Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 891
Filter
Add more filters

Publication year range
1.
Bioorg Med Chem ; 77: 117112, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36508994

ABSTRACT

DNA can fold into G-quadruplexes (GQs), non-canonical secondary structures formed by π-π stacking of G-tetrads. GQs are important in many biological processes, which makes them promising therapeutic targets. We identified a 42-nucleotide long, purine-only G-rich sequence from human genome, which contains eight G-stretches connected by A and AAAA loops. We divided this sequence into five unique segments, four guanine stretches each, named GA1-5. In order to investigate the role of adenines in GQ structure formation, we performed biophysical and X-ray crystallographic studies of GA1-5 and their complexes with a highly selective GQ ligand, N-methyl mesoporphyrin IX (NMM). Our data indicate that all variants form parallel GQs whose stability depends on the number of flexible AAAA loops. GA1-3 bind NMM with 1:1 stoichiometry. The Ka for GA1 and GA3 is modest, ∼0.3 µM -1, and that for GA2 is significantly higher, ∼1.2 µM -1. NMM stabilizes GA1-3 by 14.6, 13.1, and 7.0 °C, respectively, at 2 equivalents. We determined X-ray crystal structures of GA1-NMM (1.98 Å resolution) and GA3-NMM (2.01 Å). The structures confirm the parallel topology of GQs with all adenines forming loops and display NMM binding at the 3' G-tetrad. Both complexes dimerize through the 5' interface. We observe two novel structural features: 1) a 'symmetry tetrad' at the dimer interface, which is formed by two guanines from each GQ monomer and 2) a NMM dimer in GA1-NMM. Our structural work confirms great flexibility of adenines as structural elements in GQ formation and contributes greatly to our understanding of the structural diversity of GQs and their modes of interaction with small molecule ligands.


Subject(s)
G-Quadruplexes , Humans , Guanine , Mesoporphyrins/chemistry , DNA/chemistry , Nucleic Acid Conformation
2.
Proc Natl Acad Sci U S A ; 117(3): 1321-1329, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31896586

ABSTRACT

Cysteine thiols of many cancer-associated proteins are attractive targets of anticancer agents. Herein, we unequivocally demonstrate a distinct thiol-targeting property of gold(III) mesoporphyrin IX dimethyl ester (AuMesoIX) and its anticancer activities. While the binding of cysteine thiols with metal complexes usually occurs via M-S bond formation, AuMesoIX is unique in that the meso-carbon atom of the porphyrin ring is activated by the gold(III) ion to undergo nucleophilic aromatic substitution with thiols. AuMesoIX was shown to modify reactive cysteine residues and inhibit the activities of anticancer protein targets including thioredoxin, peroxiredoxin, and deubiquitinases. Treatment of cancer cells with AuMesoIX resulted in the formation of gold-bound sulfur-rich protein aggregates, oxidative stress-mediated cytotoxicity, and accumulation of ubiquitinated proteins. Importantly, AuMesoIX exhibited effective antitumor activity in mice. Our study has uncovered a gold(III)-induced ligand scaffold reactivity for thiol targeting that can be exploited for anticancer applications.


Subject(s)
Antineoplastic Agents/chemistry , Cysteine/chemistry , Gold/chemistry , Mesoporphyrins/chemistry , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Deubiquitinating Enzymes/chemistry , Deubiquitinating Enzymes/metabolism , HCT116 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/drug therapy , Peroxiredoxins/chemistry , Peroxiredoxins/metabolism , Protein Binding , Thioredoxins/chemistry , Thioredoxins/metabolism , Tissue Distribution
3.
Mol Pharm ; 19(5): 1434-1448, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35416046

ABSTRACT

One of the factors determining efficient antimicrobial photodynamic inactivation (aPDI) is the accumulation of a light-activated compound, namely, a photosensitizer (PS). Targeted PS recognition is the approach based on the interaction between the membrane receptor on the bacterial surface and the PS, whereas the compound is efficiently accumulated by the same mechanism as the natural ligand. In this study, we showed that gallium mesoporphyrin IX (Ga3+MPIX) provided dual functionality─iron metabolism disruption and PS properties in aPDI. Ga3+MPIX induced efficient (>5log10 reduction in CFU/mL) bacterial photodestruction with excitation in the area of Q band absorption with relatively low eukaryotic cytotoxicity and phototoxicity. The Ga3+MPIX is recognized by the same systems as haem by the iron-regulated surface determinant (Isd). However, the impairment in the ATPase of the haem detoxification efflux pump was the most sensitive to the Ga3+MPIX-mediated aPDI phenotype. This indicates that changes within the metalloporphyrin structure (vinyl vs ethyl groups) did not significantly alter the properties of recognition of the compound but influenced its biophysical properties.


Subject(s)
Anti-Infective Agents , Gallium , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Gallium/pharmacology , Heme/metabolism , Humans , Mesoporphyrins , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Staphylococcus aureus
4.
Mol Ther ; 29(10): 2931-2948, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34023507

ABSTRACT

Checkpoint inhibitors, such as anti-PD-1/PD-L1 antibodies, have been shown to be extraordinarily effective, but their durable response rate remains low, especially in colorectal cancer (CRC). Recent studies have shown that photodynamic therapy (PDT) could effectively enhance PD-L1 blockade therapeutic effects, although the reason is still unclear. Here, we report the use of multifunctional nanoparticles (NPs) loaded with photosensitized mTHPC (mTHPC@VeC/T-RGD NPs)-mediated PDT treatment to potentiate the anti-tumor efficacy of PD-L1 blockade for CRC treatment and investigate the underlying mechanisms of PDT enhancing PD-L1 blockade therapeutic effect in this combination therapy. In this study, the mTHPC@VeC/T-RGD NPs under the 660-nm near infrared (NIR) laser could kill tumor cells by inducing apoptosis and/or necrosis and stimulating systemic immune response, which could be further promoted by the PD-L1 blockade to inhibit primary and distant tumor growth, as well as building long-term host immunological memory to prevent tumor recurrence. Furthermore, we detected that mTHPC@VeC/T-RGD NP-mediated PDT sensitizes tumors to PD-L1 blockade therapy mainly because PDT-mediated hypoxia could induce the hypoxia-inducible factor 1α (HIF-1α) signaling pathway that upregulates PD-L1 expression in CRC. Taken together, our work demonstrates that mTHPC@VeC/T-RGD NP-mediated PDT is a promising strategy that may potentiate the response rate of anti-PD-L1 checkpoint blockade immunotherapies in CRC.


Subject(s)
Colorectal Neoplasms/drug therapy , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Immune Checkpoint Inhibitors/administration & dosage , Photochemotherapy/methods , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/genetics , Drug Synergism , Female , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Immune Checkpoint Inhibitors/pharmacology , Mesoporphyrins/chemistry , Mesoporphyrins/pharmacology , Mice , Multifunctional Nanoparticles/administration & dosage , Multifunctional Nanoparticles/chemistry , Particle Size , Tumor Hypoxia/drug effects
5.
Chembiochem ; 22(22): 3190-3198, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34467611

ABSTRACT

Artificial supramolecular systems capable of self-assembly and that precisely function in biological media are in high demand. Herein, we demonstrate a highly specific host-guest-pair system that functions in living cells. A per-O-methyl-ß-cyclodextrin derivative (R8-B-CDMe ) bearing both an octaarginine peptide chain and a BODIPY dye was synthesized as a fluorescent intracellular delivery tool. R8-B-CDMe was efficiently taken up by HeLa cells through both endocytosis and direct transmembrane pathways. R8-B-CDMe formed a 2 : 1 inclusion complex with tetrakis(4-sulfonatophenyl)porphyrin (TPPS) as a guest molecule in water, from which fluorescence resonance energy transfer (FRET) from R8-B-CDMe to TPPS was observed. The FRET phenomenon was clearly detected in living cells using confocal microscopy techniques, which revealed that the formed supramolecular R8-B-CDMe /TPPS complex was maintained within the cells. The R8-B-CDMe cytotoxicity assay revealed that the addition of TPPS counteracts the strong cytotoxicity (IC50 =16 µM) of the CD cavity due to complexation within the cells. A series of experiments demonstrated the bio-orthogonality of the supramolecular per-O-methyl-ß-CD/tetraarylporphyrin host-guest pair in living cells.


Subject(s)
Boron Compounds/chemistry , Fluorescence Resonance Energy Transfer , Mesoporphyrins/chemistry , Peptides/chemistry , beta-Cyclodextrins/chemistry , HeLa Cells , Humans , Macromolecular Substances/chemistry , Molecular Structure , Spectrometry, Fluorescence
6.
J Nanobiotechnology ; 19(1): 3, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407564

ABSTRACT

BACKGROUND: Despite the highly expected clinical application of nanoparticles (NPs), the translation of NPs from lab to the clinic has been relatively slow. Co-culture 3D spheroids account for the 3D arrangement of tumor cells and stromal components, e.g., cancer-associated fibroblasts (CAFs) and extracellular matrix, recapitulating microenvironment of head and neck squamous cell carcinoma (HNSCC). In the present study, we investigated how the stroma-rich tumor microenvironment affects the uptake, penetration, and photodynamic efficiency of three lipid-based nanoformulations of approved in EU photosensitizer temoporfin (mTHPC): Foslip® (mTHPC in conventional liposomes), drug-in-cyclodextrin-in-liposomes (mTHPC-DCL) and extracellular vesicles (mTHPC-EVs). RESULTS: Collagen expression in co-culture stroma-rich 3D HNSCC spheroids correlates with the amount of CAFs (MeWo cells) in individual spheroid. The assessment of mTHPC loading demonstrated that Foslip®, mTHPC-DCL and mTHPC-EVs encapsulated 0.05 × 10- 15 g, 0.07 × 10- 15 g, and 1.3 × 10- 15 g of mTHPC per nanovesicle, respectively. The mid-penetration depth of mTHPC NPs in spheroids was 47.8 µm (Foslip®), 87.8 µm (mTHPC-DCL), and 49.7 µm (mTHPC-EVs), irrespective of the percentage of stromal components. The cellular uptake of Foslip® and mTHPC-DCL was significantly higher in stroma-rich co-culture spheroids and was increasing upon the addition of serum in the culture medium. Importantly, we observed no significant difference between PDT effect in monoculture and co-culture spheroids treated with lipid-based NPs. Overall, in all types of spheroids mTHPC-EVs demonstrated outstanding total cellular uptake and PDT efficiency comparable to other NPs. CONCLUSIONS: The stromal microenvironment strongly affects the uptake of NPs, while the penetration and PDT efficacy are less sensitive to the presence of stromal components. mTHPC-EVs outperform other lipid nanovesicles due to the extremely high loading capacity. The results of the present study enlarge our understanding of how stroma components affect the delivery of NPs into the tumors.


Subject(s)
Head and Neck Neoplasms/metabolism , Lipid Metabolism , Mesoporphyrins/metabolism , Photochemotherapy/methods , Carcinoma , Coculture Techniques , Extracellular Matrix , Extracellular Vesicles , HT29 Cells , Humans , Lipids , Liposomes , Nanoparticles , Photosensitizing Agents/therapeutic use , Spheroids, Cellular , Tumor Microenvironment
7.
Biochemistry ; 59(48): 4591-4600, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33231438

ABSTRACT

The selective targeting of protein-protein interactions remains a significant determinant for the proper modulation and regulation of cell apoptosis. Prototypic galectins such as human galectin-7 (GAL-7) are characterized by their ability to form homodimers that control the molecular fate of a cell by mediating subtle yet critical glycan-dependent interactions between pro- and anti-apoptotic molecular partners. Altering the structural architecture of GAL-7 can therefore result in resistance to apoptosis in various human cancer cells, further illustrating its importance in cell survival. In this study, we used a combination of biophysical and cellular assays to illustrate that binding of a water-soluble meso-tetraarylporphyrin molecule to GAL-7 induces protein oligomerization and modulation of GAL-7-induced apoptosis in human Jurkat T cells. Our results suggest that the integrity of the GAL-7 homodimer architecture is essential for its molecular function, in addition to providing an interesting porphyrin binding modulator for controlling apoptosis in mammalian cells.


Subject(s)
Galectins/chemistry , Galectins/metabolism , Mesoporphyrins/chemistry , Mesoporphyrins/metabolism , Apoptosis/drug effects , Binding Sites/drug effects , Galectins/pharmacology , Humans , In Vitro Techniques , Jurkat Cells , Molecular Docking Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Interaction Domains and Motifs/drug effects , Protein Multimerization/drug effects , Protein Structure, Quaternary/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Scattering, Small Angle , Solubility , X-Ray Diffraction
8.
Chemistry ; 26(39): 8631-8638, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32428287

ABSTRACT

Numerous studies have shown compelling evidence that incorporation of an inversion of polarity site (IPS) in G-rich sequences can affect the topological and structural characteristics of G-quadruplexes (G4s). Herein, the influence of IPS on the formation of a previously studied intramolecular parallel G4 of d(G3 TG3 TG3 TG3 ) (TTT) and its stacked higher-order structures is explored. Insertion of 3'-3' or 5'-5' IPS did not change the parallel folding pattern of TTT. However, both the species and position of the IPS in TTT have a significant impact on the G4 stability and end-stacking through the alteration of G4-G4 interfaces properties. The data demonstrate that one base flip in each terminal G-tetrad can stabilize parallel G4s and facilitate intermolecular packing of monomeric G4s. Such modifications can also enhance the fluorescence and enzymatic performances by promoting interactions between parallel G4s with N-methyl mesoporphyrin IX (NMM) and hemin, respectively.


Subject(s)
DNA, Catalytic/chemistry , Guanosine/chemistry , Hemin/chemistry , Mesoporphyrins/chemistry , G-Quadruplexes , Molecular Structure
9.
Mol Pharm ; 17(4): 1276-1292, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32142290

ABSTRACT

meta-Tetra(hydroxyphenyl)chlorin (mTHPC) is one of the most potent second-generation photosensitizers, clinically used for photodynamic therapy (PDT) of head and neck squamous cell carcinomas. However, improvements are still required concerning its present formulation (i.e., Foscan, a solution of mTHPC in ethanol/propylene glycol (40:60 w/w)), as mTHPC has the tendency to aggregate in aqueous media, e.g., biological fluids, and it has limited tumor specificity. In the present study, polymeric micelles with three different diameters (17, 24, and 45 nm) based on benzyl-poly(ε-caprolactone)-b-poly(ethylene glycol) (PCLn-PEG; n = 9, 15, or 23) were prepared with mTHPC loadings ranging from 0.5 to 10 wt % using a film-hydration method as advanced nanoformulations for this photosensitizer. To favor the uptake of the micelles by cancer cells that overexpress the epidermal growth factor receptor (EGFR), the micelles were decorated with an EGFR-targeted nanobody (named EGa1) through maleimide-thiol chemistry. The enhanced binding of the EGFR-targeted micelles at 4 °C to EGFR-overexpressing A431 cells, compared to low-EGFR-expressing HeLa cells, confirmed the specificity of the micelles. In addition, an enhanced uptake of mTHPC-loaded micelles by A431 cells was observed when these were decorated with the EGa1 nanobody, compared to nontargeted micelles. Both binding and uptake of targeted micelles were blocked by an excess of free EGa1 nanobody, demonstrating that these processes occur through EGFR. In line with this, mTHPC loaded in EGa1-conjugated PCL23-PEG (EGa1-P23) micelles demonstrated 4 times higher photocytotoxicity on A431 cells, compared to micelles lacking the nanobody. Importantly, EGa1-P23 micelles also showed selective PDT against A431 cells compared to the low-EGFR-expressing HeLa cells. Finally, an in vivo pharmacokinetic study shows that after intravenous injection, mTHPC incorporated in the P23 micelles displayed prolonged blood circulation kinetics, compared to free mTHPC, independently of the presence of EGa1. Thus, these results make these micelles a promising nanomedicine formulation for selective therapy.


Subject(s)
Mesoporphyrins/pharmacology , Polymers/chemistry , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/pharmacology , Animals , Cell Line, Tumor , Drug Delivery Systems/methods , ErbB Receptors/metabolism , Ethylene Glycols/chemistry , Female , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Micelles , Nanomedicine/methods , Nanoparticles/chemistry , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Polyesters/chemistry , Polyethylene Glycols/chemistry
10.
Phys Chem Chem Phys ; 22(29): 16956-16964, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32672774

ABSTRACT

Computational tools have been used to study the photophysical and photochemical features of photosensitizers in photodynamic therapy (PDT) - a minimally invasive, less aggressive alternative for cancer treatment. PDT is mainly based on the activation of molecular oxygen through the action of a photoexcited sensitizer (photosensitizer). Temoporfin, widely known as mTHPC, is a second-generation photosensitizer, which produces the cytotoxic singlet oxygen when irradiated with visible light and hence destroys tumor cells. However, the bioavailability of the mostly hydrophobic photosensitizer, and hence its incorporation into cells, is fundamental to achieve the desired effect on malignant tissues via PDT. In this study, we focus on the optical properties of the temoporfin chromophore in different environments -in vacuo, in solution, encapsulated in drug delivery agents, namely cyclodextrin, and interacting with a lipid bilayer.


Subject(s)
Environment , Mesoporphyrins/chemistry , Optical Phenomena , Lipid Bilayers/chemistry , Photochemotherapy , Photosensitizing Agents/chemistry
11.
Phys Chem Chem Phys ; 22(7): 4158-4164, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32039427

ABSTRACT

Surface plasmon resonance (SPR) was used to investigate the interaction between N-methyl mesoporphyrin IX (NMM) and different G-quadruplex (G4) topologies. The study was associated with circular dichroism analysis (CD) to assess the topology of the G4s when they interacted with NMM. We demonstrate the high selectivity of NMM for the parallel G4 structure with a dissociation constant at least ten times lower than those of other G4 topologies. We also confirm the ability of NMM to shift the G4 conformation from both the hybrid and antiparallel topologies toward the parallel structure.


Subject(s)
G-Quadruplexes , Mesoporphyrins/chemistry , Surface Plasmon Resonance
12.
Skin Res Technol ; 26(3): 338-342, 2020 May.
Article in English | MEDLINE | ID: mdl-31777106

ABSTRACT

INTRODUCTION: Photodynamic therapy (PDT) is a relatively new method of treating skin cancers. This prospective study highlights the use of PDT in the management of basal cell carcinomas (BCCs) and T1N0 cutaneous squamous cell carcinomas (SCCs) involving the periorbital area. MATERIALS AND METHODS: Surface illumination PDT was offered under local anaesthesia. mTHPC was administered intravenously. A single-channel 652 nm diode laser was used for illumination, and light was delivered at 20 J/cm2 per site. Lesion response evaluation was carried out according to response evaluation criteria in solid tumours (RECIST). RESULTS: After the first round of treatment, all cutaneous T1N0 SCC patients had complete response (CR) and continued to be in remission until last clinic review. For BCC patients, 12/14 patients had CR. The two remaining patients underwent a second round of treatment and also achieved a CR. All BCC patients were in remission at the last clinic review. Using visual analogue scale (VAS), 15 patients reported that this treatment gave them "excellent" cosmetic outcome (VAS 9-10). CONCLUSION: Photodynamic therapy achieved high efficacy in the treatment of periorbital BCCs and cutaneous SCCs with greatly reduced morbidity and disfigurement.


Subject(s)
Carcinoma, Basal Cell/drug therapy , Carcinoma, Squamous Cell/drug therapy , Mesoporphyrins/therapeutic use , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Administration, Intravenous , Adult , Aged , Female , Humans , Male , Mesoporphyrins/administration & dosage , Mesoporphyrins/adverse effects , Middle Aged , Neoplasm Staging/methods , Photochemotherapy/adverse effects , Photochemotherapy/statistics & numerical data , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/adverse effects , Prospective Studies , Skin Neoplasms/pathology , Treatment Outcome
13.
Chembiochem ; 20(15): 1924-1927, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30850998

ABSTRACT

N-Methylmesoporphyrin IX (NMM) has long been known as a G-quadruplex DNA (G4) ligand. However, there has been little investigation into its G-quadruplex photocleavage activity. Herein, we demonstrate that NMM is a highly selective photocleavage agent for G4 structures but not duplex DNA. Analysis of the cleavage products by PAGE demonstrates that G4 photocleavage by NMM occurs at sites similar to those cleaved by TMPyP4, a nonselective DNA photocleavage agent. Although NMM is shown here to generate singlet oxygen in the presence of both duplex and G4, the lack of increased photocleavage in D2 O indicated that singlet oxygen is not involved in the photocleavage of G4 by NMM.


Subject(s)
DNA/chemistry , Mesoporphyrins/chemistry , G-Quadruplexes , Molecular Structure , Photochemical Processes
14.
J Med Virol ; 91(6): 979-985, 2019 06.
Article in English | MEDLINE | ID: mdl-30715734

ABSTRACT

In his study, we report a fluorescence method for homogeneous detection of influenza A (H1N1) DNA sequence based on G-quadruplex-NMM complex and assistance-DNA (A-DNA) inhibition. The quadruplex-based functional DNA (QBF-DNA), composed of a complementary probe to the target H1N1 DNA sequence and G-rich fragment, was designed as the signal DNA. The A-DNA consisted of two parts, one part was complementary to target H1N1 DNA and the other part was complementary to the signal DNA. In the absence of target H1N1 DNA, the G-rich fragment of QBF-DNA can form G-quadruplex-NMM complex, which outputted a fluorescent signal. With the presence of target H1N1 DNA, QBF-DNA, and A-DNA can simultaneously hybridize with target H1N1 DNA to form double-helix structure. In this case, the A-DNA partially hybridized with the QBF-DNA, which inhibited the formation of G-quadruplex-NMM complex, leading to the decrease of fluorescent signal. Under the optimum conditions, the fluorescence intensity was inversely proportional to the concentration of target H1N1 DNA over the range from 25 to 700 pmol/L with a detection limit of 8 pmol/L. In addition, the method is target specific and practicability, and would become a new diagnostic assay for H1N1 DNA sequence and other infectious diseases.


Subject(s)
Biosensing Techniques , Fluorescence , G-Quadruplexes , Guanine/chemistry , Influenza A Virus, H1N1 Subtype/genetics , Mesoporphyrins/chemistry , Nucleic Acid Hybridization , DNA, Viral/isolation & purification , Humans , Influenza, Human/virology , Limit of Detection , Staining and Labeling
15.
Mol Pharm ; 16(9): 4045-4058, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31361499

ABSTRACT

Retinoblastoma is a malignant tumor of the retina in infants. Conventional therapies are associated to severe side effects and some of them induce secondary tumors. Photodynamic therapy (PDT) thus appears as a promising alternative as it is nonmutagenic and generates minimal side effects. The effectiveness of PDT requires the accumulation of a photosensitizer (PS) in the tumor. However, most porphyrins are hydrophobic and aggregate in aqueous medium. Their incorporation into a nanocarrier may improve their delivery to the cell cytoplasm. In this work, we designed biodegradable liponanoparticles (LNPs) consisting of a poly(d,l)-lactide (PDLLA) nanoparticle coated with a phospholipid (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-3-trimethylammonium-propane) bilayer. An anticancer drug, beta-lapachone (ß-Lap) and a PS, m-THPC, were co-encapsulated for combined chemo- and PDT because it has been suggested that they may have a synergistic effect based on the activation of ß-Lap by PDT-induced over-expression of the enzyme NQO1. Using dynamic light scattering measurements, cryogenic transmission electron microscopy, and fluorescence confocal microscopy, we selected the appropriate conditions for the encapsulation of the compounds. LNPs were internalized in retinoblastoma cells within few hours. No obvious synergistic effect related to the activation of ß-Lap by PDT was observed. Conversely, the LNPs were cytotoxic at lower doses of the two encapsulated compounds as compared to the single therapies. Analysis of the combinatorial treatment showed that PDT and chemotherapy had an additive effect on the viability of retinoblastoma cells.


Subject(s)
Fatty Acids, Monounsaturated/chemistry , Mesoporphyrins/chemistry , Nanoparticles/chemistry , Naphthoquinones/chemistry , Phosphatidylcholines/chemistry , Photochemotherapy/methods , Polyesters/chemistry , Quaternary Ammonium Compounds/chemistry , Retinoblastoma/drug therapy , Cell Line, Tumor , Cell Survival/drug effects , Cryoelectron Microscopy , Drug Compounding/methods , Drug Delivery Systems/methods , Drug Stability , Dynamic Light Scattering , Humans , Microscopy, Confocal , Photosensitizing Agents/chemistry , Retinoblastoma/pathology
16.
Analyst ; 144(6): 2173-2178, 2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30768078

ABSTRACT

In this work, a label-free fluorescence biosensor for simple detection of the HIV-1 gene was proposed by using toehold-mediated strand displacement reactions (TMSDRs) combined with a non-enzymatic target recycling amplification strategy. In this system, two TMSDRs were used. In the presence of the HIV-1 gene, an autocatalytic DNA machine can be activated. This leads to the generation of numerous free G-rich sequences, which can associate with a fluorescent dye N-methylmesoporphyrin IX (NMM) to yield an amplified fluorescence signal for the target detection. This sensing platform showed a high sensitivity towards the HIV-1 gene with a detection limit as low as 1.9 pM without any labelling, immobilization, or washing steps. The designed sensing system also exhibits an excellent selectivity for the HIV-1 gene compared with other interference DNA sequences. Furthermore, the presented biosensor is robust and has been successfully applied for the detection of the HIV-1 gene in a real biological sample with satisfactory results, suggesting that this method is promising for simple and early clinical diagnosis of HIV infection. Thanks to its simplicity, cost-effectiveness and ultrasensitivity, our proposed sensing strategy provides a universal platform for the detection of other genes by substituting the target-recognition element.


Subject(s)
DNA, Viral/genetics , Fluorescent Dyes/chemistry , G-Quadruplexes , HIV Infections/diagnosis , HIV-1/genetics , Human Immunodeficiency Virus Proteins/genetics , Biosensing Techniques , DNA, Viral/chemistry , Feasibility Studies , HIV Infections/genetics , HIV Infections/virology , Human Immunodeficiency Virus Proteins/analysis , Humans , Mesoporphyrins/chemistry
17.
Analyst ; 144(9): 3088-3093, 2019 May 07.
Article in English | MEDLINE | ID: mdl-30919845

ABSTRACT

In this work, a label-free fluorescence biosensor was proposed for simple detection of the Kras wild type by using the three way DNA junction-driven catalyzed hairpin assembly strategy. In this system, a three-way DNA junction probe (JP) and two hairpin probes (H1 and H2) were designed. In the presence of the Kras wild type, an autocatalytic DNA machine can be activated. This leads to the generation of numerous free G-rich sequences, which can associate with a fluorescent dye N-methylmesoporphyrin IX (NMM) to yield an amplified fluorescence signal for the target detection. This sensing platform showed a high sensitivity towards the Kras wild type with a detection limit as low as 2.7 fM without any labelling, immobilization, or washing steps. The designed sensing system also exhibits an excellent selectivity for the Kras wild type compared with other interference DNA sequences. Furthermore, the presented biosensor is robust and has been successfully applied for the detection of the Kras wild type in a real biological sample with satisfactory results, suggesting that this method is promising for simple and early clinical diagnosis of genetic diseases. Thanks to its simplicity, cost-effectiveness, and ultrasensitivity, our proposed sensing strategy provides a universal platform for the detection of other genetic diseases by substituting the target-recognition element.


Subject(s)
Biosensing Techniques/methods , DNA Probes/chemistry , DNA/blood , Proto-Oncogene Proteins p21(ras)/genetics , Spectrometry, Fluorescence/methods , Base Sequence , DNA/chemistry , DNA/genetics , DNA Probes/genetics , Fluorescence , Fluorescent Dyes/chemistry , G-Quadruplexes , Humans , Inverted Repeat Sequences , Limit of Detection , Mesoporphyrins/chemistry , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Hybridization
18.
Analyst ; 144(10): 3389-3397, 2019 May 21.
Article in English | MEDLINE | ID: mdl-30990481

ABSTRACT

DNA can be configured into unique high-order structures due to its significantly high programmability, such as a three-way junction-based structure (denoted Y-shaped DNA), for further applications. Herein, we report a label-free fluorescent signal-on biosensor based on the target-driven primer remodeling rolling circle amplification (RCA)-activated multisite-catalytic hairpin assembly (CHA) enabling the concurrent formation of Y-shaped DNA nanotorches (Y-DNTs) for ultrasensitive detection of ochratoxin A (OTA). Two kinds of masterfully-designed probes, termed Complex I and II, were pre-prepared by the combination of a circular template (CT) with an OTA aptamer (S1), a substrate probe (S2) and hairpin probe 1 (HP1), respectively. Target OTA specifically binds to Complex I, resulting in the release of the remnant element in S2 and successive remodeling into a mature primer for RCA by phi29 DNA polymerase, thus a usable primer-CT complex is produced, which actuates primary RCA. Then, numerous Complex II probes can anneal with the first-generation RCA product (RP) with multiple sites to activate the CHA process. With the participation of endonuclease IV (Endo IV) and phi29, HP1 as a pre-primer containing a tetrahydrofuran abasic site mimic (AP site) in Complex II is converted into a mature primer to initiate additional rounds of RCA. So, countless Y-DNTs are formed concurrently containing a G-quadruplex structure that enables the N-methylmesoporphyrin IX (NMM) to be embedded, generating remarkably strong fluorescence signals. The biosensor was demonstrated to enable rapid and accurate highly efficient and selective detection of OTA with an improved detection limit of as low as 0.0002 ng mL-1 and a widened dynamic range of over 4 orders of magnitude. Meanwhile, this method was proven to be capable of being used to analyze actual samples. Therefore, this proposed strategy may be established as a useful and practical platform for the ultrasensitive detection of mycotoxins in food safety testing.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , DNA/chemistry , Nanostructures/chemistry , Ochratoxins/analysis , Aptamers, Nucleotide/genetics , Bacillus Phages/enzymology , Bacteriophage T4/enzymology , Base Sequence , DNA/genetics , DNA Ligases/chemistry , DNA-Directed DNA Polymerase/chemistry , Deoxyribonuclease IV (Phage T4-Induced)/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Food Contamination/analysis , G-Quadruplexes , Inverted Repeat Sequences , Limit of Detection , Mesoporphyrins/chemistry , Nucleic Acid Amplification Techniques , Nucleic Acid Conformation , Nucleic Acid Hybridization , Ochratoxins/chemistry , Spectrometry, Fluorescence/methods , Viral Proteins/chemistry , Wine/analysis
19.
Anal Bioanal Chem ; 411(19): 4569-4576, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30327835

ABSTRACT

A simple fluorescence biosensor is developed based on the enzyme-assisted cascade amplification strategy. The amplification system consists of a hairpin-structure DNA (H-DNA) and exonuclease III. The target DNA can hybridize with the H-DNA and initiate exonuclease III-assisted target recycling amplification to generate abundant G-rich DNA (G-DNA). One region of G-DNA is designed to possess the same sequence as target DNA. Thus, the G-DNA can also hybridize with H-DNA and initiate the digestion of H-DNA. The cascade strategy in this amplification system causes the concentration of G-DNA to grow exponentially. The fluorescence intensity of N-methylmesoporphyrin IX (NMM) is highly enhanced due to the formation of G-quadruplex configuration. Under optimal conditions, the cascade system could achieve an admirable sensitivity with a detection limit of 52 fM for HIV DNA, and guarantees a satisfactory specificity. Moreover, the cascade system could be implemented for other target DNA detections by substituting the recognition region of the H-DNA. In this way, a detection limit of 65 fM for HBV DNA could be achieved by the cascade system. The target DNA analysis in a real serum sample further indicates that this biosensor has potential for future application in clinical diagnosis. Graphical abstract A simple and label-free cascade amplification strategy is developed by exploiting hairpin DNA and EXO III for sensitive DNA detection.


Subject(s)
DNA/analysis , Biosensing Techniques , Exodeoxyribonucleases/chemistry , Fluorescence , Limit of Detection , Mesoporphyrins/chemistry , Nucleic Acid Amplification Techniques
20.
Int J Mol Sci ; 20(10)2019 May 16.
Article in English | MEDLINE | ID: mdl-31100876

ABSTRACT

Type 2 diabetes mellitus (DM2) leads to cardiomyopathy characterized by cardiomyocyte hypertrophy, followed by mitochondrial dysfunction and interstitial fibrosis, all of which are exacerbated by angiotensin II (AT). SIRT1 and its transcriptional coactivator target PGC-1α (peroxisome proliferator-activated receptor-γ coactivator), and heme oxygenase-1 (HO-1) modulates mitochondrial biogenesis and antioxidant protection. We have previously shown the beneficial effect of caloric restriction (CR) on diabetic cardiomyopathy through intracellular signaling pathways involving the SIRT1-PGC-1α axis. In the current study, we examined the role of HO-1 in diabetic cardiomyopathy in mice subjected to CR. METHODS: Cardiomyopathy was induced in obese diabetic (db/db) mice by AT infusion. Mice were either fed ad libitum or subjected to CR. In an in vitro study, the reactive oxygen species (ROS) level was determined in cardiomyocytes exposed to different glucose levels (7.5-33 mM). We examined the effects of Sn(tin)-mesoporphyrin (SnMP), which is an inhibitor of HO activity, the HO-1 inducer cobalt protoporphyrin (CoPP), and the SIRT1 inhibitor (EX-527) on diabetic cardiomyopathy. RESULTS: Diabetic mice had low levels of HO-1 and elevated levels of the oxidative marker malondialdehyde (MDA). CR attenuated left ventricular hypertrophy (LVH), increased HO-1 levels, and decreased MDA levels. SnMP abolished the protective effects of CR and caused pronounced LVH and cardiac metabolic dysfunction represented by suppressed levels of adiponectin, SIRT1, PPARγ, PGC-1α, and increased MDA. High glucose (33 mM) increased ROS in cultured cardiomyocytes, while SnMP reduced SIRT1, PGC-1α levels, and HO activity. Similarly, SIRT1 inhibition led to a reduction in PGC-1α and HO-1 levels. CoPP increased HO-1 protein levels and activity, SIRT1, and PGC-1α levels, and decreased ROS production, suggesting a positive feedback between SIRT1 and HO-1. CONCLUSION: These results establish a link between SIRT1, PGC-1α, and HO-1 signaling that leads to the attenuation of ROS production and diabetic cardiomyopathy. CoPP mimicked the beneficial effect of CR, while SnMP increased oxidative stress, aggravating cardiac hypertrophy. The data suggest that increasing HO-1 levels constitutes a novel therapeutic approach to protect the diabetic heart. Brief Summary: CR attenuates cardiomyopathy, and increases HO-1, SIRT activity, and PGC-1α protein levels in diabetic mice. High glucose reduces adiponectin, SIRT1, PGC1-1α, and HO-1 levels in cardiomyocytes, resulting in oxidative stress. The pharmacological activation of HO-1 activity mimics the effect of CR, while SnMP increased oxidative stress and cardiac hypertrophy. These data suggest the critical role of HO-1 in protecting the diabetic heart.


Subject(s)
Caloric Restriction/methods , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/therapeutic use , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Angiotensin II/metabolism , Animals , Blood Glucose , Carbazoles/pharmacology , Cardiomegaly/metabolism , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2/complications , Male , Malondialdehyde/blood , Mesoporphyrins/therapeutic use , Mice , Mice, Inbred C57BL , Obesity/metabolism , Oxidative Stress/drug effects , PPAR gamma/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Protoporphyrins/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL