Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.768
Filter
Add more filters

Publication year range
2.
Kidney Int ; 106(3): 400-407, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38901606

ABSTRACT

Microplastics (MPs) and nanoplastics are small synthetic organic polymer particles (<5 mm and <1 µm, respectively) that originate directly from plastic compounds or result from the degradation of plastic. These particles are a global concern because they are widely distributed in water, air, food, and soil, and recent scientific evidence has linked MPs to negative biological effects. Although these particles are difficult to detect in humans, MPs have been identified in different biological fluids and tissues, such as the placenta, lung, intestines, liver, blood, urine, and kidneys. Human exposure to MPs can occur by ingestion, inhalation, or dermal contact, potentially causing metabolic alterations. Data from experimental and clinical studies have revealed that the ability of MPs to promote inflammation, oxidative stress, and organ dysfunction and negatively affect clinical outcomes is associated with their accumulation in body fluids and tissues. Although evidence of the putative action of MPs in the human kidney is still scarce, there is growing interest in studying MPs in this organ. In addition, chronic kidney disease requires investigation because this condition is potentially prone to MP accumulation. The purpose of the present article is (i) to review the general aspects of MP generation, available analytic methods for identification, and the main known biological toxic effects; and (ii) to describe and critically analyze key experimental and clinical studies that support a role of MPs in kidney disease.


Subject(s)
Kidney , Microplastics , Humans , Microplastics/toxicity , Kidney/drug effects , Kidney/metabolism , Animals , Environmental Exposure/adverse effects , Oxidative Stress/drug effects
3.
Biochem Biophys Res Commun ; 734: 150719, 2024 11 19.
Article in English | MEDLINE | ID: mdl-39362032

ABSTRACT

Plastics are an essential part of human life and their production is increasing every year. Plastics degrade into small particles (<5 mm, microplastics, MPs) in the environment due to various factors. MPs are widely distributed in the environment, and all living organisms are exposed to the effects of MPs. Extracellular vesicles (EVs) are small membrane particles surrounded by a lipid bilayer that are released into the environment by various cell types and are highly involved in inter- and intra-cellular communication through the exchange of proteins, nucleic acids, and lipids between cells. There have been numerous reports of adverse effects associated with the accumulation of MPs in human and animal cells, with recent studies showing that plastic treatment increases the number of EVs released from cells, but the mechanisms by which MPs accumulate and move between cells remain unclear. In this study, we investigated whether polystyrene (PS)-MPs are transferred cell-to-cell via EVs. This study showed that cell-derived EVs can transport plastic particles. Furthermore, we confirmed the accumulation of PS-MPs transported by EVs within cells using a real-time imaging device. This study provides an understanding of potential EVs-mediated effects of PS-MPs on organisms and suggests directions for further research.


Subject(s)
Cell Communication , Extracellular Vesicles , Microplastics , Polystyrenes , Polystyrenes/metabolism , Polystyrenes/chemistry , Microplastics/toxicity , Microplastics/metabolism , Extracellular Vesicles/metabolism , Humans , Animals , Biological Transport , Cell Line
4.
Biochem Biophys Res Commun ; 734: 150619, 2024 11 19.
Article in English | MEDLINE | ID: mdl-39232458

ABSTRACT

Since the emergence of a global outbreak of mpox in 2022, understanding the transmission pathways and mechanisms of Orthopoxviruses, including vaccinia virus (VACV), has become paramount. Nanoplastic pollution has become a significant global issue due to its widespread presence in the environment and potential adverse effects on human health. These emerging pollutants pose substantial risks to both living organisms and the environment, raising serious health concerns related to their proliferation. Despite this, the effects of nanoparticles on viral transmission dynamics remain unclear. This study explores how polystyrene nanoparticles (PS-NPs) influence the transmission of VACV through migrasomes. We demonstrate that PS-NPs accelerate the formation of migrasomes early in the infection process, facilitating VACV entry as soon as 15 h post-infection (hpi), compared to the usual onset at 36 hpi. Immunofluorescence and transmission electron microscopy (TEM) reveal significant co-localization of VACV with migrasomes induced by PS-NPs by 15 hpi. This interaction coincides with an increase in lipid droplet size, attributed to higher cholesterol levels influenced by PS-NPs. By 36 hpi, migrasomes exposed to both PS-NPs and VACV exhibit distinct features, such as retraction fibers and larger lipid droplets, emphasizing their critical role in cargo transport during viral infections. These results suggest that PS-NPs may act as modulators of viral transmission dynamics through migrasomes, with potential implications for antiviral strategies and environmental health.


Subject(s)
Nanoparticles , Polystyrenes , Vaccinia virus , Polystyrenes/chemistry , Nanoparticles/chemistry , Vaccinia virus/drug effects , Vaccinia virus/physiology , Vaccinia virus/metabolism , Humans , Microplastics/toxicity , Virus Internalization/drug effects , Animals , Cell Line , Vaccinia/virology , Vaccinia/metabolism , Vaccinia/transmission
5.
Biochem Biophys Res Commun ; 732: 150410, 2024 11 05.
Article in English | MEDLINE | ID: mdl-39032413

ABSTRACT

Microplastics, such as polylactic acid (PLA), are ubiquitous environmental pollutants with unclear implications for health impact. This study aims to elucidate the mechanisms of PLA-induced inflammatory liver injury, focusing on disturbance of bile acid metabolism. The in vitro PLA exposure experiment was conducted using HepG2 cells to assess cell viability, cytokine secretion, and effects on bile acid metabolism. In vivo, male C57BL/6 J mice were exposed to PLA for ten days continuously, liver function and histopathological assessment were evaluated after the mice sacrificed. Molecular analyses including quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blotting, were applied to evaluate the expression of bile acid metabolizing enzymes and transporters. PLA exposure resulted in decreased cell viability in HepG2 cells, increased inflammation and altered bile acid metabolism. In mice, PLA exposure resulted in decreased body weight and food intake, impaired liver function, increased hepatic inflammation, altered bile acid profiles, and dysregulated expression of bile acid metabolic pathways. PLA exposure disrupts bile acid metabolism through inhibition of the CYP7A1 enzyme and activation of the FGF-JNK/ERK signaling pathway, contributing to liver injury. These findings highlight the potential hepatotoxic effects of environmentally friendly plastics PLA and underscore the need for further research on their biological impact.


Subject(s)
Bile Acids and Salts , Mice, Inbred C57BL , Polyesters , Animals , Male , Bile Acids and Salts/metabolism , Humans , Hep G2 Cells , Mice , Liver/metabolism , Liver/pathology , Liver/drug effects , Microplastics/toxicity , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/etiology , Cholesterol 7-alpha-Hydroxylase/metabolism , Cholesterol 7-alpha-Hydroxylase/genetics , Cell Survival/drug effects , Inflammation/metabolism , Inflammation/pathology
6.
Small ; 20(23): e2309369, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38175859

ABSTRACT

Secondary nanoplastics (NPs) caused by degradation and aging due to environmental factors are the main source of human exposure, and alterations in the physicochemical and biological properties of NPs induced by environmental factors cannot be overlooked. In this study, pristine polystyrene (PS) NPs to obtain ultraviolet (UV)-aged PS NPs (aPS NPs) as secondary NPs is artificially aged. In a mouse oral exposure model, the nephrotoxicity of PS NPs and aPS NPs is compared, and the results showed that aPS NPs exposure induced more serious destruction of kidney tissue structure and function, along with characteristic changes in ferroptosis. Subsequent in vitro experiments revealed that aPS NPs-induced cell death in human renal tubular epithelial cells involved ferroptosis, which is supported by the use of ferrostatin-1, a ferroptosis inhibitor. Notably, it is discovered that aPS NPs can enhance the binding of serum transferrin (TF) to its receptor on the cell membrane by forming an aPS-TF complex, leading to an increase in intracellular Fe2+ and then exacerbation of oxidative stress and lipid peroxidation, which render cells more sensitive to ferroptosis. These findings indicated that UV irradiation can alter the physicochemical and biological properties of NPs, enhancing their kidney biological toxicity risk by inducing ferroptosis.


Subject(s)
Ferroptosis , Kidney , Polystyrenes , Transferrin , Ultraviolet Rays , Polystyrenes/chemistry , Ferroptosis/drug effects , Animals , Kidney/pathology , Kidney/drug effects , Humans , Transferrin/metabolism , Mice , Adsorption , Oxidative Stress/drug effects , Nanoparticles/chemistry , Nanoparticles/toxicity , Microplastics/toxicity
7.
Glob Chang Biol ; 30(8): e17470, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39149882

ABSTRACT

Micro/nanoplastic (MNP) pollution in soil ecosystems has become a growing environmental concern globally. However, the comprehensive impacts of MNPs on soil health have not yet been explored. We conducted a hierarchical meta-analysis of over 5000 observations from 228 articles to assess the broad impacts of MNPs on soil health parameters (represented by 20 indicators relevant to crop growth, animal health, greenhouse gas emissions, microbial diversity, and pollutant transfer) and whether the impacts depended on MNP properties. We found that MNP exposure significantly inhibited crop biomass and germination, and reduced earthworm growth and survival rate. Under MNP exposure, the emissions of soil greenhouse gases (CO2, N2O, and CH4) were significantly increased. MNP exposure caused a decrease in soil bacteria diversity. Importantly, the magnitude of impact of the soil-based parameters was dependent on MNP dose and size; however, there is no significant difference in MNP type (biodegradable and conventional MNPs). Moreover, MNPs significantly reduced As uptake by plants, but promoted plant Cd accumulation. Using an analytical hierarchy process, we quantified the negative impacts of MNP exposure on soil health as a mean value of -10.2% (-17.5% to -2.57%). Overall, this analysis provides new insights for assessing potential risks of MNP pollution to soil ecosystem functions.


Subject(s)
Oligochaeta , Soil Microbiology , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity , Soil Pollutants/adverse effects , Animals , Soil/chemistry , Microplastics/analysis , Microplastics/toxicity , Greenhouse Gases/analysis , Nanoparticles/analysis , Crops, Agricultural/growth & development
8.
PLoS Biol ; 19(3): e3001131, 2021 03.
Article in English | MEDLINE | ID: mdl-33784292

ABSTRACT

A new collection of evidence-based commentaries explores critical challenges facing scientists and policymakers working to address the potential environmental and health harms of microplastics. The commentaries reveal a pressing need to develop robust methods to detect, evaluate, and mitigate the impacts of this emerging contaminant, most recently found in human placentas.


Subject(s)
Environmental Monitoring/methods , Environmental Pollution/analysis , Plastics/toxicity , Environmental Restoration and Remediation/methods , Humans , Microplastics/toxicity , Public Health
9.
PLoS Biol ; 19(3): e3001130, 2021 03.
Article in English | MEDLINE | ID: mdl-33784293

ABSTRACT

Microplastics (MPs), plastic particles <5 mm, are found in environments, including terrestrial ecosystems, planetwide. Most research so far has focused on ecotoxicology, examining effects on performance of soil biota in controlled settings. As research pivots to a more ecosystem and global change perspective, questions about soil-borne biogeochemical cycles become important. MPs can affect the carbon cycle in numerous ways, for example, by being carbon themselves and by influencing soil microbial processes, plant growth, or litter decomposition. Great uncertainty surrounds nano-sized plastic particles, an expected by-product of further fragmentation of MPs. A major concerted effort is required to understand the pervasive effects of MPs on the functioning of soils and terrestrial ecosystems; importantly, such research needs to capture the immense diversity of these particles in terms of chemistry, aging, size, and shape.


Subject(s)
Carbon Cycle/drug effects , Microplastics/analysis , Microplastics/toxicity , Soil/chemistry , Carbon/metabolism , Ecosystem , Soil Microbiology
10.
J Theor Biol ; 580: 111733, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38224853

ABSTRACT

Microplastics pose a severe threat to marine ecosystems; however, relevant mathematical modeling and analysis are lacking. This paper formulates two stoichiometric producer-grazer models to investigate the interactive effects of microplastics, nutrients, and light on population dynamics under different settings. One model incorporates optimal microplastic uptake and foraging behavior based on nutrient availability for natural settings, while the other model does not include foraging in laboratory settings. We establish the well-posedness of the models and examine their long-term behaviors. Our results reveal that in natural environments, producers and grazers exhibit higher sensitivity to microplastics, and the system may demonstrate bistability or tristability. Moreover, the influences of microplastics, nutrients, and light intensity are highly intertwined. The presence of microplastics amplifies the constraints on grazer growth related to food quality and quantity imposed by extreme light intensities, while elevated phosphorus input enhances the system's resistance to intense light conditions. Furthermore, higher environmental microplastic levels do not always imply elevated microplastic body burdens in organisms, as organisms are also influenced by nutrients and light. We also find that grazers are more vulnerable to microplastics, compared to producers. If producers can utilize microplastics for growth, the system displays significantly greater resilience to microplastics.


Subject(s)
Ecosystem , Water Pollutants, Chemical , Microplastics/toxicity , Plastics , Models, Theoretical , Light , Water Pollutants, Chemical/toxicity , Environmental Monitoring
11.
Fish Shellfish Immunol ; 150: 109619, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735599

ABSTRACT

Plastic waste degrades slowly in aquatic environments, transforming into microplastics (MPs) and nanoplastics (NPs), which are subsequently ingested by fish and other aquatic organisms, causing both physical blockages and chemical toxicity. The fish immune system serves as a crucial defense against viruses and pollutants present in water. It is imperative to comprehend the detrimental effects of MPs on the fish immune system and conduct further research on immunological assessments. In this paper, the immune response and immunotoxicity of MPs and its combination with environmental pollutants on fish were reviewed. MPs not only inflict physical harm on the natural defense barriers like fish gills and vital immune organs such as the liver and intestinal tract but also penetrate cells, disrupting intracellular signaling pathways, altering the levels of immune cytokines and gene expression, perturbing immune homeostasis, and ultimately compromising specific immunity. Initially, fish exposed to MPs recruit a significant number of macrophages and T cells while activating lysosomes. Over time, this exposure leads to apoptosis of immune cells, a decline in lysosomal degradation capacity, lysosomal activity, and complement levels. MPs possess a small specific surface area and can efficiently bind with heavy metals, organic pollutants, and viruses, enhancing immune responses. Hence, there is a need for comprehensive studies on the shape, size, additives released from MPs, along with their immunotoxic effects and mechanisms in conjunction with other pollutants and viruses. These studies aim to solidify existing knowledge and delineate future research directions concerning the immunotoxicity of MPs on fish, which has implications for human health.


Subject(s)
Fishes , Microplastics , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Fishes/immunology , Immunity, Innate/drug effects
12.
Fish Shellfish Immunol ; 153: 109793, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39134230

ABSTRACT

Microplastic pollution poses challenges for ecosystems worldwide, and nanoplastics (NPs, 1-1000 nm) have been identified as persistent pollutants. However, although some studies have described the hazards of NPs to aquatic organisms, the toxicological processes of NPs in the common carp kidney and the biotoxicity of differently sized NPs remain unclear. In this study, we used juvenile common carp as an in vivo model that were constantly exposed to freshwater at 1000 µg/L polystyrene nanoparticle (PSNP) concentrations (50, 100, and 400 nm) for 28 days. Simultaneously, we constructed an in vitro model utilizing grass fish kidney cells (CIK) to study the toxicological effects of PSNPs of various sizes. We performed RT-PCR and Western blot assays on the genes involved in FOXO1, HMGB1, HIF-1α, endoplasmic reticulum stress, autophagy, and immunoreaction. According to these results, exposure to PSNPs increased reactive oxygen species (ROS) levels, and the carp kidneys experienced endoplasmic reticulum stress. Additionally, PSNPs promoted renal autophagy by activating the ROS/ERS/FOXO1 (ERS: endoplasmic reticulum stress) pathway, and it affected immunological function by stimulating the ROS/HMGB1/HIF-1α signaling pathway. This study provides new insights into the contamination hazards of NPs in freshwater environments, as well as the harm they pose to the human living environments. The relationship between particle size and the degree of damage caused by PSNPs to organisms is a potential future research direction.


Subject(s)
Autophagy , Carps , Kidney , Nanoparticles , Particle Size , Polystyrenes , Reactive Oxygen Species , Animals , Carps/immunology , Nanoparticles/toxicity , Nanoparticles/chemistry , Autophagy/drug effects , Reactive Oxygen Species/metabolism , Polystyrenes/toxicity , Polystyrenes/chemistry , Kidney/drug effects , Kidney/immunology , Water Pollutants, Chemical/toxicity , Fish Proteins/genetics , Fish Proteins/immunology , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Signal Transduction/drug effects , Endoplasmic Reticulum Stress/drug effects , Immunity, Innate/drug effects , Microplastics/toxicity , Microplastics/chemistry
13.
J Toxicol Environ Health B Crit Rev ; 27(4): 153-187, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38517360

ABSTRACT

The widespread production and use of plastics have resulted in accumulation of plastic debris in the environment, gradually breaking down into smaller particles over time. Nano-plastics (NPs) and microplastics (MPs), defined as particles smaller than 100 nanometers and 5 millimeters, respectively, raise concerns due to their ability to enter the human body through various pathways including ingestion, inhalation, and skin contact. Various investigators demonstrated that these particles may produce physical and chemical damage to human cells, tissues, and organs, disrupting cellular processes, triggering inflammation and oxidative stress, and impacting hormone and neurotransmitter balance. In addition, micro- and nano-plastics (MNPLs) may carry toxic chemicals and pathogens, exacerbating adverse effects on human health. The magnitude and nature of these effects are not yet fully understood, requiring further research for a comprehensive risk assessment. Nevertheless, evidence available suggests that accumulation of these particles in the environment and potential human uptake are causes for concern. Urgent measures to reduce plastic pollution and limit human exposure to MNPLs are necessary to safeguard human health and the environment. In this review, current knowledge regarding the influence of MNPLs on human health is summarized, including toxicity mechanisms, exposure pathways, and health outcomes across multiple organs. The critical need for additional research is also emphasized to comprehensively assess potential risks posed by degradation of MNPLs on human health and inform strategies for addressing this emerging environmental health challenge. Finally, new research directions are proposed including evaluation of gene regulation associated with MNPLs exposure.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Water Pollutants, Chemical , Humans , Microplastics/toxicity , Plastics/toxicity , Biological Transport , Models, Theoretical
14.
J Toxicol Environ Health B Crit Rev ; 27(8): 315-344, 2024 Nov 16.
Article in English | MEDLINE | ID: mdl-39324551

ABSTRACT

Microplastic particles (MPs) have been detected in a variety of environmental samples, including soil, water, food, and air. Cellular studies and animal exposures reported that exposure to MPs composed of different polymers might result in adverse effects at the portal of entry (local) or throughout the body (systemic). The most relevant routes of particle uptake into the body are oral and respiratory exposure. This review describes the various processes that may contribute to the adverse effects of MPs. Only MPs up to 5 µm were found to cross epithelial barriers to a significant extent. However, MPs may also exert a detrimental impact on human health by acting at the epithelial barrier and within the lumen of the orogastrointestinal and respiratory tract. The potential for adverse effects on human health resulting from the leaching, sorption, and desorption of chemicals, as well as the impact of MPs on nutritional status and dysbiosis, are reviewed. In vitro models are suggested as a means of (1) assessing permeation, (2) determining adverse effects on cells of the epithelial barrier, (3) examining influence of digestive fluids on leaching, desorption, and particle properties, and (4) role of microbiota-epithelial cell interactions. The contribution of these mechanisms to human health depends upon exposure levels, which unfortunately have been estimated very differently.


Subject(s)
Dysbiosis , Microplastics , Microplastics/toxicity , Humans , Dysbiosis/chemically induced , Animals , Environmental Exposure/adverse effects , Environmental Pollutants/toxicity
15.
Environ Sci Technol ; 58(37): 16269-16281, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39213526

ABSTRACT

Microplastics (MPs) as emerging contaminants are widely present in the environment and are ubiquitously ingested and accumulated by aquatic organisms. MPs may be quickly eliminated after a brief retention in aquatic animals (such as the digestive tract); thus, understanding the damage caused by MPs during this process and whether the damage can be recovered is important. Here, we proposed the use of visible light imaging to track MPs combined with near-infrared (NIR) imaging to reveal the in situ impacts of MPs. The combination of these two techniques allows for the simultaneous investigation of the localization and functionality of MPs in vivo. We investigated the effects of two types of MPs on zebrafish, microplastic fibers (MFs) and microplastic beads (MBs). The results showed that MPs larger than 10 µm primarily accumulated in the intestines of zebrafish. Both MFs and MBs disrupted the redox balance of the intestine, and the location of the damage was consistent with the heterogeneous accumulation of MPs. MFs caused greater and more difficult-to-recover damage compared to MBs, which was closely related to the slower elimination rate of MFs. Our study highlights the importance of capturing the dynamic toxicological effects of MPs on organisms. Fibrous MPs and spherical MPs clearly had distinct effects on their toxicokinetics and toxicodynamics in fish.


Subject(s)
Microplastics , Zebrafish , Animals , Microplastics/toxicity , Water Pollutants, Chemical/toxicity
16.
Environ Sci Technol ; 58(13): 5974-5986, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38512049

ABSTRACT

Fish gills are highly sensitive organs for microplastic (MP) and nanoplastic (NP) invasions, but the cellular heterogeneity of fish gills to MPs and NPs remains largely unknown. We employed single-cell RNA sequencing to investigate the responses of individual cell populations in tilapia Oreochromis niloticus gills to MP and NP exposure at an environmentally relevant concentration. Based on the detected differentially expressed gene (DEG) numbers, the most affected immune cells by MP exposure were macrophages, while the stimulus of NPs primarily targeted T cells. In response to MPs and NPs, H+-ATPase-rich cells exhibited distinct changes as compared with Na+/K+-ATPase-rich cells and pavement cells. Fibroblasts were identified as a potential sensitive cell-type biomarker for MP interaction with O. niloticus gills, as evidenced by the largely reduced cell counts and the mostly detected DEGs among the 12 identified cell populations. The most MP-sensitive fibroblast subpopulation in O. niloticus gills was lipofibroblasts. Cell-cell communications between fibroblasts and H+-ATPase-rich cells, neurons, macrophages, neuroepithelial cells, and Na+/K+-ATPase-rich cells in O. niloticus gills were significantly inhibited by MP exposure. Collectively, our study demonstrated the cellular heterogeneity of O. niloticus gills to MPs and NPs and provided sensitive markers for their toxicological mechanisms at single-cell resolution.


Subject(s)
Microplastics , Plastics , Animals , Microplastics/toxicity , Gills , Proton-Translocating ATPases , Sequence Analysis, RNA
17.
Environ Sci Technol ; 58(24): 10445-10457, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38830620

ABSTRACT

Microplastics are routinely ingested and inhaled by humans and other organisms. Despite the frequency of plastic exposure, little is known about its health consequences. Of particular concern are plastic additives─chemical compounds that are intentionally or unintentionally added to plastics to improve functionality or as residual components of plastic production. Additives are often loosely bound to the plastic polymer and may be released during plastic exposures. To better understand the health effects of plastic additives, we performed a comprehensive literature search to compile a list of 2,712 known plastic additives. Then, we performed an integrated toxicogenomic analysis of these additives, utilizing cancer classifications and carcinogenic expression pathways as a primary focus. Screening these substances across two chemical databases revealed two key observations: (1) over 150 plastic additives have known carcinogenicity and (2) the majority (∼90%) of plastic additives lack data on carcinogenic end points. Analyses of additive usage patterns pinpointed specific polymers, functions, and products in which carcinogenic additives reside. Based on published chemical-gene interactions, both carcinogenic additives and additives with unknown carcinogenicity impacted similar biological pathways. The predominant pathways involved DNA damage, apoptosis, the immune response, viral diseases, and cancer. This study underscores the urgent need for a systematic and comprehensive carcinogenicity assessment of plastic additives and regulatory responses to mitigate the potential health risks of plastic exposure.


Subject(s)
Carcinogens , Plastics , Plastics/toxicity , Carcinogens/toxicity , Humans , Microplastics/toxicity
18.
Environ Sci Technol ; 58(10): 4510-4521, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38426442

ABSTRACT

Polystyrene (PS) is one of the main synthetic polymers produced around the world, and it is present in the composition of a wide variety of single-use objects. When released into the environment, these materials are degraded by environmental factors, resulting in microplastics. We investigated the ability of Chironomus sancticaroli (Diptera, Chironomidae) to promote the fragmentation of PS microspheres (24.5 ± 2.9 µm) and the toxic effects associated with exposure to this polymer. C. sancticaroli larvae were exposed to 3 different concentrations of PS (67.5, 135, and 270 particles g-1 of dry sediment) for 144 h. Significant lethality was observed only at the highest concentration. A significant reduction in PS particle size as well as evidence of deterioration on the surface of the spheres, such as grooves and cracks, was observed. In addition, changes in oxidative stress biomarkers (SOD, CAT, MDA, and GST) were also observed. This is the first study to report the ability of Chironomus sp. to promote the biofragmentation of microplastics. The information obtained demonstrates that the macroinvertebrate community can play a key role in the degradation of plastic particles present in the sediment of freshwater environments and can also be threatened by such particle pollution.


Subject(s)
Chironomidae , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Larva , Polystyrenes/toxicity , Chironomidae/metabolism , Plastics/toxicity , Water Pollutants, Chemical/analysis
19.
Environ Sci Technol ; 58(24): 10482-10493, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38829656

ABSTRACT

Microplastics (MPs) are ubiquitous in global ecosystems and may pose a potential risk to human health. However, critical information on MP exposure and risk to female reproductive health is still lacking. In this study, we characterized MPs in human endometrium and investigated their size-dependent entry mode as well as potential reproductive toxicity. Endometrial tissues of 22 female patients were examined, revealing that human endometrium was contaminated with MPs, mainly polyamide (PA), polyurethane (PU), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), and polyethylene (PE), ranging from 2-200 µm in size. Experiments conducted in mice demonstrated that the invasion of the uterus by MPs was modulated either through diet-blood circulation (micrometer-sized particles) or via the vagina-uterine lacuna mode (larger particles reaching a size of 100 µm. Intravenous exposure to MPs resulted in reduced fertility and abnormal sex ratio in mouse offspring (P < 0.05). After 3.5 months of intragastric exposure, there was a significant inflammatory response in the endometrium (P < 0.05), confirmed by embryo transfer as a uterine factor leading to decreased fertility. Furthermore, human endometrial organoids cultured with MPs in vitro exhibited significantly apoptotic responses and disrupted growth patterns (P < 0.01). These findings raise significant concerns regarding MP contamination in the human uterus and its potential effects on reproductive health.


Subject(s)
Microplastics , Reproductive Health , Uterus , Humans , Female , Microplastics/toxicity , Uterus/drug effects , Animals , Mice
20.
Environ Sci Technol ; 58(27): 11887-11900, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38885123

ABSTRACT

The detrimental effects of plastics on aquatic organisms, including those of macroplastics, microplastics, and nanoplastics, have been well established. However, knowledge on the interaction between plastics and terrestrial insects is limited. To develop effective strategies for mitigating the impact of plastic pollution on terrestrial ecosystems, it is necessary to understand the toxicity effects and influencing factors of plastic ingestion by insects. An overview of current knowledge regarding plastic ingestion by terrestrial insects is provided in this Review, and the factors influencing this interaction are identified. The pathways through which insects interact with plastics, which can lead to plastic accumulation and microplastic transfer to higher trophic levels, are also discussed using an overview and a conceptual model. The diverse impacts of plastic exposure on insects are discussed, and the challenges in existing studies, such as a limited focus on certain plastic types, are identified. Further research on standardized methods for sampling and analysis is crucial for reliable research, and long-term monitoring is essential to assess plastic trends and ecological impacts in terrestrial ecosystems. The mechanisms underlying these effects need to be uncovered, and their potential long-term consequences for insect populations and ecosystems require evaluation.


Subject(s)
Insecta , Microplastics , Animals , Microplastics/toxicity , Insecta/drug effects , Plastics/toxicity , Ecosystem , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL