Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 619
Filter
Add more filters

Publication year range
1.
Am J Physiol Cell Physiol ; 326(4): C1067-C1079, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38314724

ABSTRACT

Previous work showed that matrix metalloproteinase-7 (MMP-7) regulates colon cancer activities through an interaction with syndecan-2 (SDC-2) and SDC-2-derived peptide that disrupts this interaction and exhibits anticancer activity in colon cancer. Here, to identify potential anticancer agents, a library of 1,379 Food and Drug Administration (FDA)-approved drugs that interact with the MMP-7 prodomain were virtually screened by protein-ligand docking score analysis using the GalaxyDock3 program. Among five candidates selected based on their structures and total energy values for interacting with the MMP-7 prodomain, the known mechanistic target of rapamycin kinase (mTOR) inhibitor, everolimus, showed the highest binding affinity and the strongest ability to disrupt the interaction of the MMP-7 prodomain with the SDC-2 extracellular domain in vitro. Everolimus treatment of the HCT116 human colon cancer cell line did not affect the mRNA expression levels of MMP-7 and SDC-2 but reduced the adhesion of cells to MMP-7 prodomain-coated plates and the cell-surface localization of MMP-7. Thus, everolimus appears to inhibit the interaction between MMP-7 and SDC-2. Everolimus treatment of HCT116 cells also reduced their gelatin-degradation activity and anticancer activities, including colony formation. Interestingly, cells treated with sirolimus, another mTOR inhibitor, triggered less gelatin-degradation activity, suggesting that this inhibitory effect of everolimus was not due to inhibition of the mTOR pathway. Consistently, everolimus inhibited the colony-forming ability of mTOR-resistant HT29 cells. Together, these data suggest that, in addition to inhibiting mTOR signaling, everolimus exerts anticancer activity by interfering with the interaction of MMP-7 and SDC-2, and could be a useful therapeutic anticancer drug for colon cancer.NEW & NOTEWORTHY The utility of cancer therapeutics targeting the proteolytic activities of MMPs is limited because MMPs are widely distributed throughout the body and involved in many different aspects of cell functions. This work specifically targets the activation of MMP-7 through its interaction with syndecan-2. Notably, everolimus, a known mTOR inhibitor, blocked this interaction, demonstrating a novel role for everolimus in inhibiting mTOR signaling and impairing the interaction of MMP-7 with syndecan-2 in colon cancer.


Subject(s)
Colonic Neoplasms , Everolimus , Humans , Everolimus/pharmacology , Syndecan-2/genetics , Syndecan-2/metabolism , Matrix Metalloproteinase 7/genetics , Matrix Metalloproteinase 7/metabolism , Gelatin , Sirolimus/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , TOR Serine-Threonine Kinases
2.
Carcinogenesis ; 45(4): 220-234, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-36645203

ABSTRACT

Microfibril-associated glycoprotein-1 (MAGP1), a crucial extracellular matrix protein, contributes to the initiation and progression of different cancers. However, the role of MAGP1 in laryngeal cancer is not clear. The purpose of this study was to investigate the clinical significance and biological function of MAGP1 in laryngeal cancer. MAGP1 was upregulated in public databases and laryngeal cancer tissues, and high MAGP1 expression led to a poor prognosis and was identified as an independent prognostic marker. Knocking-down MAGP1 inhibited laryngeal cancer cell growth and metastasis. According to gene set enrichment analysis, high MAGP1 expression revealed enrichment in Wnt/ß-catenin signaling and knocking-down MAGP1 in laryngeal cancer cells also caused degradation, de-activation, re-location and loss of stability of ß-catenin. Additionally, we observed MAGP1 in laryngeal cancer cells inhibits angiogenesis in an MMP7-dependent way. In conclusion, our study suggests a clinical role of MAGP1 in laryngeal cancer, signifying its potential as a therapeutic target in the future.


Subject(s)
Laryngeal Neoplasms , beta Catenin , Humans , Angiogenesis/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glycoproteins/genetics , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Matrix Metalloproteinase 7/genetics , Matrix Metalloproteinase 7/metabolism , Wnt Signaling Pathway
3.
Hum Mol Genet ; 31(15): 2595-2605, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35288736

ABSTRACT

Prior studies have shown that genetic factors play important roles in ovarian endometriosis. Herein, we first analyzed the whole-exome sequencing data from 158 patients with ovarian endometriosis and 385 local control women without endometriosis. Among which, a rare missense variant in the MMP7 (p.I79T, rs150338402) gene exhibited a significant frequency difference. This rare variant was screened in an additional 1176 patients and 600 control women via direct DNA sequencing. Meanwhile, a total of 38 available clinical characteristics were collected. Our results showed 45 out of 1334 (3.37%) patients, while 15 out of 985 control women (1.52%) (P = 0.0076) harbored this rare variant, respectively. This rare variant was associated with clinical features such as follicle-stimulating hormone (Padj = 0.0342), luteinizing hormone (Padj = 0.0038), progesterone (Padj = 1.4e-7), testosterone (Padj = 0.0923), total bilirubin (Padj = 0.0699), carcinoembryonic antigen (Padj = 0.0665) and squamous cell carcinoma antigen (Padj = 0.0817), respectively. Functional assays showed that this rare variant could promote cell migration, invasion, epithelial-mesenchymal transition (EMT) and increase the proteolytic protein activity of MMP7, implicating that the increased capacities of cell invasion, migration and EMT might be mediated by enhanced proteolytic activity of MMP7 mutant. These results showed that the MMP7 rare missense variant (p.I79T) played important roles in the pathogenesis of ovarian endometriosis. In conclusion, we identified, for the first time, a significantly enriched MMP7 rare variant in ovarian endometriosis; this rare variant was closely associated with certain clinical features in ovarian endometriosis; thus, it could be a promising early diagnostic biomarker for this disease.


Subject(s)
Endometriosis , Matrix Metalloproteinase 7/genetics , Ovarian Neoplasms , Endometriosis/genetics , Epithelial-Mesenchymal Transition , Female , Humans , Matrix Metalloproteinase 7/metabolism , Mutation, Missense/genetics , Ovarian Neoplasms/pathology , Exome Sequencing
4.
J Hepatol ; 80(3): 443-453, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38086446

ABSTRACT

BACKGROUND & AIMS: The liver is a common site of cancer metastasis, most commonly from colorectal cancer, and primary liver cancers that have metastasized are associated with poor outcomes. The underlying mechanisms by which the liver defends against these processes are largely unknown. Prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) are highly expressed in the liver. They positively regulate each other and their deletion results in primary liver cancer. Here we investigated their roles in primary and secondary liver cancer metastasis. METHODS: We identified common target genes of PHB1 and MAT1A using a metastasis array, and measured promoter activity and transcription factor binding using luciferase reporter assays and chromatin immunoprecipitation, respectively. We examined how PHB1 or MAT1A loss promotes liver cancer metastasis and whether their loss sensitizes to colorectal liver metastasis (CRLM). RESULTS: Matrix metalloproteinase-7 (MMP-7) is a common target of MAT1A and PHB1 and its induction is responsible for increased migration and invasion when MAT1A or PHB1 is silenced. Mechanistically, PHB1 and MAT1A negatively regulate MMP7 promoter activity via an AP-1 site by repressing the MAFG-FOSB complex. Loss of MAT1A or PHB1 also increased MMP-7 in extracellular vesicles, which were internalized by colon and pancreatic cancer cells to enhance their oncogenicity. Low hepatic MAT1A or PHB1 expression sensitized to CRLM, but not if endogenous hepatic MMP-7 was knocked down first, which lowered CD4+ T cells while increasing CD8+ T cells in the tumor microenvironment. Hepatocytes co-cultured with colorectal cancer cells express less MAT1A/PHB1 but more MMP-7. Consistently, CRLM raised distant hepatocytes' MMP-7 expression in mice and humans. CONCLUSION: We have identified a PHB1/MAT1A-MAFG/FOSB-MMP-7 axis that controls primary liver cancer metastasis and sensitization to CRLM. IMPACT AND IMPLICATIONS: Primary and secondary liver cancer metastasis is associated with poor outcomes but whether the liver has underlying defense mechanism(s) against metastasis is unknown. Here we examined the hypothesis that hepatic prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) cooperate to defend the liver against metastasis. Our studies found PHB1 and MAT1A form a complex that suppresses matrix metalloproteinase-7 (MMP-7) at the transcriptional level and loss of either PHB1 or MAT1A sensitizes the liver to metastasis via MMP-7 induction. Strategies that target the PHB1/MAT1A-MMP-7 axis may be a promising approach for the treatment of primary and secondary liver cancer metastasis.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/metabolism , Colorectal Neoplasms/genetics , Liver Neoplasms/pathology , Matrix Metalloproteinase 7/genetics , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Prohibitins , Tumor Microenvironment
5.
IUBMB Life ; 76(7): 451-463, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38269750

ABSTRACT

In clinical practice, the diagnosis of ulcerative colitis (UC) mainly relies on a comprehensive analysis of a series of signs and symptoms of patients. The current biomarkers for diagnosis of UC and prognostic prediction of anti-TNF-α therapy are inaccurate. The present study aimed to perform an integrative analysis of gene expression profiles in patients with UC. A total of seven datasets from the GEO database that met our strict inclusion criteria were included. After identifying differentially expressed genes (DEGs) between UC patients and healthy individuals, the diagnostic and prognostic utility of the DEGs were then analyzed via least absolute shrinkage and selection operator and support-vector machine recursive feature elimination. Subgroup analyses of the treated and untreated groups, as well as the treatment-response group and non-response group, were also performed. Furthermore, the relationship between the expressions of UC-related genes and infiltration of immune cells in the course of treatment was also investigated. Immunohistochemical (IHC) assay was used to verify the gene expression in inflamed UC tissues. When considering all the applied methods, DUOX2, PI3, S100P, MMP7, and S100A8 had priority to be defined as the characteristic genes among DEGs. The area under curve (AUC) of the five genes, which were all consistently over-expressed, based on an external validation dataset, were all above 0.94 for UC diagnosis. Four of the five genes (DUOX2, PI3, MMP7, and S100A8) were down-regulated between treatment-responsive and nonresponsive patients. A significant difference was also observed concerning the infiltration of immune cells, including macrophage and neutrophil, between the two groups (treatment responsive and nonresponsive). The changes in the expression of DUOX2 and MMP7 based on the IHC assay were highly consistent with the results obtained in the current study. This confirmed the mild to moderate diagnostic and predictive value of DUOX2 and MMP7 in patients with UC. The conducted analyses showed that the expression profile of the five identified biomarkers accurately detects UC, whereas four of the five genes evidently predicted the response to anti-TNF-α therapy.


Subject(s)
Colitis, Ulcerative , Tumor Necrosis Factor-alpha , Humans , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/pathology , Tumor Necrosis Factor-alpha/genetics , Gene Expression Profiling , Biomarkers/metabolism , Prognosis , Matrix Metalloproteinase 7/genetics , Transcriptome , Dual Oxidases/genetics , Dual Oxidases/metabolism , Gene Expression Regulation/drug effects , Female , Case-Control Studies
6.
Int J Legal Med ; 138(4): 1245-1254, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38409607

ABSTRACT

In sexual assault cases, it is crucial to discriminate between peripheral blood and menstrual blood to provide evidence for vaginal intercourse with traumatic injury. In this study, the menstrual blood mRNA markers progestagen-associated endometrial protein (PAEP), matrix metallopeptidase 7 (MMP7), and left-right determination factor 2 (LEFTY2) were evaluated by quantitative RT-PCR (RT-qPCR) for the discrimination of menstrual blood from peripheral blood and vaginal fluid. As a result, all markers with cutoff delta cycle quantification (ΔCq) values were specifically determined in menstrual blood among forensically relevant body fluids. Even though the changes in the expression levels of each marker differed during the menstrual cycle, all markers were determined to be positive in most of the randomly collected menstrual blood samples that were analyzed. Additionally, the markers with proposed cutoff ΔCq values could discriminate between menstrual blood and peripheral blood-mixed vaginal fluid samples. The determination of positive markers was less affected by storage temperature under dry conditions than under wet conditions, while PAEP was detectable in samples stored below room temperature under wet conditions. The detectability of PAEP was considered to be the result of its higher expression level compared with MMP7 and LEFTY2. In conclusion, menstrual blood markers for the RT-qPCR procedure evaluated in this study were highly specific for menstrual blood. The proposed procedure could be useful for discriminating between menstruation and traumatic bleeding in the female genital tract. In particular, PAEP is expected to be applicable to forensic casework samples because of its high specificity and robustness.


Subject(s)
Matrix Metalloproteinase 7 , Menstruation , RNA, Messenger , Real-Time Polymerase Chain Reaction , Vagina , Humans , Female , Vagina/injuries , Matrix Metalloproteinase 7/genetics , Endometrium/metabolism , Adult , Biomarkers , Young Adult , Sex Offenses , Cornified Envelope Proline-Rich Proteins/genetics , Specimen Handling
7.
J Am Soc Nephrol ; 34(7): 1279-1291, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37022120

ABSTRACT

SIGNIFICANCE STATEMENT: Although gene expression changes have been characterized in human diabetic kidney disease (DKD), unbiased tissue proteomics information for this condition is lacking. The authors conducted an unbiased aptamer-based proteomic analysis of samples from patients with DKD and healthy controls, identifying proteins with levels that associate with kidney function (eGFR) or fibrosis, after adjusting for key covariates. Overall, tissue gene expression only modestly correlated with tissue protein levels. Kidney protein and RNA levels of matrix metalloproteinase 7 (MMP7) strongly correlated with fibrosis and with eGFR. Single-cell RNA sequencing indicated that kidney tubule cells are an important source of MMP7. Furthermore, plasma MMP7 levels predicted future kidney function decline. These findings identify kidney tissue MMP7 as a biomarker of fibrosis and blood MMP7 as a biomarker for future kidney function decline. BACKGROUND: Diabetic kidney disease (DKD) is responsible for close to half of all ESKD cases. Although unbiased gene expression changes have been extensively characterized in human kidney tissue samples, unbiased protein-level information is not available. METHODS: We collected human kidney samples from 23 individuals with DKD and ten healthy controls, gathered associated clinical and demographics information, and implemented histologic analysis. We performed unbiased proteomics using the SomaScan platform and quantified the level of 1305 proteins and analyzed gene expression levels by bulk RNA and single-cell RNA sequencing (scRNA-seq). We validated protein levels in a separate cohort of kidney tissue samples as well as in 11,030 blood samples. RESULTS: Globally, human kidney transcript and protein levels showed only modest correlation. Our analysis identified 14 proteins with kidney tissue levels that correlated with eGFR and found that the levels of 152 proteins correlated with interstitial fibrosis. Of the identified proteins, matrix metalloprotease 7 (MMP7) showed the strongest association with both fibrosis and eGFR. The correlation between tissue MMP7 protein expression and kidney function was validated in external datasets. The levels of MMP7 RNA correlated with fibrosis in the primary and validation datasets. Findings from scRNA-seq pointed to proximal tubules, connecting tubules, and principal cells as likely cellular sources of increased tissue MMP7 expression. Furthermore, plasma MMP7 levels correlated not only with kidney function but also associated with prospective kidney function decline. CONCLUSIONS: Our findings, which underscore the value of human kidney tissue proteomics analysis, identify kidney tissue MMP7 as a diagnostic marker of kidney fibrosis and blood MMP7 as a biomarker for future kidney function decline.


Subject(s)
Diabetic Nephropathies , Matrix Metalloproteinase 7 , Humans , Matrix Metalloproteinase 7/genetics , Matrix Metalloproteinase 7/metabolism , Proteomics , Kidney/metabolism , Biomarkers , Fibrosis , RNA
8.
Environ Toxicol ; 39(4): 1897-1908, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38050825

ABSTRACT

The expression of metastasis tumor-associated protein 2 (MTA2) and protein tyrosine kinase 7 (PTK7) is associated with hepatocellular carcinoma (HCC) progression. However, the functional effect and mechanism through which MTA2 regulates PTK7-mediated HCC progression remains unclear. Here, we found that MTA2 knockdown significantly down-regulated PTK7 expression in HCC cells (SK-Hep-1 and PLC/PRF/5). Data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases show that the PTK7 expression level was higher in HCC tissues than in normal liver tissues. In HCC patients, the PTK7 expression level clearly correlated with tumor stage and grade, lower overall survival (OS) correlated positively with MTA2 level, and PTK7 expression acted as a downstream factor for MTA2 expression. In addition, matrix metalloproteinase 7 (MMP7) expression was closely regulated by PTK7, and the mRNA and protein expression levels of MTA2 and PTK7 correlated positively with lower OS. MMP7 downregulation by PTK7 knockdown clearly decreased the migration and invasion abilities of HCC cells. In HCC cells, recombinant human MMP7 reversed the PTK7 knockdown-induced suppression of migration and invasion. Furthermore, deactivation of FAK using siFAK or FAK inhibitor (PF-573228, PF) synergistically contributed to PTK7 knockdown-inhibited FAK activity, MMP7 expression, and the migration and invasion abilities of HCC cells. Collectively, our findings show that PTK7 mediates HCC progression by regulating the MTA2-FAK-MMP7 axis and may be a diagnostic value for HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Repressor Proteins , Humans , Carcinoma, Hepatocellular/pathology , Matrix Metalloproteinase 7/genetics , Matrix Metalloproteinase 7/metabolism , Liver Neoplasms/pathology , Down-Regulation , Cell Movement/genetics , Neoplasm Proteins/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness/genetics , Cell Adhesion Molecules/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Histone Deacetylases/genetics , Histone Deacetylases/metabolism
9.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732212

ABSTRACT

The skin wound healing process consists of hemostatic, inflammatory, proliferative, and maturation phases, with a complex cellular response by multiple cell types in the epidermis, dermis, and immune system. Magnesium is a mineral essential for life, and although magnesium treatment promotes cutaneous wound healing, the molecular mechanism and timing of action of the healing process are unknown. This study, using human epidermal-derived HaCaT cells and human normal epidermal keratinocyte cells, was performed to investigate the mechanism involved in the effect of magnesium on wound healing. The expression levels of epidermal differentiation-promoting factors were reduced by MgCl2, suggesting an inhibitory effect on epidermal differentiation in the remodeling stage of the late wound healing process. On the other hand, MgCl2 treatment increased the expression of matrix metalloproteinase-7 (MMP7), a cell migration-promoting factor, and enhanced cell migration via the MEK/ERK pathway activation. The enhancement of cell migration by MgCl2 was inhibited by MMP7 knockdown, suggesting that MgCl2 enhances cell migration which is mediated by increased MMP7 expression. Our results revealed that MgCl2 inhibits epidermal differentiation but promotes cell migration, suggesting that applying magnesium to the early wound healing process could be beneficial.


Subject(s)
Cell Differentiation , Cell Movement , Keratinocytes , Magnesium , Matrix Metalloproteinase 7 , Wound Healing , Wound Healing/drug effects , Humans , Cell Movement/drug effects , Keratinocytes/drug effects , Keratinocytes/metabolism , Cell Differentiation/drug effects , Magnesium/pharmacology , Magnesium/metabolism , Matrix Metalloproteinase 7/metabolism , Matrix Metalloproteinase 7/genetics , Skin/metabolism , Skin/drug effects , Skin/injuries , MAP Kinase Signaling System/drug effects , Cell Line , Epidermis/drug effects , Epidermis/metabolism , Magnesium Chloride/pharmacology
10.
J Transl Med ; 21(1): 704, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37814323

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the third most common malignant tumor. Fusobacterium nucleatum (F. nucleatum) is overabundant in CRC and associated with metastasis, but the role of F. nucleatum in CRC cell migration and metastasis has not been fully elucidated. METHODS: Differential gene analysis, protein-protein interaction, robust rank aggregation analysis, functional enrichment analysis, and gene set variation analysis were used to figure out the potential vital genes and biological functions affected by F. nucleatum infection. The 16S rDNA sequencing and q-PCR were used to detect the abundance of F. nucleatum in tissues and stools. Then, we assessed the effect of F. nucleatum on CRC cell migration by wound healing and transwell assays, and confirmed the role of Matrix metalloproteinase 7 (MMP7) induced by F. nucleatum in cell migration. Furthermore, we dissected the mechanisms involved in F. nucleatum induced MMP7 expression. We also investigated the MMP7 expression in clinical samples and its correlation with prognosis in CRC patients. Finally, we screened out potential small molecular drugs that targeted MMP7 using the HERB database and molecular docking. RESULTS: F. nucleatum infection altered the gene expression profile and affected immune response, inflammation, biosynthesis, metabolism, adhesion and motility related biological functions in CRC. F. nucleatum was enriched in CRC and promoted the migration of CRC cell by upregulating MMP7 in vitro. MMP7 expression induced by F. nucleatum infection was mediated by the MAPK(JNK)-AP1 axis. MMP7 was highly expressed in CRC and correlated with CMS4 and poor clinical prognosis. Small molecular drugs such as δ-tocotrienol, 3,4-benzopyrene, tea polyphenols, and gallic catechin served as potential targeted therapeutic drugs for F. nucleatum induced MMP7 in CRC. CONCLUSIONS: Our study showed that F. nucleatum promoted metastasis-related characteristics of CRC cell by upregulating MMP7 via MAPK(JNK)-AP1 axis. F. nucleatum and MMP7 may serve as potential therapeutic targets for repressing CRC advance and metastasis.


Subject(s)
Colorectal Neoplasms , Fusobacterium Infections , Humans , Fusobacterium nucleatum/genetics , Matrix Metalloproteinase 7/genetics , Colorectal Neoplasms/pathology , Molecular Docking Simulation , Fusobacterium Infections/complications , Fusobacterium Infections/diagnosis , Fusobacterium Infections/microbiology
11.
Cell Biol Int ; 47(1): 110-122, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36273423

ABSTRACT

Telocytes (TCs) have crucial functions to promote the metastasis of hepatocellular carcinoma (HCC) by over-expressing matrix metalloproteinases (MMPs), but the mechanism by which TCs secrete MMPs in the genome is still unknown. We first cultured and isolated primary TCs from distinct liver cancer tissues and hepatic hemangioma surrounding tissues (Control group). Their whole exon genes were tested by Illumina HiSeq family of platforms and by high-throughput sequencing as well as variant mutations. Moreover, immunohistochemistry, Western blot, and quantitative reverse transcription-polymerase chain reaction assays were utilized to assess the expression of MMPs. The perniciousness of signal-nucleotide polymorphism (SNP) mutations of proteins were predicted by the Polyphen-2 database. Divergent expression and overall survival (OS) of MMPs was screened by StarBase-Pan Cancer plate; and MMPs associated signaling pathways were found by Kyoto Encyclopedia Genes and Genomes. The "competing endogenous RNA (ceRNA)" network was constructed by Cytoscape software. We found that 12 specific types of SNP mutations related to 5 types of MMPs occurred in TCs of liver malignant tumors as a potential result of MMP1, MMP9, and MMP17 overexpression. High levels of MMP1, MMP7, and MMP9 represented poor OS in HCC, and an interactive network of MMPs is shown. Allele shifts of C/T (rs20544) and G/C (rs2250889) in MMP9 were risk factors for TCs in HCC by the prediction of the Polyphen-2 Database. (MMP9 (-3 C/T)) mutation might be a genetic mechanism of upregulating MMP9 in TCs.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Matrix Metalloproteinase 1 , Matrix Metalloproteinase 7 , Matrix Metalloproteinase 9 , Humans , Carcinoma, Hepatocellular/genetics , Computational Biology , Liver Neoplasms/genetics , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 9/genetics , Mutation , Polymorphism, Single Nucleotide , Matrix Metalloproteinase 7/genetics
12.
Mol Biol Rep ; 50(9): 7471-7477, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37480510

ABSTRACT

BACKGROUND AND AIMS: The expression of tissue and serum matrix metalloproteinase-7 (MMP-7) was shown to be elevated both in colon cancer and dysplastic lesions. We aimed to evaluate, for the first time, its role as a diagnostic marker in Lynch syndrome (LS) carriers, a hereditary syndrome with predisposition to colon cancer. METHODS: This was a case control study. Baseline serum MMP-7 levels were determined by ELISA in 40 colon cancer patients, 62 LS-carriers and 60 healthy controls. Retrieved data from medical files included demographics, background diseases, clinical data regarding tumor characteristics and genetic data. We assessed the association of serum MMP-7 levels with different variables in the study cohort using linear regression model adjusted for potential confounders. RESULTS: In crude analysis, serum MMP-7 levels were significantly higher in colon cancer group compared to LS-carriers and controls [median (IQR) 4.1 ng/ml (2.7-6.0), 2.3 ng/ml (1.7-3.1), 2.5 ng/ml (1.5-3.7), respectively; p value - p < 0.001) while there was no difference between the two last groups (p value = 0.583). However, after adjusting for age and gender, LS-carriers' patients had 18% higher concentrations of serum MMP-7 compared to healthy controls (p value = 0.037), while colon cancer patients had 50% higher serum MMP-7 level in comparison to healthy controls (p value < 0.001). Additionally, age was positively associated with higher serum MMP-7 levels across all study groups (r = 0.67, p value < 0.001). In contrast, no correlation was observed between serum MMP-7 and either tumor staging and gene mutation. CONCLUSIONS: Age-adjusted serum MMP-7 levels in asymptomatic LS carriers are higher than its levels in healthy population. While in colon cancer, MMP-7 higher level probably reflects the tumor burden and may have a prognostic effect, its significance and clinical applicability as a biomarker for tumorigenesis in LS is less clear and should be elucidated.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis , Humans , Matrix Metalloproteinase 7/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Case-Control Studies , Biomarkers
13.
Mol Biol Rep ; 50(7): 6029-6037, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37286777

ABSTRACT

BACKGROUND: Compared to other breast cancer subtypes, triple-negative breast cancer (TNBC) has always been challenging for clinicians due to its aggressive behavior and lack of a specific treatment. There is a confirmed association between invasive features of tumors and increased epithelial-mesenchymal transition (EMT) process, which is consistent with a higher rate of EMT in TNBC. METHODS AND RESULTS: We investigated the expression of EMT-related genes, SNAI1 and MMP7, and EMT-related lncRNAs, treRNA and SBF2-AS1, in 50 TNBC tumors and 50 non-TNBC tumors to reveal more regulators and effectors involved in TNBC malignancy. In the present study, we showed the overexpression of all the studied genes and lncRNAs in TNBC tumors compared to non-TNBC samples. Moreover, a significant association was observed between MMP7 and treRNA expression levels and larger tumor size. A positive correlation between SNAI1 and lncRNA treRNA expression levels was also detected. CONCLUSIONS: Due to the differential expression and the potential diagnostic power of the studied genes, SBF2-AS1 and treRNA can be proposed as new probable biomarkers and therapeutic targets in TNBC.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Triple Negative Breast Neoplasms , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Matrix Metalloproteinase 7/genetics , Triple Negative Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic/genetics , Cell Line, Tumor , Cell Proliferation/genetics , MicroRNAs/genetics , Epithelial-Mesenchymal Transition/genetics
14.
Clin Oral Investig ; 27(12): 7417-7423, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37848583

ABSTRACT

OBJECTIVES: The current study aimed to investigate the association of matrix metalloproteinase- (MMP-) 1, -2, -3, -7, and -13 gene polymorphisms with chronic periodontitis (CP) in an Iranian population. MATERIALS AND METHODS: In this case-control study, 87 subjects with CP and 89 periodontally healthy subjects were allocated to case and control groups, respectively. Subjects' venous blood samples (5 cc) were collected, and DNA extraction was performed. A spectrophotometer was utilized to assess the concentration of extracted DNAs. The desired gene polymorphisms were examined using restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR) followed by electrophoresis. Statistical analyses were done using the Pearson Chi-Square test, odds ratio, and t-Test using SPSS Version 28. RESULTS: The MMP-1 (-1607 1G/2G) rs1799750, MMP-3 (-1171 5A/6A) rs3025058, and MMP-7 (-181 A/G) rs11568818 gene polymorphisms significantly differed between case and control groups (PV = 0.019, 0.007, and 0.028, respectively). In contrast, the gene polymorphisms of MMP-2 (-1306 C/T) rs243865 and MMP-13 (-77 A/G) rs2252070 did not make a significant difference. Regarding allele frequencies, the presence of the 2G allele in the MMP-1 (-1607) rs1799750 genotype increased the CP susceptibility significantly, while subjects with the 6A allele in their MMP-3 (-1171) rs3025058 genotype showed significantly lower susceptibility to CP (PV = 0.008 and < 0.001, respectively). CONCLUSION: In the studied population, gene polymorphisms in the DNA sequences of MMP-1 (-1607 1G/2G) rs1799750, MMP-3 (-1171 5A/6A) rs3025058, and MMP-7 (-181 A/G) rs11568818 may have impacts on CP incidence. CLINICAL RELEVANCE: Clinicians should be cautious about the association between MMP-1, MMP-3, and MMP-7 gene polymorphisms and the incidence of chronic periodontitis during periodontal treatment planning.


Subject(s)
Chronic Periodontitis , Humans , Chronic Periodontitis/genetics , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 7/genetics , Case-Control Studies , Iran , Genetic Predisposition to Disease , Polymorphism, Genetic/genetics , Gene Frequency , Genotype , Alleles , Polymorphism, Single Nucleotide
15.
Int J Mol Sci ; 24(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37569592

ABSTRACT

The expression level of the progesterone receptor (PGR) plays a crucial role in determining the biological characteristics of serous ovarian carcinoma. Low PGR expression is associated with chemoresistance and a poorer outcome. In this study, our objective was to explore the relationship between tumor progesterone receptor levels and RNA profiles (miRNAs, piwiRNAs, and mRNAs) to understand their biological characteristics and behavior. To achieve this, we employed next-generation sequencing of small non-coding RNAs, quantitative RT-PCR, and immunohistochemistry to analyze both FFPE and frozen tumor samples, as well as blood plasma from patients with benign cystadenoma (BSC), serous borderline tumor (SBT), low-grade serous ovarian carcinoma (LGSOC), and high-grade serous ovarian carcinoma (HGSOC). Our findings revealed significant upregulation of MMP7 and MUC16, along with downregulation of PGR, in LGSOC and HGSOC compared to BSC. We observed significant correlations of PGR expression levels in tumor tissue with the contents of miR-199a-5p, miR-214-3p, miR-424-3p, miR-424-5p, and miR-125b-5p, which potentially target MUC16, MMP7, and MMP9, as well as with the tissue content of miR-16-5p, miR-17-5p, miR-20a-5p, and miR-93-5p, which are associated with the epithelial-mesenchymal transition (EMT) of cells. The levels of EMT-associated miRNAs were significantly correlated with the content of hsa_piR_022437, hsa_piR_009295, hsa_piR_020813, hsa_piR_004307, and hsa_piR_019914 in tumor tissues. We developed two optimal logistic regression models using the quantitation of hsa_piR_020813, miR-16-5p, and hsa_piR_022437 or hsa_piR_004307, hsa_piR_019914, and miR-93-5p in the tumor tissue, which exhibited a significant ability to diagnose the PGR-negative tumor phenotype with 93% sensitivity. Of particular interest, the blood plasma levels of miR-16-5p and hsa_piR_022437 could be used to diagnose the PGR-negative tumor phenotype with 86% sensitivity even before surgery and chemotherapy. This knowledge can help in choosing the most effective treatment strategy for this aggressive type of ovarian cancer, such as neoadjuvant chemotherapy followed by cytoreduction in combination with hyperthermic intraperitoneal chemotherapy and targeted therapy, thus enhancing the treatment's effectiveness and the patient's longevity.


Subject(s)
MicroRNAs , Ovarian Neoplasms , Humans , Female , Matrix Metalloproteinase 7/genetics , Progesterone , Receptors, Progesterone/genetics , MicroRNAs/metabolism , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phenotype
16.
Biochem Biophys Res Commun ; 608: 128-134, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35397425

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) displays a critical role in the development of renal fibrosis, an important pathological process of chronic kidney disease (CKD). Transcription factor Cut-like homeobox 1 (CUX1) has shown profound effects on several kidney diseases. However, its role in CKD has not been understood yet. In this study, unilateral ureteric obstruction (UUO) surgery was performed on male C57BL/6 mice to simulate CKD in vivo. Renal fibrosis was further induced in human proximal tubular epithelial cell (HK-2) by TGF-ß1 stimulation. CUX1 and MMP7 were found to be over-expressed in renal tissue of UUO mice. Renal functional analyses and histological assessment indicated that CUX1 knockdown alleviated renal injury in UUO mice. Mitochondrial dysfunction was determined in UUO group and improved after CUX1 silencing. Besides, CUX1 knockdown suppressed EMT in UUO mice and TGF-ß1 treated HK-2 cells, as evidenced by reduced expressions of α-SMA, vimentin, fibronectin and augmented abundance of E-cadherin. Furthermore, CUX1 knockdown decreased MMP7 expression by targeting at its promoter region. MMP7 was responsible for the inhibitory effect of CUX1 knockdown on EMT in HK-2 cells. In summary, our findings suggest that CUX1 promotes EMT in CKD by targeting MMP7, and highlight the crucial role of CUX1 in CKD pathogenesis.


Subject(s)
Homeodomain Proteins , Matrix Metalloproteinase 7 , Nuclear Proteins , Renal Insufficiency, Chronic , Repressor Proteins , Ureteral Obstruction , Animals , Epithelial-Mesenchymal Transition , Female , Fibrosis , Homeodomain Proteins/metabolism , Male , Matrix Metalloproteinase 7/genetics , Matrix Metalloproteinase 7/metabolism , Mice , Mice, Inbred C57BL , Nuclear Proteins/metabolism , Renal Insufficiency, Chronic/pathology , Repressor Proteins/metabolism , Transcription Factors/metabolism , Transforming Growth Factor beta1/metabolism , Ureteral Obstruction/metabolism
17.
Biochem Biophys Res Commun ; 586: 14-19, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34823217

ABSTRACT

Plakophilin3 (PKP3) loss leads to tumor progression and metastasis of colon cancer cells. The goal of this report was to determine if PKP3 loss led to increased disease progression in mice. We generated a colonocyte-specific knockout of PKP3 in APCmin mice, which led to increased adenoma formation, the formation of rectal prolapse, and a significant decrease in survival. The observed increase in rectal prolapse formation and decrease in survival correlated with an increase in the expression of Lipocalin2 (LCN2). Increased disease progression was observed even upon treatment with 5-fluorouracil (5FU). These results suggest that an increase in LCN2 expression might lead to therapy resistance and that LCN2 might serve as a potential therapeutic target in colorectal cancer.


Subject(s)
Adenoma/genetics , Colorectal Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Lipocalin-2/genetics , Plakophilins/genetics , Rectal Prolapse/genetics , Adenoma/drug therapy , Adenoma/mortality , Adenoma/pathology , Animals , Antimetabolites, Antineoplastic/pharmacology , Colon/drug effects , Colon/metabolism , Colon/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Disease Progression , Female , Fluorouracil/pharmacology , Gene Expression Regulation, Neoplastic , Keratin-8/genetics , Keratin-8/metabolism , Lipocalin-2/metabolism , Male , Matrix Metalloproteinase 7/genetics , Matrix Metalloproteinase 7/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plakophilins/deficiency , Rectal Prolapse/drug therapy , Rectal Prolapse/mortality , Rectal Prolapse/pathology , Signal Transduction , Survival Analysis
18.
Nat Immunol ; 11(1): 76-83, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19855381

ABSTRACT

Antimicrobial peptides are important effectors of innate immunity throughout the plant and animal kingdoms. In the mammalian small intestine, Paneth cell alpha-defensins are antimicrobial peptides that contribute to host defense against enteric pathogens. To determine if alpha-defensins also govern intestinal microbial ecology, we analyzed the intestinal microbiota of mice expressing a human alpha-defensin gene (DEFA5) and in mice lacking an enzyme required for the processing of mouse alpha-defensins. In these complementary models, we detected significant alpha-defensin-dependent changes in microbiota composition, but not in total bacterial numbers. Furthermore, DEFA5-expressing mice had striking losses of segmented filamentous bacteria and fewer interleukin 17 (IL-17)-producing lamina propria T cells. Our data ascribe a new homeostatic role to alpha-defensins in regulating the makeup of the commensal microbiota.


Subject(s)
Ecology , Intestinal Mucosa/metabolism , Intestines/microbiology , alpha-Defensins/metabolism , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Colony Count, Microbial , Female , Flow Cytometry , Humans , In Situ Hybridization, Fluorescence , Interleukin-17/immunology , Interleukin-17/metabolism , Intestine, Small/immunology , Intestine, Small/metabolism , Intestine, Small/microbiology , Intestines/immunology , Male , Matrix Metalloproteinase 7/genetics , Matrix Metalloproteinase 7/metabolism , Metagenome , Mice , Mice, Inbred Strains , Mice, Knockout , Mice, Transgenic , Microscopy, Fluorescence , Phylogeny , RNA, Ribosomal, 16S/genetics , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , alpha-Defensins/genetics , alpha-Defensins/immunology
19.
J Virol ; 94(6)2020 02 28.
Article in English | MEDLINE | ID: mdl-31827001

ABSTRACT

Herpes simplex virus 1 (HSV-1) can infect virtually all cell types in vitro An important reason lies in its ability to exploit heparan sulfate (HS) for attachment to cells. HS is a ubiquitous glycosaminoglycan located on the cell surface and tethered to proteoglycans such as syndecan-1. Previously, we have shown that heparanase (HPSE) facilitates the release of viral particles by cleaving HS. Here, we demonstrate that HPSE is a master regulator where, in addition to directly enabling viral release via HS removal, it also facilitates cleavage of HS-containing ectodomains of syndecan-1, thereby further enhancing HSV-1 egress from infected cells. Syndecan-1 cleavage is mediated by upregulation of matrix metalloproteases (MMPs) that accompanies higher HPSE expression in infected cells. By overexpressing HPSE, we have identified MMP-3 and MMP-7 as important sheddases of syndecan-1 shedding in corneal epithelial cells, which are natural targets of HSV-1 infection. MMP-3 and MMP-7 were also naturally upregulated during HSV-1 infection. Altogether, this paper shows a new connection between HSV-1 release and syndecan-1 shedding, a phenomenon that is regulated by HPSE and executed by the MMPs. Our results also identify new molecular markers for HSV-1 infection and new targets for future interventions.IMPORTANCE HSV-1 is a common cause of recurrent viral infections in humans. The virus can cause a range of mucosal pathologies. Efficient viral egress from infected cells is an important step for HSV-1 transmission and virus-associated pathologies. Host mechanisms that contribute to HSV-1 egress from infected cells are poorly understood. Syndecan-1 is a common heparan sulfate proteoglycan expressed by many natural target cells. Despite its known connection with heparanase, a recently identified mediator of HSV-1 release, syndecan-1 has not been previously investigated in HSV-1 release. In this study, we demonstrate that the shedding of syndecan-1 by MMP-3 and MMP-7 supports viral egress. We show that the mechanism behind the activation of these MMPs is mediated by heparanase, which is upregulated upon HSV-1 infection. Our study elucidates a new connection between HSV-1 egress, heparanase, and matrix metallopeptidases; identifies new molecular markers of infection; and provides potential new targets for therapeutic interventions.


Subject(s)
Glucuronidase/metabolism , Herpesvirus 1, Human/metabolism , Syndecan-1/metabolism , Virus Release , Virus Shedding , Cell Line , Gene Expression Regulation, Enzymologic , Glucuronidase/genetics , Humans , Matrix Metalloproteinase 3/biosynthesis , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 7/biosynthesis , Matrix Metalloproteinase 7/genetics , Syndecan-1/genetics , Up-Regulation
20.
Hepatology ; 71(5): 1575-1591, 2020 05.
Article in English | MEDLINE | ID: mdl-31520476

ABSTRACT

BACKGROUND AND AIMS: Microbial dysbiosis is associated with alcohol-related hepatitis (AH), with the mechanisms yet to be elucidated. The present study aimed to determine the effects of alcohol and zinc deficiency on Paneth cell (PC) antimicrobial peptides, α-defensins, and to define the link between PC dysfunction and AH. APPROACH AND RESULTS: Translocation of pathogen-associated molecular patterns (PAMPs) was determined in patients with severe AH and in a mouse model of alcoholic steatohepatitis. Microbial composition and PC function were examined in mice. The link between α-defensin dysfunction and AH was investigated in α-defensin-deficient mice. Synthetic human α-defensin 5 (HD5) was orally given to alcohol-fed mice to test the therapeutic potential. The role of zinc deficiency in α-defensin was evaluated in acute and chronic mouse models of zinc deprivation. Hepatic inflammation was associated with PAMP translocation and lipocalin-2 (LCN2) and chemokine (C-X-C motif) ligand 1 (CXCL1) elevation in patients with AH. Antibiotic treatment, lipopolysaccharide injection to mice, and in vitro experiments showed that PAMPs, but not alcohol, directly induced LCN2 and CXCL1. Chronic alcohol feeding caused systemic dysbiosis and PC α-defensin reduction in mice. Knockout of functional α-defensins synergistically affected alcohol-perturbed bacterial composition and the gut barrier and exaggerated PAMP translocation and liver damage. Administration of HD5 effectively altered cecal microbial composition, especially increased Akkermansia muciniphila, and reversed the alcohol-induced deleterious effects. Zinc-regulated PC homeostasis and α-defensins function at multiple levels, and dietary zinc deficiency exaggerated the deleterious effect of alcohol on PC bactericidal activity. CONCLUSIONS: Taken together, the study suggests that alcohol-induced PC α-defensin dysfunction is mediated by zinc deficiency and involved in the pathogenesis of AH. HD5 administration may represent a promising therapeutic approach for treating AH.


Subject(s)
Bacterial Translocation , Fatty Liver, Alcoholic/microbiology , Fatty Liver, Alcoholic/physiopathology , Microbiota/physiology , Paneth Cells/physiology , Zinc/deficiency , alpha-Defensins/deficiency , Animals , Disease Models, Animal , Dysbiosis/etiology , Ethanol/toxicity , Fatty Liver, Alcoholic/complications , Humans , Matrix Metalloproteinase 7/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microbiota/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL