Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 333
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Inorg Chem ; 62(29): 11304-11317, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37439562

ABSTRACT

The mechanism of the metal centered reduction of metmyoglobin (MbFeIII) by sulfide species (H2S/HS-) under an argon atmosphere has been studied by a combination of spectroscopic, kinetic, and computational methods. Asymmetric S-shaped time-traces for the formation of MbFeII at varying ratios of excess sulfide were observed at pH 5.3 < pH < 8.0 and 25 °C, suggesting an autocatalytic reaction mechanism. An increased rate at more alkaline pHs points to HS- as relevant reactive species for the reduction. The formation of the sulfanyl radical (HS•) in the slow initial phase was assessed using the spin-trap phenyl N-tert-butyl nitrone. This radical initiates the formation of S-S reactive species as disulfanuidyl/ disulfanudi-idyl radical anions and disulfide (HSSH•-/HSS•2- and HSS-, respectively). The autocatalysis has been ascribed to HSS-, formed after HSSH•-/HSS•2- disproportionation, which behaves as a fast reductant toward the intermediate complex MbFeIII(HS-). We propose a reaction mechanism for the sulfide-mediated reduction of metmyoglobin where only ferric heme iron initiates the oxidation of sulfide species. Beside the chemical interest, this insight into the MbFeIII/sulfide reaction under an argon atmosphere is relevant for the interpretation of biochemical aspects of ectopic myoglobins found on hypoxic tissues toward reactive sulfur species.


Subject(s)
Hydrogen Sulfide , Metmyoglobin , Metmyoglobin/chemistry , Anaerobiosis , Argon , Myoglobin/chemistry , Oxidation-Reduction , Sulfides , Kinetics
2.
Biochem J ; 478(4): 927-942, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33543749

ABSTRACT

Nitrite binding to recombinant wild-type Sperm Whale myoglobin (SWMb) was studied using a combination of spectroscopic methods including room-temperature magnetic circular dichroism. These revealed that the reactive species is free nitrous acid and the product of the reaction contains a nitrite ion bound to the ferric heme iron in the nitrito- (O-bound) orientation. This exists in a thermal equilibrium with a low-spin ground state and a high-spin excited state and is spectroscopically distinct from the purely low-spin nitro- (N-bound) species observed in the H64V SWMb variant. Substitution of the proximal heme ligand, histidine-93, with lysine yields a novel form of myoglobin (H93K) with enhanced reactivity towards nitrite. The nitrito-mode of binding to the ferric heme iron is retained in the H93K variant again as a thermal equilibrium of spin-states. This proximal substitution influences the heme distal pocket causing the pKa of the alkaline transition to be lowered relative to wild-type SWMb. This change in the environment of the distal pocket coupled with nitrito-binding is the most likely explanation for the 8-fold increase in the rate of nitrite reduction by H93K relative to WT SWMb.


Subject(s)
Heme/chemistry , Myoglobin/chemistry , Nitrites/metabolism , Sperm Whale/metabolism , Amino Acid Substitution , Animals , Circular Dichroism/methods , Electron Spin Resonance Spectroscopy , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Horses , Ligands , Metmyoglobin/chemistry , Metmyoglobin/metabolism , Myoglobin/metabolism , Nitrous Acid/metabolism , Oxidation-Reduction , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Species Specificity , Spectrophotometry, Ultraviolet , Structure-Activity Relationship
3.
J Biol Chem ; 295(39): 13488-13501, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32723869

ABSTRACT

Since the advent of protein crystallography, atomic-level macromolecular structures have provided a basis to understand biological function. Enzymologists use detailed structural insights on ligand coordination, interatomic distances, and positioning of catalytic amino acids to rationalize the underlying electronic reaction mechanisms. Often the proteins in question catalyze redox reactions using metal cofactors that are explicitly intertwined with their function. In these cases, the exact nature of the coordination sphere and the oxidation state of the metal is of utmost importance. Unfortunately, the redox-active nature of metal cofactors makes them especially susceptible to photoreduction, meaning that information obtained by photoreducing X-ray sources about the environment of the cofactor is the least trustworthy part of the structure. In this work we directly compare the kinetics of photoreduction of six different heme protein crystal species by X-ray radiation. We show that a dose of ∼40 kilograys already yields 50% ferrous iron in a heme protein crystal. We also demonstrate that the kinetics of photoreduction are completely independent from variables unique to the different samples tested. The photoreduction-induced structural rearrangements around the metal cofactors have to be considered when biochemical data of ferric proteins are rationalized by constraints derived from crystal structures of reduced enzymes.


Subject(s)
Ferric Compounds/chemistry , Heme/chemistry , Metalloproteins/chemistry , Metmyoglobin/chemistry , Peroxidase/chemistry , Animals , Binding Sites , Crystallography, X-Ray , Horses , Kinetics , Klebsiella pneumoniae/enzymology , Models, Molecular , Oxidation-Reduction , Peroxidase/metabolism , Photochemical Processes , X-Rays
4.
Inorg Chem ; 59(6): 3631-3641, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32114760

ABSTRACT

A combination of in silico methods was used to extend the experimental description of the reductive nitrosylation mechanism in ferric hemeproteins with the molecular details of the role of surrounding amino acids. The computational strategy consisted in the estimation of potential energy profiles for the transition process associated with the interactions of the coordinated N(NO) moiety with O(H2O) or O(OH-) as nucleophiles, and with distal amino acids as proton acceptors or affecting the stability of transition states. We inspected the reductive nitrosylation in three representative hemeproteins -sperm whale metmyoglobin, α subunit of human methemoglobin and nitrophorin 4 of Rhodnius prolixus. For each case, classical molecular dynamics simulations were performed in order to obtain relevant reactive conformations, and a potential energy profile for the reactive step was obtained using adiabatic mapping or nudged elastic band approaches at the QM/MM level. Specifically, we report the role of a charged Arg45 of myoglobin in destabilizing the transition state when H2O acts as nucleophile, differently to the neutral Pro43 of the hemoglobin subunit. The case of the nitrophorin is unique in that the access of the required water molecules is scarce, thus, preventing the reaction.


Subject(s)
Methemoglobin/chemistry , Metmyoglobin/chemistry , Nitric Oxide/chemistry , Salivary Proteins and Peptides/chemistry , Animals , Density Functional Theory , Humans , Iron/chemistry , Models, Chemical , Oxidation-Reduction , Rhodnius , Sperm Whale , Water/chemistry
5.
J Sci Food Agric ; 100(3): 1022-1029, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31646643

ABSTRACT

BACKGROUND: Pork is used as raw material to produce Cantonese sausage, and 0.5 or 1 g kg-1 of d-sodium erythorbate is added to the pork meat. In this study the myoglobin oxidation rate, relative metmyoglobin content, heme iron content, redness, pH, free radical content and thiobarbituric acid reactive substance (TBARS) value were measured at different processing times and different content of d-sodium erythorbate. RESULTS: It was found that d-sodium erythorbate significantly reduced the free radical content and myoglobin and lipid oxidation rates and increased heme iron levels. When d-sodium erythorbate was added to the sausage, the absorption peak of myoglobin porphyrin shifted left, migrating from 414 to 405 nm. At 72 h, with an increase in the d-sodium erythorbate content, a significant negative correlation was identified between heme iron and the degree of redness (P < 0.01). CONCLUSION: During sausage processing, there are strong correlations among TBARS values, free radical content, metmyoglobin levels, heme iron levels, a* and pH at the same d-sodium erythorbate level. At the same processing time, adding d-sodium erythorbate can slow the rate of myoglobin and lipid oxidation and prevent the discoloration of sausage. © 2019 Society of Chemical Industry.


Subject(s)
Ascorbic Acid/analysis , Food Additives/analysis , Lipids/chemistry , Meat Products/analysis , Myoglobin/chemistry , Animals , Color , Food Handling , Metmyoglobin/chemistry , Oxidation-Reduction , Swine
6.
Angew Chem Int Ed Engl ; 57(51): 16654-16658, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30347123

ABSTRACT

Many HNO-scavenging pathways exist to regulate its biological and pharmacological activities. Such reactions often involve ferric heme proteins and form an important basis for HNO probe development. However, mechanisms of HNO reactions with ferric heme proteins are largely unknown. We performed a computational investigation using metmyoglobin and catalase as representative ferric heme proteins with neutral and negatively charged axial ligands to provide the first detailed pathways. The results reproduced experimental barriers well with an average error of 0.11 kcal mol-1 . The rate-limiting step was found to be dissociation of the resting ligand or HNO coordination when there is no resting ligand. For both heme proteins, in contrast to the non-heme case, the reductive nitrosylation step was found to be barrierless proton-coupled electron transfer, which provides the major thermodynamic driving force for the overall reaction. The origin of the difference in reactivity between metmyoglobin and catalase was also revealed.


Subject(s)
Catalase/metabolism , Metmyoglobin/metabolism , Nitrogen Oxides/metabolism , Catalase/chemistry , Ligands , Metmyoglobin/chemistry , Nitrogen Oxides/chemistry , Thermodynamics
7.
Biochim Biophys Acta ; 1860(7): 1409-16, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27062906

ABSTRACT

BACKGROUND: Metmyoglobin (MbFe(III)) reaction with H(2)O(2) has been a subject of study over many years. H(2)O(2) alone promotes heme destruction frequently denoted "suicide inactivation," yet the mechanism underlying H(2)O(2) dismutation associated with MbFe(III) inactivation remains obscure. METHODS: MbFe(III) reaction with excess H(2)O(2) in the absence and presence of the nitroxide was studied at pH 5.3-8.1 and 25°C by direct determination of reaction rate constants using rapid-mixing stopped-flow technique, by following H(2)O(2) depletion, O(2) evolution, spectral changes of the heme protein, and the fate of the nitroxide by EPR spectroscopy. RESULTS: The rates of both H(2)O(2) dismutation and heme inactivation processes depend on [MbFe(III)], [H(2)O(2)] and pH. Yet the inactivation stoichiometry is independent of these variables and each MbFe(III) molecule catalyzes the dismutation of 50±10 H(2)O(2) molecules until it is inactivated. The nitroxide catalytically enhances the catalase-like activity of MbFe(III) while protecting the heme against inactivation. The rate-determining step in the absence and presence of the nitroxide is the reduction of MbFe(IV)O by H(2)O(2) and by nitroxide, respectively. CONCLUSIONS: The nitroxide effects on H(2)O(2) dismutation catalyzed by MbFe(III) demonstrate that MbFe(IV)O reduction by H(2)O(2) is the rate-determining step of this process. The proposed mechanism, which adequately fits the pro-catalytic and protective effects of the nitroxide, implies the intermediacy of a compound I-H(2)O(2) adduct, which decomposes to a MbFe(IV)O and an inactivated heme at a ratio of 25:1. GENERAL SIGNIFICANCE: The effects of nitroxides are instrumental in elucidating the mechanism underlying the catalysis and inactivation routes of heme proteins.


Subject(s)
Catalase/metabolism , Hydrogen Peroxide/metabolism , Metmyoglobin/metabolism , Nitrogen Oxides/metabolism , Catalase/chemistry , Catalysis , Computer Simulation , Electron Spin Resonance Spectroscopy , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Kinetics , Metmyoglobin/chemistry , Models, Biological , Nitrogen Oxides/chemistry , Oximetry
8.
Proc Natl Acad Sci U S A ; 111(35): 12764-8, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25136125

ABSTRACT

Quasielastic incoherent neutron scattering (QENS) is an important tool for the exploration of the dynamics of complex systems such as biomolecules, liquids, and glasses. The dynamics is reflected in the energy spectra of the scattered neutrons. Conventionally these spectra are decomposed into a narrow elastic line and a broad quasielastic band. The band is interpreted as being caused by Doppler broadening due to spatial motion of the target molecules. We propose a quantum-mechanical model in which there is no separate elastic line. The quasielastic band is composed of sharp lines with twice the natural line width, shifted from the center by a random walk of the protein in the free-energy landscape of the target molecule. The walk is driven by vibrations and by external fluctuations. We first explore the model with the Mössbauer effect. In the subsequent application to QENS we treat the incoming neutron as a de Broglie wave packet. While the wave packet passes the protons in the protein and the hydration shell it exchanges energy with the protein during the passage time of about 100 ns. The energy exchange broadens the ensemble spectrum. Because the exchange involves the free-energy landscape of the protein, the QENS not only provides insight into the protein dynamics, but it may also illuminate the free-energy landscape of the protein-solvent system.


Subject(s)
Models, Theoretical , Neutron Diffraction/methods , Neutrons , Proteins/chemistry , Water/chemistry , Elasticity , Hydrogen/chemistry , Metmyoglobin/chemistry , Quantum Theory , Spectroscopy, Mossbauer
9.
Analyst ; 140(17): 6145-6, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26203898

ABSTRACT

We contrast recently reported surface-enhanced resonance Raman spectra (SERRS) of myoglobin on silver nanoparticles with established knowledge about this complex. We conclude that the detected bands are not related to the spin states of the protein cofactor, being rather originated by a heme coordination change induced by the metal surface.


Subject(s)
Heme/analysis , Metmyoglobin/chemistry , Spectrum Analysis, Raman/methods , Animals
10.
Analyst ; 140(17): 6147-8, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26204100

ABSTRACT

In our SERRS spectra of metmyoglobin by excitation at 514 nm, the peak at 1510 cm(-1), which is assigned to the 6-coordinated heme in the low spin state, was observed by the addition of imidazole and NaN3. Thus, the SERRS likely originates not from the non-native 5-coordinated heme, which is in the high spin state.


Subject(s)
Heme/analysis , Metmyoglobin/chemistry , Spectrum Analysis, Raman/methods , Animals
11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(7): 1967-72, 2015 Jul.
Article in Zh | MEDLINE | ID: mdl-26717761

ABSTRACT

As we all known, the instantaneous reaction between protein and ligands are very important to adjust the normal playing of biological function. And nitric oxide interactions with iron are the most important biological reactions in which NO participates. Unlike carbon monoxide or oxygen, NO can also bind reversibly to ferric iron. In this paper, UV-Vis absorption and CD spectra were used to study coordination reaction process between horse heart metMb and NO, to demonstrate the coordination reaction mechanism and to explore the influencing factors of metMb with NO. The experimental results showed that metMb could react with NO, and obtained three new peaks at 420 nm, 534 and 568 nm, respectively, which implied metMb and NO have reacted and generated a new complex-nitrosylmetmyoglobin (metMbNO). Then as time went on, NO concentration decreased in the solution, and the Fe-N bond fractured under the attack of H2O, then NO leaves slowly from metMbNO, and met-Mb was regenerated. In this experiment, we also found that external conditions such as buffer medium, ionic strength, pH, temperature, etc, had an important influence on the coordination reaction between metMb and NO. It was favorable for the coordination reaction, when the 0.01 mol x L(-1) phosphate buffer. solution is near neutral condition, the temperature is 280 K, the coordination reaction could reach equilibrium at a fastest speed. In addition, the CD date show that NO only reacts with Fe atom in the center of heme and has less effect on the secondary structuers of protein. The research of metMb and NO played an important role to further study the function of NO. Especially the establish of equilibrium reaction mechanism between NO and heme protein has an important research value on maintaining the balance of NO in vivo and keeping the normal function in the body's cells.


Subject(s)
Metmyoglobin/chemistry , Nitric Oxide/chemistry , Animals , Heme/chemistry , Horses , Hydrogen-Ion Concentration , Iron/chemistry , Solutions , Temperature
12.
Angew Chem Int Ed Engl ; 54(42): 12379-83, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26346916

ABSTRACT

Electron transport (ETp) across met-myoglobin (m-Mb), as measured in a solid-state-like configuration between two electronic contacts, increases by up to 20 fold if Mb is covalently bound to one of the contacts, a Si electrode, in an oriented manner by its hemin (ferric) group, rather than in a non-oriented manner. Oriented binding of Mb is achieved by covalently binding hemin molecules to form a monolayer on the Si electrode, followed by reconstitution with apo-Mb. We found that the ETp temperature dependence (>120 K) of non-oriented m-Mb virtually disappears when bound in an oriented manner by the hemin group. Our results highlight that combining direct chemical coupling of the protein to one of the electrodes with uniform protein orientation strongly improves the efficiency of ET across the protein. We hypothesize that the behavior of reconstituted m-Mb is due to both strong protein-substrate electronic coupling (which is likely greater than in non-oriented m-Mb) and direct access to a highly efficient transport path provided by the hemin group in this configuration.


Subject(s)
Apoproteins/chemistry , Hemin/chemistry , Metmyoglobin/chemistry , Myoglobin/chemistry , Amides/chemistry , Electric Conductivity , Electrodes , Models, Molecular , Molecular Structure
13.
Biophys J ; 106(4): 895-904, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24559992

ABSTRACT

Small-angle x-ray scattering (SAXS) was used to study the behavior of equine metmyoglobin (Mb) and bovine pancreatic trypsin inhibitor (BPTI) at concentrations up to 0.4 and 0.15 g/mL, respectively, in solutions also containing 50% D2O and 1 M urea. For both proteins, significant effects because of interference between x-rays scattered by different molecules (interparticle interference) were observed, indicating nonideal behavior at high concentrations. The experimental data were analyzed by comparison of the observed scattering profiles with those predicted by crystal structures of the proteins and a hard-sphere fluid model used to represent steric exclusion effects. The Mb scattering data were well fit by the hard-sphere model using a sphere radius of 18 Å, only slightly smaller than that estimated from the three-dimensional structure (20 Å). In contrast, the scattering profiles for BPTI in phosphate buffer displayed substantially less pronounced interparticle interference than predicted by the hard-sphere model and the radius estimated from the known structure of the protein (15 Å). Replacing the phosphate buffer with 3-(N-morpolino)propane sulfonic acid (MOPS) led to increased interparticle interference, consistent with a larger effective radius and suggesting that phosphate ions may mediate attractive intermolecular interactions, as observed in some BPTI crystal structures, without the formation of stable oligomers. The scattering data were also used to estimate second virial coefficients for the two proteins: 2.0 ×10(-4) cm(3)mol/g(2) for Mb in phosphate buffer, 1.6 ×10(-4) cm(3)mol/g(2) for BPTI in phosphate buffer and 9.2 ×10(-4) cm(3)mol/g(2) for BPTI in MOPS. The results indicate that the behavior of Mb, which is nearly isoelectric under the conditions used, is well described by the hard-sphere model, but that of BPTI is considerably more complex and is likely influenced by both repulsive and attractive electrostatic interactions. The hard-sphere model may be a generally useful tool for the analysis of small-angle scattering data from concentrated macromolecular solutions.


Subject(s)
Aprotinin/chemistry , Metmyoglobin/chemistry , Amino Acid Sequence , Animals , Cattle , Horses , Molecular Sequence Data , Scattering, Small Angle , X-Ray Diffraction
14.
Biophys J ; 106(4): 905-14, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24559993

ABSTRACT

Small-angle neutron scattering was used to study the effects of macromolecular crowding by two globular proteins, i.e., bovine pancreatic trypsin inhibitor and equine metmyoglobin, on the conformational ensemble of an intrinsically disordered protein, the N protein of bacteriophage λ. The λ N protein was uniformly labeled with (2)H, and the concentrations of D2O in the samples were adjusted to match the neutron scattering contrast of the unlabeled crowding proteins, thereby masking their contribution to the scattering profiles. Scattering from the deuterated λ N was recorded for samples containing up to 0.12 g/mL bovine pancreatic trypsin inhibitor or 0.2 g/mL metmyoglobin. The radius of gyration of the uncrowded protein was estimated to be 30 Å and was found to be remarkably insensitive to the presence of crowders, varying by <2 Å for the highest crowder concentrations. The scattering profiles were also used to estimate the fractal dimension of λ N, which was found to be ∼1.8 in the absence or presence of crowders, indicative of a well-solvated and expanded random coil under all of the conditions examined. These results are contrary to the predictions of theoretical treatments and previous experimental studies demonstrating compaction of unfolded proteins by crowding with polymers such as dextran and Ficoll. A computational simulation suggests that some previous treatments may have overestimated the effective volumes of disordered proteins and the variation of these volumes within an ensemble. The apparent insensitivity of λ N to crowding may also be due in part to weak attractive interactions with the crowding proteins, which may compensate for the effects of steric exclusion.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Viral Regulatory and Accessory Proteins/chemistry , Amino Acid Sequence , Animals , Aprotinin/chemistry , Cattle , Horses , Metmyoglobin/chemistry , Molecular Sequence Data , Neutron Diffraction , Scattering, Small Angle
15.
Analyst ; 139(24): 6421-5, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25335784

ABSTRACT

Surface-enhanced resonance Raman scattering (SERRS) spectra of myoglobin (Mb) with various ligands were measured. In the resonance Raman scattering (RRS) spectra, peaks at around 1610 and 1640 cm(-1) have so far been used to discriminate between the heme iron in a high or low spin state. In the SERRS spectra, however, the spin state cannot be distinguished by the corresponding peaks. Alternatively, the intensity ratio of the SERRS peak at 1560 cm(-1) to that at 1620 cm(-1) was applied to detect the spin states sensitively (1.5 × 10(5) times compared with the RRS); namely, a high ratio was obtained from met-Mb in the high spin state at pH ≤ 7 except for in a strong acid solution. The different marker bands between the SERRS and RRS spectra may be due to the enhancement order from the surface selection rule.


Subject(s)
Heme/analysis , Metmyoglobin/chemistry , Spectrum Analysis, Raman/methods , Animals , Horses , Iron/analysis , Ligands
16.
Inorg Chem ; 53(9): 4475-81, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24738470

ABSTRACT

The reaction between trans-[Ru(II)(NO(+))(NH3)4(L)](3+), L = ImN, IsN, Nic, P(OMe)3, P(OEt)3, and P(OH)(OEt)2, and the Fe(III) species [Fe(III)(TPPS)], metmyoglobin, and hemoglobin was monitored by UV-vis, EPR, and electrochemical techniques (DPV, CV). No reaction was observed when L = ImN, IsN, Nic, and P(OH)(OEt)2. However, when L = P(OMe)3 and P(OEt)3, the reaction was quantitative and the products were trans-[Ru(III)(H2O)(NH3)4(P(OR)3)](3+) and [Fe(II)(NO(+))] species. Reaction kinetics data and DFT calculations suggest a two-step reaction mechanism with the initial formation of a bridged [Ru-(µNO)-Fe] intermediate, which was confirmed through electrochemical techniques (E(0)' = -0.47 V vs NHE). The calculated specific rate constant values for the reaction were in the ranges k1 = 1.1 to 7.7 L mol(-1) s(-1) and k2 = 2.4 × 10(-3) to 11.4 × 10(-3) s(-1) for L = P(OMe)3 and P(OEt)3. The oxidation of the ruthenium center (Ru(II) to Ru(III)) containing the nitrosonium ligand suggests that NO can act as an electron transfer bridge between the two metal centers.


Subject(s)
Ferric Compounds/chemistry , Nitric Oxide/chemistry , Ruthenium Compounds/chemistry , Electrochemistry , Electron Spin Resonance Spectroscopy , Kinetics , Metmyoglobin/chemistry
17.
J Chem Phys ; 140(2): 025103, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24437919

ABSTRACT

We report on a study of the early relaxation processes of met-Myoglobin in aqueous solution, using a combination of ultrafast broadband fluorescence detection and transient absorption with a broad UV-visible continuum probe at different pump energies. Reconstruction of the spectra of the transient species unravels the details of the haem photocycle in the absence of photolysis. Besides identifying a branching in the ultrafast relaxation of the haem, we show clear evidence for an electronic character of the intermediates, contrary to the commonly accepted idea that the early time relaxation of the haem is only due to cooling. The decay back to the ground state proceeds partially as a cascade through iron spin states, which seems to be a general characteristic of haem systems.


Subject(s)
Heme/chemistry , Metmyoglobin/chemistry , Iron/chemistry , Porphyrins/chemistry , Spectrometry, Fluorescence
18.
Food Chem ; 438: 138053, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38007953

ABSTRACT

This study focused on non-covalent complex of myoglobin-chlorogenic acid (Mb-CA) and the changes in conformation, oxidation, and microstructure induced by varying concentrations of CA (10-40 µmol/g Mb). Employing molecular docking and dynamics simulations, further insights into the interaction between Mb and CA were obtained. The findings revealed that different CA concentrations enhanced Mb's thermal stability, while diminishing particle size, solubility, and relative content of metmyoglobin (MetMb%). The optimal interaction occurred at 40 µmol/g Mb. Furthermore, CA exhibited static quenching of Mb, with thermodynamic analysis confirming a 1:1 complex formation. These insights deepen our understanding of interaction between Mb and CA, providing valuable clarity.


Subject(s)
Chlorogenic Acid , Myoglobin , Myoglobin/chemistry , Molecular Dynamics Simulation , Molecular Docking Simulation , Metmyoglobin/chemistry
19.
Biochim Biophys Acta ; 1820(10): 1560-6, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22634736

ABSTRACT

BACKGROUND: The pharmacological effects of hydroxamic acids (RC(O)NHOH, HX) are partially attributed to their ability to serve as HNO and/or NO donors under oxidative stress. Given the development and use of HXs as therapeutic agents, elucidation of the oxidation mechanism is needed for more educated selection of HX-based drugs. METHODS: Acetohydroxamic and glycine-hydroxamic acids were oxidized at pH 7.0 by a continuous flux of radiolytically generated (·)OH or by metmyoglobin and H(2)O(2) reactions system. Gas chromatography and spectroscopic methods were used to monitor the accumulation of N(2)O, N(2), nitrite and hydroxylamine. RESULTS: Oxidation of HXs by (·)OH under anoxia yields N(2)O, but not nitrite, N(2) or hydroxylamine. Upon the addition of H(2)O(2) to solutions containing HX and metmyoglobin, which is instantaneously and continuously converted into compound II, nitrite and, to a lesser extent, N(2)O are accumulated under both anoxia and normoxia. CONCLUSIONS: Oxidation of HXs under anoxia by a continuous flux of (·)OH, which solely oxidizes the hydroxamate moiety to RC(O)NHO(·), forms HNO. This observation implies that bimolecular decomposition of RC(O)NHO(·) competes efficiently with unimolecular decomposition processes such as internal disproportionation, hydrolysis or homolysis. Oxidation by metmyoglobin/H(2)O(2) involves relatively mild oxidants (compounds I and II). Compound I reacts with HX forming RC(O)NHO(·) and compound II, which oxidizes HX, RC(O)NHO(·), HNO and NO. The latter reaction is the main source of nitrite. GENERAL SIGNIFICANCE: HXs under oxidative stress release HNO, but can be considered as NO-donors provided that HNO oxidation is more efficient than its reaction with other biological targets.


Subject(s)
Hydroxamic Acids/metabolism , Hydroxamic Acids/pharmacokinetics , Nitric Oxide/metabolism , Nitrogen Oxides/metabolism , Humans , Hydrogen Peroxide/pharmacology , Hydrolysis , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Hydroxylamine , Kinetics , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/physiology , Metmyoglobin/chemistry , Metmyoglobin/metabolism , Models, Biological , Nitric Oxide/pharmacology , Nitrites/chemistry , Nitrites/metabolism , Nitrogen Oxides/pharmacology , Oxidation-Reduction
20.
Int J Exp Pathol ; 94(1): 25-33, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23198957

ABSTRACT

Accurate monitoring of the antioxidant status or of oxidative stress in patients is still a big challenge in clinical laboratories. This study investigates the possibility of applying a newly developed total antioxidant capacity assay method based on laccase or peroxidase oxidized syringaldazine [Tetramethoxy azobismethylene quinone (TMAMQ)] which is referred to here as SyrinOX, as a diagnostic tool for monitoring both oxidative stress and antioxidant status in patients. Attempts to adapt the Randox total antioxidant procedure [simultaneous incubation of the radical generating system (metmyoglobin and H(2) O(2) ) and antioxidant sample] for SyrinOX were abandoned after it was discovered that the H(2) O(2) reacted with enzymatically generated TMAMQ and ABTS radicals at a rate of 6.4 × 10(-2) /µM/s and 5.7 × 10(-3) /µM/s respectively. Thus this study for the first time demonstrates the negative effects of H(2) O(2) in the Randox system. This leads to erroneous results because the total antioxidant values obtained are the sum of radicals reduced by antioxidants plus those reacting with the radical generating system. Therefore they should be avoided not only for this particular method but also when using other similar methods. Consequently, SyrinOX is best applied using a three-step approach involving, production of TMAMQ, recovery and purification (free from enzyme and other impurities) and then using TMAMQ for measuring the total antioxidant capacity of samples. Using this approach, the reaction conditions for application of SyrinOX when measuring the total antioxidant capacity of plasma sample were determined to be 50% (v/v) ethanol/50 mM sodium succinate buffer pH 5.5, between 20 and 25 °C for at least 1 h.


Subject(s)
Antioxidants/analysis , Biological Assay/methods , Hydrazones/chemistry , Indicators and Reagents/chemistry , Oxidative Stress , Antioxidants/pharmacology , Benzothiazoles , Biological Assay/standards , Biomarkers/blood , Buffers , Calibration , Chromans/pharmacology , Ethanol/chemistry , Humans , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Kinetics , Metmyoglobin/chemistry , Oxidation-Reduction , Oxidative Stress/drug effects , Predictive Value of Tests , Reference Standards , Reproducibility of Results , Solvents/chemistry , Spectrum Analysis , Succinic Acid/chemistry , Sulfonic Acids/chemistry , Temperature , Thiazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL