the teeth, at different hierarchical levels and in 3D. Micro-CT shows that the molariform teeth do not have roots and are supported by a circular narrow bony rim that surrounds the periphery of the tooth base. The lower pharyngeal jaw is highly porous, as seen by reflected light microscopy and secondary electron microscopy (SE-SEM). Porosity decreases close to the bone-tooth interface and back-scattered electron (BSE-SEM) microscopy shows a slight elevation in mineral density. Focused ion beam - scanning electron microscopy (FIB-SEM) in the serial surface view (SSV) mode reveals a most surprising organization at the nanoscale level: parallel arrays of mineralized collagen fibrils surrounding channels of ~100 nm diameter, both with their long axes oriented along the load direction. The channels are filled with organic matter. These fibril-channel arrays are surrounded by a highly disordered mineralized material. This unusual structure clearly functions efficiently under compression, but the precise way by which this unique arrangement achieves this function is unknown.
Subject(s)
Fishes/physiology , Jaw/ultrastructure , Mandible/ultrastructure , Animals , Jaw/physiology , Mandible/physiology , Mechanical Phenomena , Tooth/physiology , Tooth/ultrastructureABSTRACT
Life on earth is regulated by biological rhythms, some of which oscillate with a circadian, monthly or lunar cycle. Recent research suggests that there is a near weekly biorhythm that may exert an influence on human skeletal growth. Evidence for the timing of this biorhythm is retained in tooth enamel as the periodicity of Retzius lines. Studies report that Retzius periodicity (RP) relates to adult human stature and enamel thickness. Adult human stature is sexually dimorphic, and so is enamel thickness of maxillary third molars (M3) but not mandibular M3. Yet, previous studies report sex differences in RP are apparent in some populations but not others, and it is unknown if dimorphism in enamel thickness relates to RP. To further our understanding of this biorhythm we analysed sex-related variation in RP and its relationship with enamel thickness in a sample of M3's (n = 94) from adults in Northern Britain. Results reveal RP was significantly higher in our sample of female molars compared to those of males, which is consistent with the previously reported correlation between the biorhythm and adult stature. The RP of maxillary M3 related to sex differences in enamel thickness, but this relationship was not present in mandibular M3. Our results support previous findings suggesting that this biorhythm is sexually dimorphic and provide the first evidence that RP may be one factor influencing sex differences in enamel thickness. Our study also shows that correlations between RP and enamel thickness appear to be most readily detected for tooth types with sufficiently wide ranges of enamel thickness variation, as is the case for maxillary but not mandibular M3. Achieving a sufficient sample size was critical for detecting a sex difference in periodicity.