Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65.303
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 38: 79-98, 2020 04 26.
Article in English | MEDLINE | ID: mdl-31800327

ABSTRACT

DNA has been known to be a potent immune stimulus for more than half a century. However, the underlying molecular mechanisms of DNA-triggered immune response have remained elusive until recent years. Cyclic GMP-AMP synthase (cGAS) is a major cytoplasmic DNA sensor in various types of cells that detect either invaded foreign DNA or aberrantly located self-DNA. Upon sensing of DNA, cGAS catalyzes the formation of cyclic GMP-AMP (cGAMP), which in turn activates the ER-localized adaptor protein MITA (also named STING) to elicit the innate immune response. The cGAS-MITA axis not only plays a central role in host defense against pathogen-derived DNA but also acts as a cellular stress response pathway by sensing aberrantly located self-DNA, which is linked to the pathogenesis of various human diseases. In this review, we summarize the spatial and temporal mechanisms of host defense to cytoplasmic DNA mediated by the cGAS-MITA axis and discuss the association of malfunctions of this axis with autoimmune and other diseases.


Subject(s)
DNA/immunology , Immunity, Innate , Animals , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Autoimmunity , Biomarkers , Cytoplasm/immunology , Cytoplasm/metabolism , Disease Susceptibility , Host-Pathogen Interactions/immunology , Humans , Immune Evasion , Interferon Type I/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism
2.
Cell ; 187(14): 3619-3637.e27, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38851188

ABSTRACT

Mitochondrial dynamics play a critical role in cell fate decisions and in controlling mtDNA levels and distribution. However, the molecular mechanisms linking mitochondrial membrane remodeling and quality control to mtDNA copy number (CN) regulation remain elusive. Here, we demonstrate that the inner mitochondrial membrane (IMM) protein mitochondrial fission process 1 (MTFP1) negatively regulates IMM fusion. Moreover, manipulation of mitochondrial fusion through the regulation of MTFP1 levels results in mtDNA CN modulation. Mechanistically, we found that MTFP1 inhibits mitochondrial fusion to isolate and exclude damaged IMM subdomains from the rest of the network. Subsequently, peripheral fission ensures their segregation into small MTFP1-enriched mitochondria (SMEM) that are targeted for degradation in an autophagic-dependent manner. Remarkably, MTFP1-dependent IMM quality control is essential for basal nucleoid recycling and therefore to maintain adequate mtDNA levels within the cell.


Subject(s)
DNA, Mitochondrial , Mitochondria , Mitochondrial Dynamics , Mitochondrial Membranes , Mitochondrial Proteins , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Mitochondrial Proteins/metabolism , Humans , Mitochondrial Membranes/metabolism , Mitochondria/metabolism , Animals , HeLa Cells , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Autophagy
3.
Cell ; 187(14): 3585-3601.e22, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38821050

ABSTRACT

Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction. The first and third steps are performed by DHRSX, whose gene resides on the pseudoautosomal regions of the X and Y chromosomes. Accordingly, we report a pseudoautosomal-recessive disease presenting as a congenital disorder of glycosylation in patients with missense variants in DHRSX (DHRSX-CDG). Of note, DHRSX has a unique dual substrate and cofactor specificity, allowing it to act as a NAD+-dependent dehydrogenase and as a NADPH-dependent reductase in two non-consecutive steps. Thus, our work reveals unexpected complexity in the terminal steps of dolichol biosynthesis. Furthermore, we provide insights into the mechanism by which dolichol metabolism defects contribute to disease.


Subject(s)
Dolichols , Dolichols/metabolism , Dolichols/biosynthesis , Humans , Glycosylation , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Congenital Disorders of Glycosylation/metabolism , Congenital Disorders of Glycosylation/genetics , Male , Mutation, Missense , Female
4.
Cell ; 187(9): 2209-2223.e16, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670073

ABSTRACT

Nuclear factor κB (NF-κB) plays roles in various diseases. Many inflammatory signals, such as circulating lipopolysaccharides (LPSs), activate NF-κB via specific receptors. Using whole-genome CRISPR-Cas9 screens of LPS-treated cells that express an NF-κB-driven suicide gene, we discovered that the LPS receptor Toll-like receptor 4 (TLR4) is specifically dependent on the oligosaccharyltransferase complex OST-A for N-glycosylation and cell-surface localization. The tool compound NGI-1 inhibits OST complexes in vivo, but the underlying molecular mechanism remained unknown. We did a CRISPR base-editor screen for NGI-1-resistant variants of STT3A, the catalytic subunit of OST-A. These variants, in conjunction with cryoelectron microscopy studies, revealed that NGI-1 binds the catalytic site of STT3A, where it traps a molecule of the donor substrate dolichyl-PP-GlcNAc2-Man9-Glc3, suggesting an uncompetitive inhibition mechanism. Our results provide a rationale for and an initial step toward the development of STT3A-specific inhibitors and illustrate the power of contemporaneous base-editor and structural studies to define drug mechanism of action.


Subject(s)
CRISPR-Cas Systems , Hexosyltransferases , Lipopolysaccharides , Membrane Proteins , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Hexosyltransferases/metabolism , Hexosyltransferases/genetics , NF-kappa B/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Humans , Toll-Like Receptor 4/metabolism , Animals , CRISPR-Cas Systems/genetics , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Mice , HEK293 Cells , Inflammation/metabolism , Inflammation/genetics , Glycosylation , Cryoelectron Microscopy , Catalytic Domain , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
5.
Cell ; 187(11): 2817-2837.e31, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38701783

ABSTRACT

FMS-related tyrosine kinase 3 ligand (FLT3L), encoded by FLT3LG, is a hematopoietic factor essential for the development of natural killer (NK) cells, B cells, and dendritic cells (DCs) in mice. We describe three humans homozygous for a loss-of-function FLT3LG variant with a history of various recurrent infections, including severe cutaneous warts. The patients' bone marrow (BM) was hypoplastic, with low levels of hematopoietic progenitors, particularly myeloid and B cell precursors. Counts of B cells, monocytes, and DCs were low in the patients' blood, whereas the other blood subsets, including NK cells, were affected only moderately, if at all. The patients had normal counts of Langerhans cells (LCs) and dermal macrophages in the skin but lacked dermal DCs. Thus, FLT3L is required for B cell and DC development in mice and humans. However, unlike its murine counterpart, human FLT3L is required for the development of monocytes but not NK cells.


Subject(s)
Killer Cells, Natural , Membrane Proteins , Animals , Female , Humans , Male , Mice , B-Lymphocytes/metabolism , B-Lymphocytes/cytology , Bone Marrow/metabolism , Cell Lineage , Dendritic Cells/metabolism , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Langerhans Cells/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Monocytes/metabolism , Skin/metabolism , Mice, Inbred C57BL
6.
Cell ; 187(13): 3390-3408.e19, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38754421

ABSTRACT

Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.


Subject(s)
CD8-Positive T-Lymphocytes , DNA-Binding Proteins , Interferon Type I , Membrane Proteins , Neoplasms , Signal Transduction , Transcription Factors , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Exodeoxyribonucleases/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Interferon Type I/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Mutation , Neoplasms/immunology , Neoplasms/genetics , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Transcription Factors/metabolism , Male , Chemokines/genetics , Chemokines/metabolism
7.
Cell ; 186(10): 2062-2077.e17, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37075755

ABSTRACT

Entry of enveloped viruses into cells is mediated by viral fusogenic proteins that drive membrane rearrangements needed for fusion between viral and target membranes. Skeletal muscle development also requires membrane fusion events between progenitor cells to form multinucleated myofibers. Myomaker and Myomerger are muscle-specific cell fusogens but do not structurally or functionally resemble classical viral fusogens. We asked whether the muscle fusogens could functionally substitute for viral fusogens, despite their structural distinctiveness, and fuse viruses to cells. We report that engineering of Myomaker and Myomerger on the membrane of enveloped viruses leads to specific transduction of skeletal muscle. We also demonstrate that locally and systemically injected virions pseudotyped with the muscle fusogens can deliver µDystrophin to skeletal muscle of a mouse model of Duchenne muscular dystrophy and alleviate pathology. Through harnessing the intrinsic properties of myogenic membranes, we establish a platform for delivery of therapeutic material to skeletal muscle.


Subject(s)
Bioengineering , Lentivirus , Membrane Proteins , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Animals , Mice , Cell Fusion , Membrane Fusion , Membrane Proteins/genetics , Membrane Proteins/metabolism , Muscle Development , Muscle, Skeletal/metabolism , Muscle, Skeletal/virology , Bioengineering/methods , Muscular Dystrophy, Duchenne/therapy , Disease Models, Animal , Viral Tropism , Lentivirus/genetics
8.
Cell ; 186(16): 3329-3331, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37541193

ABSTRACT

The lysosomal membrane protein TMEM106B functions as a proviral factor in SARS-CoV-2 infection, though it was not known how. In this issue of Cell, Baggen et al. demonstrate that TMEM106B serves as an ACE2-independent receptor for SARS-CoV-2 entry by promoting the fusion of the viral membrane with the lysosomal membrane.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Virus Internalization , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins
9.
Annu Rev Biochem ; 91: 599-628, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35287475

ABSTRACT

In the decade since the discovery of the innate immune cyclic GMP-AMP synthase (cGAS)-2'3'-cyclic GMP-AMP (cGAMP)-stimulator of interferon genes (STING) pathway, its proper activation and dysregulation have been rapidly implicated in many aspects of human disease. Understanding the biochemical, cellular, and regulatory mechanisms of this pathway is critical to developing therapeutic strategies that either harness it to boost defense or inhibit it to prevent unwanted inflammation. In this review, we first discuss how the second messenger cGAMP is synthesized by cGAS in response to double-stranded DNA and cGAMP's subsequent activation of cell-type-dependent STING signaling cascades with differential physiological consequences. We then review how cGAMP as an immunotransmitter mediates tightly controlled cell-cell communication by being exported from producing cells and imported into responding cells via cell-type-specific transporters. Finally, we review mechanisms by which thecGAS-cGAMP-STING pathway responds to different sources of mislocalized double-stranded DNA in pathogen defense, cancer, and autoimmune diseases.


Subject(s)
Membrane Proteins , Nucleotides, Cyclic , DNA/genetics , Humans , Immunity, Innate/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nucleotides, Cyclic/genetics , Nucleotidyltransferases/genetics
10.
Cell ; 185(8): 1290-1292, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35427496

ABSTRACT

Neurodegenerative diseases commonly exhibit aggregation of specific proteins that define each disease. Chang et al. (2022) establish that a C-terminal fragment of TMEM106B, a frontotemporal-lobar-degeneration risk factor, unexpectedly forms amyloid fibrils with similar structures in diverse neurodegenerative disorders. These unanticipated TMEM106B(120-254) fibrils may herald etiological shifts for several neurodegenerative diseases.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Frontotemporal Lobar Degeneration/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism
11.
Cell ; 185(2): 311-327.e24, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35063073

ABSTRACT

The role of postnatal experience in sculpting cortical circuitry, while long appreciated, is poorly understood at the level of cell types. We explore this in the mouse primary visual cortex (V1) using single-nucleus RNA sequencing, visual deprivation, genetics, and functional imaging. We find that vision selectively drives the specification of glutamatergic cell types in upper layers (L) (L2/3/4), while deeper-layer glutamatergic, GABAergic, and non-neuronal cell types are established prior to eye opening. L2/3 cell types form an experience-dependent spatial continuum defined by the graded expression of ∼200 genes, including regulators of cell adhesion and synapse formation. One of these genes, Igsf9b, a vision-dependent gene encoding an inhibitory synaptic cell adhesion molecule, is required for the normal development of binocular responses in L2/3. In summary, vision preferentially regulates the development of upper-layer glutamatergic cell types through the regulation of cell-type-specific gene expression programs.


Subject(s)
Vision, Ocular , Visual Cortex/cytology , Visual Cortex/embryology , Animals , Animals, Newborn , Biomarkers/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Glutamic Acid/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/cytology , RNA-Seq , Transcriptome/genetics , Vision, Binocular/genetics , gamma-Aminobutyric Acid/metabolism
12.
Cell ; 184(10): 2680-2695.e26, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33932340

ABSTRACT

Enzyme-mediated damage repair or mitigation, while common for nucleic acids, is rare for proteins. Examples of protein damage are elimination of phosphorylated Ser/Thr to dehydroalanine/dehydrobutyrine (Dha/Dhb) in pathogenesis and aging. Bacterial LanC enzymes use Dha/Dhb to form carbon-sulfur linkages in antimicrobial peptides, but the functions of eukaryotic LanC-like (LanCL) counterparts are unknown. We show that LanCLs catalyze the addition of glutathione to Dha/Dhb in proteins, driving irreversible C-glutathionylation. Chemo-enzymatic methods were developed to site-selectively incorporate Dha/Dhb at phospho-regulated sites in kinases. In human MAPK-MEK1, such "elimination damage" generated aberrantly activated kinases, which were deactivated by LanCL-mediated C-glutathionylation. Surveys of endogenous proteins bearing damage from elimination (the eliminylome) also suggest it is a source of electrophilic reactivity. LanCLs thus remove these reactive electrophiles and their potentially dysregulatory effects from the proteome. As knockout of LanCL in mice can result in premature death, repair of this kind of protein damage appears important physiologically.


Subject(s)
Alanine/analogs & derivatives , Aminobutyrates/metabolism , Membrane Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Proteome , Receptors, G-Protein-Coupled/metabolism , Alanine/metabolism , Animals , Antimicrobial Cationic Peptides/metabolism , Female , Glutathione/metabolism , HEK293 Cells , Humans , MAP Kinase Kinase 1/metabolism , Male , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphate-Binding Proteins/chemistry , Phosphate-Binding Proteins/genetics , Phosphorylation , Protein Domains , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Sulfides/metabolism
13.
Cell ; 184(7): 1740-1756.e16, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33705688

ABSTRACT

The core symptoms of many neurological disorders have traditionally been thought to be caused by genetic variants affecting brain development and function. However, the gut microbiome, another important source of variation, can also influence specific behaviors. Thus, it is critical to unravel the contributions of host genetic variation, the microbiome, and their interactions to complex behaviors. Unexpectedly, we discovered that different maladaptive behaviors are interdependently regulated by the microbiome and host genes in the Cntnap2-/- model for neurodevelopmental disorders. The hyperactivity phenotype of Cntnap2-/- mice is caused by host genetics, whereas the social-behavior phenotype is mediated by the gut microbiome. Interestingly, specific microbial intervention selectively rescued the social deficits in Cntnap2-/- mice through upregulation of metabolites in the tetrahydrobiopterin synthesis pathway. Our findings that behavioral abnormalities could have distinct origins (host genetic versus microbial) may change the way we think about neurological disorders and how to treat them.


Subject(s)
Gastrointestinal Microbiome , Locomotion , Social Behavior , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biopterins/analogs & derivatives , Biopterins/metabolism , Disease Models, Animal , Excitatory Postsynaptic Potentials , Fecal Microbiota Transplantation , Feces/microbiology , Limosilactobacillus reuteri/metabolism , Limosilactobacillus reuteri/physiology , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/microbiology , Neurodevelopmental Disorders/pathology , Neurodevelopmental Disorders/therapy , Principal Component Analysis , Psychomotor Agitation/pathology , Synaptic Transmission
14.
Cell ; 184(1): 133-148.e20, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33338421

ABSTRACT

Flaviviruses pose a constant threat to human health. These RNA viruses are transmitted by the bite of infected mosquitoes and ticks and regularly cause outbreaks. To identify host factors required for flavivirus infection, we performed full-genome loss of function CRISPR-Cas9 screens. Based on these results, we focused our efforts on characterizing the roles that TMEM41B and VMP1 play in the virus replication cycle. Our mechanistic studies on TMEM41B revealed that all members of the Flaviviridae family that we tested require TMEM41B. We tested 12 additional virus families and found that SARS-CoV-2 of the Coronaviridae also required TMEM41B for infection. Remarkably, single nucleotide polymorphisms present at nearly 20% in East Asian populations reduce flavivirus infection. Based on our mechanistic studies, we propose that TMEM41B is recruited to flavivirus RNA replication complexes to facilitate membrane curvature, which creates a protected environment for viral genome replication.


Subject(s)
Flavivirus Infections/genetics , Flavivirus/physiology , Membrane Proteins/metabolism , Animals , Asian People/genetics , Autophagy , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , CRISPR-Cas Systems , Cell Line , Flavivirus Infections/immunology , Flavivirus Infections/metabolism , Flavivirus Infections/virology , Gene Knockout Techniques , Genome-Wide Association Study , Host-Pathogen Interactions , Humans , Immunity, Innate , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , SARS-CoV-2/physiology , Virus Replication , Yellow fever virus/physiology , Zika Virus/physiology
15.
Annu Rev Biochem ; 89: 637-666, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32569522

ABSTRACT

The evolution of eukaryotic genomes has been propelled by a series of gene duplication events, leading to an expansion in new functions and pathways. While duplicate genes may retain some functional redundancy, it is clear that to survive selection they cannot simply serve as a backup but rather must acquire distinct functions required for cellular processes to work accurately and efficiently. Understanding these differences and characterizing gene-specific functions is complex. Here we explore different gene pairs and families within the context of the endoplasmic reticulum (ER), the main cellular hub of lipid biosynthesis and the entry site for the secretory pathway. Focusing on each of the ER functions, we highlight specificities of related proteins and the capabilities conferred to cells through their conservation. More generally, these examples suggest why related genes have been maintained by evolutionary forces and provide a conceptual framework to experimentally determine why they have survived selection.


Subject(s)
Endoplasmic Reticulum/metabolism , Evolution, Molecular , Gene Duplication , Saccharomyces cerevisiae/metabolism , Selection, Genetic , Activating Transcription Factor 6/genetics , Activating Transcription Factor 6/metabolism , Animals , Antiporters/genetics , Antiporters/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Endoplasmic Reticulum/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Eukaryotic Cells/cytology , Eukaryotic Cells/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Hexosyltransferases/genetics , Hexosyltransferases/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sphingosine N-Acyltransferase/genetics , Sphingosine N-Acyltransferase/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
16.
Nat Immunol ; 24(11): 1813-1824, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37813965

ABSTRACT

Kupffer cells, the liver tissue resident macrophages, are critical in the detection and clearance of cancer cells. However, the molecular mechanisms underlying their detection and phagocytosis of cancer cells are still unclear. Using in vivo genome-wide CRISPR-Cas9 knockout screening, we found that the cell-surface transmembrane protein ERMAP expressed on various cancer cells signaled to activate phagocytosis in Kupffer cells and to control of liver metastasis. ERMAP interacted with ß-galactoside binding lectin galectin-9 expressed on the surface of Kupffer cells in a manner dependent on glycosylation. Galectin-9 formed a bridging complex with ERMAP and the transmembrane receptor dectin-2, expressed on Kupffer cells, to induce the detection and phagocytosis of cancer cells by Kupffer cells. Patients with low expression of ERMAP on tumors had more liver metastases. Thus, our study identified the ERMAP-galectin-9-dectin-2 axis as an 'eat me' signal for Kupffer cells.


Subject(s)
Cytophagocytosis , Kupffer Cells , Humans , Phagocytosis/genetics , Galectins/genetics , Galectins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
17.
Nat Immunol ; 24(2): 337-348, 2023 02.
Article in English | MEDLINE | ID: mdl-36577930

ABSTRACT

Our previous study using systems vaccinology identified an association between the sterol regulatory binding protein (SREBP) pathway and humoral immune response to vaccination in humans. To investigate the role of SREBP signaling in modulating immune responses, we generated mice with B cell- or CD11c+ antigen-presenting cell (APC)-specific deletion of SCAP, an essential regulator of SREBP signaling. Ablation of SCAP in CD11c+ APCs had no effect on immune responses. In contrast, SREBP signaling in B cells was critical for antibody responses, as well as the generation of germinal centers,memory B cells and bone marrow plasma cells. SREBP signaling was required for metabolic reprogramming in activated B cells. Upon mitogen stimulation, SCAP-deficient B cells could not proliferate and had decreased lipid rafts. Deletion of SCAP in germinal center B cells using AID-Cre decreased lipid raft content and cell cycle progression. These studies provide mechanistic insights coupling sterol metabolism with the quality and longevity of humoral immunity.


Subject(s)
Carrier Proteins , Lymphoma, B-Cell , Sterols , Animals , Humans , Mice , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Sterols/metabolism , Lymphoma, B-Cell/metabolism
18.
Cell ; 181(6): 1395-1405.e11, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32531245

ABSTRACT

STK19 was proposed to be a cancer driver, and recent work by Yin et al. (2019) in Cell suggested that the frequently recurring STK19 D89N substitution represents a gain-of-function change, allowing increased phosphorylation of NRAS to enhance melanocyte transformation. Here we show that the STK19 gene has been incorrectly annotated, and that the expressed protein is 110 amino acids shorter than indicated by current databases. The "cancer driving" STK19 D89N substitution is thus outside the coding region. We also fail to detect evidence of the mutation affecting STK19 expression; instead, it is a UV signature mutation, found in the promoter of other genes as well. Furthermore, STK19 is exclusively nuclear and chromatin-associated, while no evidence for it being a kinase was found. The data in this Matters Arising article raise fundamental questions about the recently proposed role for STK19 in melanoma progression via a function as an NRAS kinase, suggested by Yin et al. (2019) in Cell. See also the response by Yin et al. (2020), published in this issue.


Subject(s)
Melanoma , Neoplasm Recurrence, Local , GTP Phosphohydrolases/metabolism , Genes, ras , Humans , Melanoma/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Nuclear Proteins , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Signal Transduction
19.
Cell ; 180(5): 895-914.e27, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32142680

ABSTRACT

A safe and controlled manipulation of endocytosis in vivo may have disruptive therapeutic potential. Here, we demonstrate that the anti-emetic/anti-psychotic prochlorperazine can be repurposed to reversibly inhibit the in vivo endocytosis of membrane proteins targeted by therapeutic monoclonal antibodies, as directly demonstrated by our human tumor ex vivo assay. Temporary endocytosis inhibition results in enhanced target availability and improved efficiency of natural killer cell-mediated antibody-dependent cellular cytotoxicity (ADCC), a mediator of clinical responses induced by IgG1 antibodies, demonstrated here for cetuximab, trastuzumab, and avelumab. Extensive analysis of downstream signaling pathways ruled out on-target toxicities. By overcoming the heterogeneity of drug target availability that frequently characterizes poorly responsive or resistant tumors, clinical application of reversible endocytosis inhibition may considerably improve the clinical benefit of ADCC-mediating therapeutic antibodies.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/drug effects , Drug Resistance, Neoplasm/immunology , Neoplasms/drug therapy , Prochlorperazine/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Antibody-Dependent Cell Cytotoxicity/immunology , Antigen Presentation/drug effects , Biopsy , Cetuximab/pharmacology , Drug Delivery Systems/methods , Drug Resistance, Neoplasm/genetics , Endocytosis/drug effects , Endocytosis/immunology , Heterografts , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , MCF-7 Cells , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Neoplasms/genetics , Neoplasms/immunology , Signal Transduction/drug effects , Signal Transduction/immunology , Trastuzumab/pharmacology
20.
Cell ; 178(2): 374-384.e15, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31299201

ABSTRACT

Multicellular lifestyle requires cell-cell connections. In multicellular cyanobacteria, septal junctions enable molecular exchange between sister cells and are required for cellular differentiation. The structure of septal junctions is poorly understood, and it is unknown whether they are capable of controlling intercellular communication. Here, we resolved the in situ architecture of septal junctions by electron cryotomography of cryo-focused ion beam-milled cyanobacterial filaments. Septal junctions consisted of a tube traversing the septal peptidoglycan. Each tube end comprised a FraD-containing plug, which was covered by a cytoplasmic cap. Fluorescence recovery after photobleaching showed that intercellular communication was blocked upon stress. Gating was accompanied by a reversible conformational change of the septal junction cap. We provide the mechanistic framework for a cell junction that predates eukaryotic gap junctions by a billion years. The conservation of a gated dynamic mechanism across different domains of life emphasizes the importance of controlling molecular exchange in multicellular organisms.


Subject(s)
Gap Junctions/metabolism , Anabaena/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbonyl Cyanide m-Chlorophenyl Hydrazone/analogs & derivatives , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Cell Communication/drug effects , Cryoelectron Microscopy , Gap Junctions/chemistry , Gap Junctions/ultrastructure , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutagenesis
SELECTION OF CITATIONS
SEARCH DETAIL