Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 364
Filter
Add more filters

Publication year range
1.
Nature ; 600(7887): 100-104, 2021 12.
Article in English | MEDLINE | ID: mdl-34614503

ABSTRACT

Interactions between the mediodorsal thalamus and the prefrontal cortex are critical for cognition. Studies in humans indicate that these interactions may resolve uncertainty in decision-making1, but the precise mechanisms are unknown. Here we identify two distinct mediodorsal projections to the prefrontal cortex that have complementary mechanistic roles in decision-making under uncertainty. Specifically, we found that a dopamine receptor (D2)-expressing projection amplifies prefrontal signals when task inputs are sparse and a kainate receptor (GRIK4) expressing-projection suppresses prefrontal noise when task inputs are dense but conflicting. Collectively, our data suggest that there are distinct brain mechanisms for handling uncertainty due to low signals versus uncertainty due to high noise, and provide a mechanistic entry point for correcting decision-making abnormalities in disorders that have a prominent prefrontal component2-6.


Subject(s)
Neural Pathways , Prefrontal Cortex/cytology , Prefrontal Cortex/physiology , Thalamus/cytology , Thalamus/physiology , Animals , Decision Making , Female , Humans , Interneurons/physiology , Male , Mediodorsal Thalamic Nucleus/cytology , Mediodorsal Thalamic Nucleus/physiology , Mice , Receptors, Dopamine/metabolism , Receptors, Kainic Acid/metabolism , Uncertainty
2.
Nature ; 566(7744): 339-343, 2019 02.
Article in English | MEDLINE | ID: mdl-30760920

ABSTRACT

A psychotherapeutic regimen that uses alternating bilateral sensory stimulation (ABS) has been used to treat post-traumatic stress disorder. However, the neural basis that underlies the long-lasting effect of this treatment-described as eye movement desensitization and reprocessing-has not been identified. Here we describe a neuronal pathway driven by the superior colliculus (SC) that mediates persistent attenuation of fear. We successfully induced a lasting reduction in fear in mice by pairing visual ABS with conditioned stimuli during fear extinction. Among the types of visual stimulation tested, ABS provided the strongest fear-reducing effect and yielded sustained increases in the activities of the SC and mediodorsal thalamus (MD). Optogenetic manipulation revealed that the SC-MD circuit was necessary and sufficient to prevent the return of fear. ABS suppressed the activity of fear-encoding cells and stabilized inhibitory neurotransmission in the basolateral amygdala through a feedforward inhibitory circuit from the MD. Together, these results reveal the neural circuit that underlies an effective strategy for sustainably attenuating traumatic memories.


Subject(s)
Anxiety/psychology , Anxiety/therapy , Extinction, Psychological/physiology , Fear/physiology , Fear/psychology , Neural Pathways/physiology , Superior Colliculi/cytology , Superior Colliculi/physiology , Animals , Anxiety/physiopathology , Basolateral Nuclear Complex/cytology , Basolateral Nuclear Complex/physiology , Conditioning, Classical/physiology , Feedback, Physiological , Male , Mediodorsal Thalamic Nucleus/cytology , Mediodorsal Thalamic Nucleus/physiology , Mice , Neural Inhibition , Optogenetics , Photic Stimulation , Stress Disorders, Post-Traumatic , Time Factors
3.
Nature ; 565(7737): 86-90, 2019 01.
Article in English | MEDLINE | ID: mdl-30532001

ABSTRACT

Animals and humans display two types of response to noxious stimuli. The first includes reflexive defensive responses that prevent or limit injury; a well-known example of these responses is the quick withdrawal of one's hand upon touching a hot object. When the first-line response fails to prevent tissue damage (for example, a finger is burnt), the resulting pain invokes a second-line coping response-such as licking the injured area to soothe suffering. However, the underlying neural circuits that drive these two strings of behaviour remain poorly understood. Here we show in mice that spinal neurons marked by coexpression of TAC1Cre and LBX1Flpo drive coping responses associated with pain. Ablation of these spinal neurons led to the loss of both persistent licking and conditioned aversion evoked by stimuli (including skin pinching and burn injury) that-in humans-produce sustained pain, without affecting any of the reflexive defensive reactions that we tested. This selective indifference to sustained pain resembles the phenotype seen in humans with lesions of medial thalamic nuclei1-3. Consistently, spinal TAC1-lineage neurons are connected to medial thalamic nuclei by direct projections and via indirect routes through the superior lateral parabrachial nuclei. Furthermore, the anatomical and functional segregation observed at the spinal level also applies to primary sensory neurons. For example, in response to noxious mechanical stimuli, MRGPRD- and TRPV1-positive nociceptors are required to elicit reflexive and coping responses, respectively. Our study therefore reveals a fundamental subdivision within the cutaneous somatosensory system, and challenges the validity of using reflexive defensive responses to measure sustained pain.


Subject(s)
Adaptation, Psychological/physiology , Chronic Pain/physiopathology , Chronic Pain/psychology , Neural Pathways/physiology , Animals , Avoidance Learning , Conditioning, Classical , Female , Humans , Male , Mediodorsal Thalamic Nucleus/cytology , Mediodorsal Thalamic Nucleus/physiology , Mice , Neurons, Afferent/physiology , Parabrachial Nucleus/cytology , Parabrachial Nucleus/physiology , Protein Precursors/genetics , Protein Precursors/metabolism , Receptors, G-Protein-Coupled/metabolism , TRPV Cation Channels/metabolism , Tachykinins/genetics , Tachykinins/metabolism
4.
J Neurosci ; 43(12): 2104-2115, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36788026

ABSTRACT

The medial prefrontal cortex receives converging inputs from the mediodorsal thalamic nucleus (MD) and basolateral amygdala (BLA). Although many studies reported that the BLA also projects to MD, there is conflicting evidence regarding this projection, with some data suggesting that it originates from GABAergic or glutamatergic neurons. Therefore, the present study aimed to determine the neurotransmitter used by MD-projecting BLA cells in male and female rats. We first examined whether BLA cells retrogradely labeled by Fast Blue infusions in MD are immunopositive for multiple established markers of BLA interneurons. A minority of MD-projecting BLA cells expressed somatostatin (∼22%) or calretinin (∼11%) but not other interneuronal markers, suggesting that BLA neurons projecting to MD not only include glutamatergic cells, but also long-range GABAergic neurons. Second, we examined the responses of MD cells to optogenetic activation of BLA axons using whole-cell recordings in vitro Consistent with our immunohistochemical findings, among responsive MD cells, light stimuli typically elicited isolated EPSPs (73%) or IPSPs (27%) as well as coincident EPSPs and IPSPs (11%). Indicating that these IPSPs were monosynaptic, light-evoked EPSPs and IPSPs had the same latency and the IPSPs persisted in the presence of ionotropic glutamate receptor antagonists. Overall, our results indicate that the BLA sends a mixed, glutamatergic-GABAergic projection to MD, which likely influences coordination of activity between BLA, MD, and medial prefrontal cortex. An important challenge for future studies will be to examine the connections formed by MD-projecting glutamatergic and GABAergic BLA cells with each other and other populations of BLA cells.SIGNIFICANCE STATEMENT The mediodorsal thalamic nucleus (MD) and basolateral amygdala (BLA) send convergent projections to the medial prefrontal cortex. Although many studies reported that the BLA also projects to MD, there is conflicting evidence as to whether this projection is glutamatergic or GABAergic. By combining tract tracing, immunohistochemistry, optogenetics, and patch clamp recordings in vitro, we found that BLA neurons projecting to MD not only include glutamatergic cells, but also long-range GABAergic neurons. Differential recruitment of these two contingents of cells likely influences coordination of activity between the BLA, MD, and medial prefrontal cortex.


Subject(s)
Basolateral Nuclear Complex , Rats , Male , Female , Animals , Basolateral Nuclear Complex/physiology , Mediodorsal Thalamic Nucleus , Neural Pathways/physiology , Interneurons , GABAergic Neurons
5.
J Neurosci ; 43(46): 7780-7798, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37709539

ABSTRACT

Animal studies have established that the mediodorsal nucleus (MD) of the thalamus is heavily and reciprocally connected with all areas of the prefrontal cortex (PFC). In humans, however, these connections are difficult to investigate. High-resolution imaging protocols capable of reliably tracing the axonal tracts linking the human MD with each of the PFC areas may thus be key to advance our understanding of the variation, development, and plastic changes of these important circuits, in health and disease. Here, we tested in adult female and male humans the reliability of a new reconstruction protocol based on in vivo diffusion MRI to trace, measure, and characterize the fiber tracts interconnecting the MD with 39 human PFC areas per hemisphere. Our protocol comprised the following three components: (1) defining regions of interest; (2) preprocessing diffusion data; and, (3) modeling white matter tracts and tractometry. This analysis revealed largely separate PFC territories of reciprocal MD-PFC tracts bearing striking resemblance with the topographic layout observed in macaque connection-tracing studies. We then examined whether our protocol could reliably reconstruct each of these MD-PFC tracts and their profiles across test and retest sessions. Results revealed that this protocol was able to trace and measure, in both left and right hemispheres, the trajectories of these 39 area-specific axon bundles with good-to-excellent test-retest reproducibility. This protocol, which has been made publicly available, may be relevant for cognitive neuroscience and clinical studies of normal and abnormal PFC function, development, and plasticity.SIGNIFICANCE STATEMENT Reciprocal MD-PFC interactions are critical for complex human cognition and learning. Reliably tracing, measuring and characterizing MD-PFC white matter tracts using high-resolution noninvasive methods is key to assess individual variation of these systems in humans. Here, we propose a high-resolution tractography protocol that reliably reconstructs 39 area-specific MD-PFC white matter tracts per hemisphere and quantifies structural information from diffusion MRI data. This protocol revealed a detailed mapping of thalamocortical and corticothalamic MD-PFC tracts in four different PFC territories (dorsal, medial, orbital/frontal pole, inferior frontal) showing structural connections resembling those observed in tracing studies with macaques. Furthermore, our automated protocol revealed high test-retest reproducibility and is made publicly available, constituting a step forward in mapping human MD-PFC circuits in clinical and academic research.


Subject(s)
Mediodorsal Thalamic Nucleus , Prefrontal Cortex , Adult , Animals , Humans , Male , Female , Reproducibility of Results , Prefrontal Cortex/diagnostic imaging , Thalamus , Cognition , Macaca , Neural Pathways/diagnostic imaging
6.
J Neurophysiol ; 131(5): 876-890, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38568510

ABSTRACT

At the heart of the prefrontal network is the mediodorsal (MD) thalamus. Despite the importance of MD in a broad range of behaviors and neuropsychiatric disorders, little is known about the physiology of neurons in MD. We injected the retrograde tracer cholera toxin subunit B (CTB) into the medial prefrontal cortex (mPFC) of adult wild-type mice. We prepared acute brain slices and used current clamp electrophysiology to measure and compare the intrinsic properties of the neurons in MD that project to mPFC (MD→mPFC neurons). We show that MD→mPFC neurons are located predominantly in the medial (MD-M) and lateral (MD-L) subnuclei of MD. MD-L→mPFC neurons had shorter membrane time constants and lower membrane resistance than MD-M→mPFC neurons. Relatively increased hyperpolarization-activated cyclic nucleotide-gated (HCN) channel activity in MD-L neurons accounted for the difference in membrane resistance. MD-L neurons had a higher rheobase that resulted in less readily generated action potentials compared with MD-M→mPFC neurons. In both cell types, HCN channels supported generation of burst spiking. Increased HCN channel activity in MD-L neurons results in larger after-hyperpolarization potentials compared with MD-M neurons. These data demonstrate that the two populations of MD→mPFC neurons have divergent physiologies and support a differential role in thalamocortical information processing and potentially behavior.NEW & NOTEWORTHY To realize the potential of circuit-based therapies for psychiatric disorders that localize to the prefrontal network, we need to understand the properties of the populations of neurons that make up this network. The mediodorsal (MD) thalamus has garnered attention for its roles in executive functioning and social/emotional behaviors mediated, at least in part, by its projections to the medial prefrontal cortex (mPFC). Here, we identify and compare the physiology of the projection neurons in the two MD subnuclei that provide ascending inputs to mPFC in mice. Differences in intrinsic excitability between the two populations of neurons suggest that neuromodulation strategies targeting the prefrontal thalamocortical network will have differential effects on these two streams of thalamic input to mPFC.


Subject(s)
Mediodorsal Thalamic Nucleus , Mice, Inbred C57BL , Prefrontal Cortex , Animals , Prefrontal Cortex/physiology , Prefrontal Cortex/cytology , Mice , Mediodorsal Thalamic Nucleus/physiology , Mediodorsal Thalamic Nucleus/cytology , Male , Neurons/physiology , Neural Pathways/physiology , Action Potentials/physiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/physiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism
7.
Eur J Neurosci ; 59(4): 641-661, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38221670

ABSTRACT

Sleep spindles are major oscillatory components of Non-Rapid Eye Movement (NREM) sleep, reflecting hyperpolarization-rebound sequences of thalamocortical neurons. Reports suggest a link between sleep spindles and several forms of high-frequency oscillations which are considered as expressions of pathological off-line neural plasticity in the central nervous system. Here we investigated the relationship between thalamic sleep spindles and ripples in the anterior and mediodorsal nuclei (ANT and MD) of epilepsy patients. Whole-night LFP from the ANT and MD were co-registered with scalp EEG/polysomnography by using externalized leads in 15 epilepsy patients undergoing a Deep Brain Stimulation protocol. Slow (~12 Hz) and fast (~14 Hz) sleep spindles were present in the human ANT and MD and roughly, 20% of them were associated with ripples. Ripple-associated thalamic sleep spindles were characterized by longer duration and exceeded pure spindles in terms of spindle power as indicated by time-frequency analysis. Furthermore, ripple amplitude was modulated by the phase of sleep spindles within both thalamic nuclei. No signs of pathological processes were correlated with measures of ripple and spindle association, furthermore, the density of ripple-associated sleep spindles in the ANT showed a positive correlation with verbal comprehension. Our findings indicate the involvement of the human thalamus in coalescent spindle-ripple oscillations of NREM sleep.


Subject(s)
Epilepsy , Sleep , Humans , Sleep/physiology , Thalamus/physiology , Electroencephalography , Mediodorsal Thalamic Nucleus
8.
Cereb Cortex ; 33(11): 6742-6760, 2023 05 24.
Article in English | MEDLINE | ID: mdl-36757182

ABSTRACT

Auditory gating (AG) is an adaptive mechanism for filtering out redundant acoustic stimuli to protect the brain against information overload. AG deficits have been found in many mental illnesses, including schizophrenia (SZ). However, the neural correlates of AG remain poorly understood. Here, we found that the posterior parietal cortex (PPC) shows an intermediate level of AG in auditory thalamocortical circuits, with a laminar profile in which the strongest AG is in the granular layer. Furthermore, AG of the PPC was decreased and increased by optogenetic inactivation of the medial dorsal thalamic nucleus (MD) and auditory cortex (AC), respectively. Optogenetically activating the axons from the MD and AC drove neural activities in the PPC without an obvious AG. These results indicated that AG in the PPC is determined by the integrated signal streams from the MD and AC in a bottom-up manner. We also found that a mouse model of SZ (postnatal administration of noncompetitive N-methyl-d-aspartate receptor antagonist) presented an AG deficit in the PPC, which may be inherited from the dysfunction of MD. Together, our findings reveal a neural circuit underlying the generation of AG in the PPC and its involvement in the AG deficit of SZ.


Subject(s)
Auditory Cortex , Wakefulness , Mice , Animals , Parietal Lobe/physiology , Thalamus , Mediodorsal Thalamic Nucleus , Brain , Auditory Cortex/physiology
9.
Sheng Li Xue Bao ; 76(2): 233-246, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38658373

ABSTRACT

The high-order cognitive and executive functions are necessary for an individual to survive. The densely bidirectional innervations between the medial prefrontal cortex (mPFC) and the mediodorsal thalamus (MD) play a vital role in regulating high-order functions. Pyramidal neurons in mPFC have been classified into several subclasses according to their morphological and electrophysiological properties, but the properties of the input-specific pyramidal neurons in mPFC remain poorly understood. The present study aimed to profile the morphological and electrophysiological properties of mPFC pyramidal neurons innervated by MD. In the past, the studies for characterizing the morphological and electrophysiological properties of neurons mainly relied on the electrophysiological recording of a large number of neurons and their morphologic reconstructions. But, it is a low efficient method for characterizing the circuit-specific neurons. The present study combined the advantages of traditional morphological and electrophysiological methods with machine learning to address the shortcomings of the past method, to establish a classification model for the morphological and electrophysiological properties of mPFC pyramidal neurons, and to achieve more accurate and efficient identification of the properties from a small size sample of neurons. We labeled MD-innervated pyramidal neurons of mPFC using the trans-synaptic neural circuitry tracing method and obtained their morphological properties using whole-cell patch-clamp recording and morphologic reconstructions. The results showed that the classification model established in the present study could predict the electrophysiological properties of MD-innervated pyramidal neurons based on their morphology. MD-innervated pyramidal neurons exhibit larger basal dendritic length but lower apical dendrite complexity compared to non-MD-innervated neurons in the mPFC. The morphological characteristics of the two subtypes (ET-1 and ET-2) of mPFC pyramidal neurons innervated by MD are different, with the apical dendrites of ET-1 neurons being longer and more complex than those of ET-2 neurons. These results suggest that the electrophysiological properties of MD- innervated pyramidal neurons within mPFC correlate with their morphological properties, indicating that the different roles of these two subclasses in local circuits within PFC, as well as in PFC-cortical/subcortical brain region circuits.


Subject(s)
Prefrontal Cortex , Pyramidal Cells , Pyramidal Cells/physiology , Pyramidal Cells/cytology , Prefrontal Cortex/physiology , Prefrontal Cortex/cytology , Animals , Rats , Mediodorsal Thalamic Nucleus/physiology , Mediodorsal Thalamic Nucleus/cytology , Male , Electrophysiological Phenomena , Neural Pathways/physiology , Neural Pathways/cytology , Machine Learning , Rats, Sprague-Dawley , Patch-Clamp Techniques
10.
PLoS Biol ; 18(2): e3000639, 2020 02.
Article in English | MEDLINE | ID: mdl-32106269

ABSTRACT

Studies on the thalamus have mostly focused on sensory relay nuclei, but the organization of pathways associated with emotions is not well understood. We addressed this issue by testing the hypothesis that the primate amygdala acts, in part, like a sensory structure for the affective import of stimuli and conveys this information to the mediodorsal thalamic nucleus, magnocellular part (MDmc). We found that primate sensory cortices innervate amygdalar sites that project to the MDmc, which projects to the orbitofrontal cortex. As in sensory thalamic systems, large amygdalar terminals innervated excitatory relay and inhibitory neurons in the MDmc that facilitate faithful transmission to the cortex. The amygdala, however, uniquely innervated a few MDmc neurons by surrounding and isolating large segments of their proximal dendrites, as revealed by three-dimensional high-resolution reconstruction. Physiologic studies have shown that large axon terminals are found in pathways issued from motor systems that innervate other brain centers to help distinguish self-initiated from other movements. By analogy, the amygdalar pathway to the MDmc may convey signals forwarded to the orbitofrontal cortex to monitor and update the status of the environment in processes deranged in schizophrenia, resulting in attribution of thoughts and actions to external sources.


Subject(s)
Amygdala/physiology , Emotions/physiology , Mediodorsal Thalamic Nucleus/physiology , Amygdala/cytology , Animals , Dendrites , Female , Macaca mulatta , Male , Mediodorsal Thalamic Nucleus/cytology , Neural Pathways , Neurons , Prefrontal Cortex/physiology , Presynaptic Terminals , Thalamus/cytology , Thalamus/physiology
11.
Neuroimage ; 249: 118876, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34998970

ABSTRACT

The human mediodorsal thalamic nucleus (MD) is crucial for higher cognitive functions, while the fine anatomical organization of the MD and the function of each subregion remain elusive. In this study, using high-resolution data provided by the Human Connectome Project, an anatomical connectivity-based method was adopted to unveil the topographic organization of the MD. Four fine-grained subregions were identified in each hemisphere, including the medial (MDm), central (MDc), dorsal (MDd), and lateral (MDl), which recapitulated previous cytoarchitectonic boundaries from histological studies. The subsequent connectivity analysis of the subregions also demonstrated distinct anatomical and functional connectivity patterns, especially with the prefrontal cortex. To further evaluate the function of MD subregions, partial least squares analysis was performed to examine the relationship between different prefrontal-subregion connectivity and behavioral measures in 1012 subjects. The results showed subregion-specific involvement in a range of cognitive functions. Specifically, the MDm predominantly subserved emotional-cognition domains, while the MDl was involved in multiple cognitive functions especially cognitive flexibility and inhibition. The MDc and MDd were correlated with fluid intelligence, processing speed, and emotional cognition. In conclusion, our work provides new insights into the anatomical and functional organization of the MD and highlights the various roles of the prefrontal-thalamic circuitry in human cognition.


Subject(s)
Cognition/physiology , Connectome , Emotions/physiology , Executive Function/physiology , Intelligence/physiology , Magnetic Resonance Imaging , Mediodorsal Thalamic Nucleus/physiology , Nerve Net/physiology , Adult , Brain Mapping , Diffusion Tensor Imaging , Female , Humans , Male , Mediodorsal Thalamic Nucleus/diagnostic imaging , Nerve Net/diagnostic imaging , Young Adult
12.
J Neurosci ; 40(33): 6367-6378, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32680937

ABSTRACT

A corollary discharge (CD) is a copy of a neuronal command for movement sent to other brain regions to inform them of the impending movement. In monkeys, a circuit from superior colliculus (SC) through medial-dorsal nucleus of the thalamus (MD) to frontal eye field (FEF) carries such a CD for saccadic eye movements. This circuit provides the clearest example of such internal monitoring reaching cerebral cortex. In this report we first investigated the functional organization of the critical MD relay by systematically recording neurons within a grid of penetrations. In two male rhesus macaque monkeys (Macaca mulatta), we found that lateral MD neurons carrying CD signals discharged before saccades to ipsilateral as well as contralateral visual fields instead of just contralateral fields, often had activity over large movement fields, and had activity from both central and peripheral visual fields. Each of these characteristics has been found in FEF, but these findings indicate that these characteristics are already present in the thalamus. These characteristics show that the MD thalamic relay is not passive but instead assembles inputs from the SC before transmission to cortex. We next determined the exact location of the saccade-related CD neurons using the grid of penetrations. The neurons occupy an anterior-posterior band at the lateral edge of MD, and we established this band in stereotaxic coordinates to facilitate future study of CD neurons. These observations reveal both the organizational features of the internal CD signals within the thalamus, and the location of the thalamic relay for those signals.SIGNIFICANCE STATEMENT A corollary discharge (CD) circuit within the brain keeps an internal record of physical movements. In monkeys and humans, one such CD keeps track of rapid eye movements, and in monkeys, a circuit carrying this CD extends from midbrain to cerebral cortex through a relay in the thalamus. This circuit provides guidance for eye movements, contributes to stable visual perception, and when defective, might be related to difficulties that schizophrenic patients have in recognizing their own movements. This report facilitates the comparison of the circuit in monkeys and humans, particularly for comparison of the location of the thalamic relay in monkeys and in humans.


Subject(s)
Action Potentials , Mediodorsal Thalamic Nucleus/physiology , Neurons/physiology , Saccades/physiology , Animals , Macaca mulatta , Male , Psychomotor Performance/physiology , Visual Fields/physiology , Visual Pathways/physiology
13.
J Neurosci ; 40(8): 1650-1667, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31941665

ABSTRACT

The mediodorsal nucleus of the thalamus (MD) is reciprocally connected with the prefrontal cortex (PFC), and although the MD has been implicated in a range of PFC-dependent cognitive functions (Watanabe and Funahashi, 2012; Mitchell and Chakraborty, 2013; Parnaudeau et al., 2018), little is known about how MD neurons in the primate participate specifically in cognitive control, a capability that reflects the ability to use contextual information (such as a rule) to modify responses to environmental stimuli. To learn how the MD-PFC thalamocortical network is engaged to mediate forms of cognitive control that are selectively disrupted in schizophrenia, we trained male monkeys to perform a variant of the AX continuous performance task, which reliably measures cognitive control deficits in patients (Henderson et al., 2012) and used linear multielectrode arrays to record neural activity in the MD and PFC simultaneously. We found that the two structures made clearly different contributions to distributed processing for cognitive control: MD neurons were specialized for decision-making and response selection, whereas prefrontal neurons were specialized to preferentially encode the environmental state on which the decision was based. In addition, we observed that functional coupling between MD and PFC was strongest when the decision as to which of the two responses in the task to execute was being made. These findings delineate unique contributions of MD and PFC to distributed processing for cognitive control and characterized neural dynamics in this network associated with normative cognitive control performance.SIGNIFICANCE STATEMENT Cognitive control is fundamental to healthy human executive functioning (Miller and Cohen, 2001) and deficits in patients with schizophrenia relate to decreased functional activation of the MD thalamus and the prefrontal cortex (Minzenberg et al., 2009), which are reciprocally linked (Goldman-Rakic and Porrino, 1985; Xiao et al., 2009). We carry out simultaneous neural recordings in the MD and PFC while monkeys perform a cognitive control task translated from patients with schizophrenia to relate thalamocortical dynamics to cognitive control performance. Our data suggest that state representation and decision-making computations for cognitive control are preferentially performed by PFC and MD, respectively. This suggests experiments to parse decision-making and state representation deficits in patients while providing novel computational targets for future therapies.


Subject(s)
Cognition/physiology , Decision Making/physiology , Mediodorsal Thalamic Nucleus/physiopathology , Prefrontal Cortex/physiopathology , Schizophrenia/physiopathology , Animals , Electrodes, Implanted , Macaca mulatta , Male , Neural Pathways/physiology , Neurons/physiology
14.
J Neurosci ; 40(33): 6379-6388, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32493711

ABSTRACT

The perception of time is critical to adaptive behavior. While prefrontal cortex and basal ganglia have been implicated in interval timing in the seconds to minutes range, little is known about the role of the mediodorsal thalamus (MD), which is a key component of the limbic cortico-basal ganglia-thalamocortical loop. In this study, we tested the role of the MD in timing, using an operant temporal production task in male mice. In this task, that the expected timing of available rewards is indicated by lever pressing. Inactivation of the MD with muscimol produced rightward shifts in peak pressing on probe trials as well as increases in peak spread, thus significantly altering both temporal accuracy and precision. Optogenetic inhibition of glutamatergic projection neurons in the MD also resulted in similar changes in timing. The observed effects were found to be independent of significant changes in movement. Our findings suggest that the MD is a critical component of the neural circuit for interval timing, without playing a direct role in regulating ongoing performance.SIGNIFICANCE STATEMENT The mediodorsal nucleus (MD) of the thalamus is strongly connected with the prefrontal cortex and basal ganglia, areas which have been implicated in interval timing. Previous work has shown that the MD contributes to working memory and learning of action-outcome contingencies, but its role in behavioral timing is poorly understood. Using an operant temporal production task, we showed that inactivation of the MD significantly impaired timing behavior.


Subject(s)
Conditioning, Operant/physiology , Mediodorsal Thalamic Nucleus/physiology , Psychomotor Performance/physiology , Time Perception/physiology , Animals , Conditioning, Operant/drug effects , GABA-A Receptor Agonists/administration & dosage , Male , Mediodorsal Thalamic Nucleus/drug effects , Mice, Inbred C57BL , Muscimol/administration & dosage , Optogenetics , Psychomotor Performance/drug effects , Reward , Time Perception/drug effects
15.
Cereb Cortex ; 30(6): 3827-3837, 2020 05 18.
Article in English | MEDLINE | ID: mdl-31989161

ABSTRACT

The neural basis of memory is highly distributed, but the thalamus is known to play a particularly critical role. However, exactly how the different thalamic nuclei contribute to different kinds of memory is unclear. Moreover, whether thalamic connectivity with the medial temporal lobe (MTL), arguably the most fundamental memory structure, is critical for memory remains unknown. We explore these questions using an fMRI recognition memory paradigm that taps familiarity and recollection (i.e., the two types of memory that support recognition) for objects, faces, and scenes. We show that the mediodorsal thalamus (MDt) plays a material-general role in familiarity, while the anterior thalamus plays a material-general role in recollection. Material-specific regions were found for scene familiarity (ventral posteromedial and pulvinar thalamic nuclei) and face familiarity (left ventrolateral thalamus). Critically, increased functional connectivity between the MDt and the parahippocampal (PHC) and perirhinal cortices (PRC) of the MTL underpinned increases in reported familiarity confidence. These findings suggest that familiarity signals are generated through the dynamic interaction of functionally connected MTL-thalamic structures.


Subject(s)
Parahippocampal Gyrus/diagnostic imaging , Perirhinal Cortex/diagnostic imaging , Recognition, Psychology/physiology , Temporal Lobe/diagnostic imaging , Thalamus/diagnostic imaging , Adult , Anterior Thalamic Nuclei/diagnostic imaging , Anterior Thalamic Nuclei/physiology , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Mediodorsal Thalamic Nucleus/diagnostic imaging , Mediodorsal Thalamic Nucleus/physiology , Mental Recall , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Parahippocampal Gyrus/physiology , Perirhinal Cortex/physiology , Pulvinar/diagnostic imaging , Pulvinar/physiology , Temporal Lobe/physiology , Thalamus/physiology , Ventral Thalamic Nuclei/diagnostic imaging , Ventral Thalamic Nuclei/physiology , Young Adult
16.
Learn Mem ; 27(2): 67-77, 2020 02.
Article in English | MEDLINE | ID: mdl-31949038

ABSTRACT

Working memory (WM), the capacity for short-term storage of small quantities of information for immediate use, is thought to depend on activity within the prefrontal cortex. Recent evidence indicates that the prefrontal neuronal activity supporting WM is driven by thalamocortical connections arising in mediodorsal thalamus (mdThal). However, the role of these connections has not been studied using olfactory stimuli leaving open the question of whether this circuit extends to all sensory modalities. Additionally, manipulations of the mdThal in olfactory memory tasks have yielded mixed results. In the present experiment, we investigated the role of connections between the rat medial prefrontal cortex (mPFC) and mdThal in the odor span task (OST) using a pharmacological contralateral disconnection technique. Inactivation of either the mPFC or mdThal alone both significantly impaired memory performance in the OST, replicating previous findings with the mPFC and confirming that the mdThal plays an essential role in intact OST performance. Contralateral disconnection of the two structures impaired OST performance in support of the idea that the OST relies on mPFC-mdThal connections, but ipsilateral control infusions also impaired performance, complicating this interpretation. We also performed a detailed analysis of rats' errors and foraging behavior and found a dissociation between mPFC and mdThal inactivation conditions. Inactivation of the mdThal and mPFC caused a significant reduction in the number of approaches rats made per odor, whereas only mdThal inactivation or mPFC-mdThal disconnection caused significant increases in choice latency. Our results confirm that the mdThal is necessary for performance of the OST and that it may critically interact with the mPFC to mediate OST performance. Additionally, we have provided evidence that the mPFC and mdThal play dissociable roles in mediating foraging behavior.


Subject(s)
Behavior, Animal/physiology , Mediodorsal Thalamic Nucleus/physiology , Memory, Short-Term/physiology , Olfactory Perception/physiology , Prefrontal Cortex/physiology , Animals , Baclofen/administration & dosage , GABA-A Receptor Agonists/administration & dosage , Infusions, Parenteral , Male , Mediodorsal Thalamic Nucleus/drug effects , Muscimol/administration & dosage , Prefrontal Cortex/drug effects , Rats , Rats, Long-Evans
17.
J Neurosci ; 39(11): 2102-2113, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30630882

ABSTRACT

By predicting sensory consequences of actions, humans can distinguish self-generated sensory inputs from those that are elicited externally. This is one mechanism by which we achieve a subjective sense of agency over our actions. Corollary discharge (CD) signals-"copies" of motor signals sent to sensory areas-permit such predictions, and CD abnormalities are a hypothesized mechanism for the agency disruptions in schizophrenia that characterize a subset of symptoms. Indeed, behavioral evidence of altered CD, including in the oculomotor system, has been observed in schizophrenia patients. A pathway projecting from the superior colliculus to the frontal eye fields (FEFs) via the mediodorsal thalamus (MD) conveys oculomotor CD associated with saccadic eye movements in nonhuman primates. This animal work provides a promising translational framework in which to investigate CD abnormalities in clinical populations. In the current study, we examined whether structural connectivity of this MD-FEF pathway relates to oculomotor CD functioning in schizophrenia. Twenty-two schizophrenia patients and 24 healthy control participants of both sexes underwent diffusion tensor imaging, and a large subset performed a trans-saccadic perceptual task that yields measures of CD. Using probabilistic tractography, we identified anatomical connections between FEF and MD and extracted indices of microstructural integrity. Patients exhibited compromised microstructural integrity in the MD-FEF pathway, which was correlated with greater oculomotor CD abnormalities and more severe psychotic symptoms. These data reinforce the role of the MD-FEF pathway in transmitting oculomotor CD signals and suggest that disturbances in this pathway may relate to psychotic symptom manifestation in patients.SIGNIFICANCE STATEMENT People with schizophrenia sometimes experience abnormalities in a sense of agency, which may stem from abnormal sensory predictions about their own actions. Consistent with this notion, the current study found reduced structural connectivity in patients with schizophrenia in a specific brain pathway found to transmit such sensorimotor prediction signals in nonhuman primates. Reduced structural connectivity was correlated with behavioral evidence for impaired sensorimotor predictions and psychotic symptoms.


Subject(s)
Frontal Lobe/pathology , Mediodorsal Thalamic Nucleus/pathology , Saccades , Schizophrenia/pathology , Schizophrenia/physiopathology , Visual Perception/physiology , Adult , Diffusion Magnetic Resonance Imaging , Female , Frontal Lobe/diagnostic imaging , Humans , Male , Mediodorsal Thalamic Nucleus/diagnostic imaging , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Psychomotor Performance , Schizophrenia/diagnostic imaging , Schizophrenic Psychology
18.
J Neurosci ; 39(3): 434-444, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30459228

ABSTRACT

Forming reliable memories requires coordinated activity within distributed brain networks. At present, neural mechanisms underlying systems-level consolidation of declarative memory beyond the hippocampal-prefrontal interactions remain largely unexplored. The mediodorsal thalamic nucleus (MD) is reciprocally connected with the medial prefrontal cortex (mPFC) and also receives inputs from parahippocampal regions. The MD may thus modulate functional connectivity between the hippocampus and the mPFC at different stages of information processing. Here, we characterized, in freely behaving Sprague Dawley male rats, the MD neural activity around hippocampal ripples, indicators of memory replay and hippocampal-cortical information transfer. Overall, the MD firing rate was transiently (0.76 ± 0.06 s) decreased around ripples, with the MD activity suppression preceding the ripple onset for 0.41 ± 0.04 s (range, 0.01-0.95 s). The degree of MD modulation correlated with ripple amplitude, differed across behavioral states, and also depended on the dynamics of hippocampal-cortical population activity. The MD suppression was the strongest and the most consistent during awake ripples. During non-rapid eye movement sleep, MD firing rate decreased around spindle-uncoupled ripples, but increased around spindle-coupled ripples. Our results suggest a competitive interaction between the thalamocortical and hippocampal-cortical networks supporting "on-line" and "off-line" information processing, respectively. We hypothesize that thalamic activity suppression during spindle-uncoupled ripples is favorable for memory replay, as it reduces interference from sensory relay. In turn, the thalamic input during hippocampal-cortical communication, as indicated by spindle/ripple coupling, may contribute to selectivity and reliability of information transfer. Both predictions need to be tested in future experiments.SIGNIFICANCE STATEMENT Systems mechanisms of declarative memory consolidation beyond the hippocampal-prefrontal interactions remain largely unexplored. The connectivity of the mediodorsal thalamic nucleus (MD) with extrahippocampal regions and with medial prefrontal cortex underlies its role in execution of diverse cognitive functions. However, little is known about the MD involvement in "off-line" consolidation. We found that MD neural activity was transiently suppressed around hippocampal ripples, except for ripples co-occurring with sleep spindles, when the MD activity was elevated. The thalamic activity suppression at times of spindle-uncoupled ripples may be favorable for memory replay, as it reduces interference with sensory relay. In turn, the thalamic input during hippocampal-cortical communication, as indicated by spindle/ripple coupling, may contribute to selectivity and reliability of information transfer.


Subject(s)
Hippocampus/physiology , Mediodorsal Thalamic Nucleus/physiology , Animals , Behavior, Animal , Electric Stimulation , Electrodes, Implanted , Gamma Rhythm , Male , Memory Consolidation/drug effects , Neural Pathways/physiology , Prefrontal Cortex/physiology , Rats , Rats, Sprague-Dawley , Sleep/physiology , Sleep, Slow-Wave/physiology
19.
J Cogn Neurosci ; 32(12): 2303-2319, 2020 12.
Article in English | MEDLINE | ID: mdl-32902335

ABSTRACT

The human thalamus has been suggested to be involved in executive function, based on animal studies and correlational evidence from functional neuroimaging in humans. Human lesion studies, examining behavioral deficits associated with focal brain injuries, can directly test the necessity of the human thalamus for executive function. The goal of our study was to determine the specific lesion location within the thalamus as well as the potential disruption of specific thalamocortical functional networks, related to executive dysfunction. We assessed executive function in 15 patients with focal thalamic lesions and 34 comparison patients with lesions that spared the thalamus. We found that patients with mediodorsal thalamic lesions exhibited more severe impairment in executive function when compared to both patients with thalamic lesions that spared the mediodorsal nucleus and to comparison patients with lesions outside the thalamus. Furthermore, we employed a lesion network mapping approach to map cortical regions that show strong functional connectivity with the lesioned thalamic subregions in the normative functional connectome. We found that thalamic lesion sites associated with more severe deficits in executive function showed stronger functional connectivity with ACC, dorsomedial PFC, and frontoparietal network, compared to thalamic lesions not associated with executive dysfunction. These are brain regions and functional networks whose dysfunction could contribute to impaired executive functioning. In aggregate, our findings provide new evidence that delineates a thalamocortical network for executive function.


Subject(s)
Connectome , Executive Function , Animals , Humans , Magnetic Resonance Imaging , Mediodorsal Thalamic Nucleus , Thalamus/diagnostic imaging
20.
Hum Brain Mapp ; 41(4): 1006-1016, 2020 03.
Article in English | MEDLINE | ID: mdl-31696638

ABSTRACT

Thalamic atrophy is a common feature across all forms of FTD but little is known about specific nuclei involvement. We aimed to investigate in vivo atrophy of the thalamic nuclei across the FTD spectrum. A cohort of 402 FTD patients (age: mean(SD) 64.3(8.2) years; disease duration: 4.8(2.8) years) was compared with 104 age-matched controls (age: 62.5(10.4) years), using an automated segmentation of T1-weighted MRIs to extract volumes of 14 thalamic nuclei. Stratification was performed by clinical diagnosis (180 behavioural variant FTD (bvFTD), 85 semantic variant primary progressive aphasia (svPPA), 114 nonfluent variant PPA (nfvPPA), 15 PPA not otherwise specified (PPA-NOS), and 8 with associated motor neurone disease (FTD-MND), genetic diagnosis (27 MAPT, 28 C9orf72, 18 GRN), and pathological confirmation (37 tauopathy, 38 TDP-43opathy, 4 FUSopathy). The mediodorsal nucleus (MD) was the only nucleus affected in all FTD subgroups (16-33% smaller than controls). The laterodorsal nucleus was also particularly affected in genetic cases (28-38%), TDP-43 type A (47%), tau-CBD (44%), and FTD-MND (53%). The pulvinar was affected only in the C9orf72 group (16%). Both the lateral and medial geniculate nuclei were also affected in the genetic cases (10-20%), particularly the LGN in C9orf72 expansion carriers. Use of individual thalamic nuclei volumes provided higher accuracy in discriminating between FTD groups than the whole thalamic volume. The MD is the only structure affected across all FTD groups. Differential involvement of the thalamic nuclei among FTD forms is seen, with a unique pattern of atrophy in the pulvinar in C9orf72 expansion carriers.


Subject(s)
C9orf72 Protein/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Lateral Thalamic Nuclei/pathology , Mediodorsal Thalamic Nucleus/pathology , Pulvinar/pathology , Aged , Atrophy/pathology , Female , Frontotemporal Dementia/classification , Frontotemporal Dementia/diagnostic imaging , Humans , Lateral Thalamic Nuclei/diagnostic imaging , Male , Mediodorsal Thalamic Nucleus/diagnostic imaging , Middle Aged , Pulvinar/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL