Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.747
Filter
Add more filters

Publication year range
1.
Cell ; 183(1): 258-268.e12, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32860739

ABSTRACT

Plasmodium species, the causative agent of malaria, rely on glucose for energy supply during blood stage. Inhibition of glucose uptake thus represents a potential strategy for the development of antimalarial drugs. Here, we present the crystal structures of PfHT1, the sole hexose transporter in the genome of Plasmodium species, at resolutions of 2.6 Å in complex with D-glucose and 3.7 Å with a moderately selective inhibitor, C3361. Although both structures exhibit occluded conformations, binding of C3361 induces marked rearrangements that result in an additional pocket. This inhibitor-binding-induced pocket presents an opportunity for the rational design of PfHT1-specific inhibitors. Among our designed C3361 derivatives, several exhibited improved inhibition of PfHT1 and cellular potency against P. falciparum, with excellent selectivity to human GLUT1. These findings serve as a proof of concept for the development of the next-generation antimalarial chemotherapeutics by simultaneously targeting the orthosteric and allosteric sites of PfHT1.


Subject(s)
Monosaccharide Transport Proteins/ultrastructure , Plasmodium falciparum/metabolism , Plasmodium falciparum/ultrastructure , Protozoan Proteins/ultrastructure , Amino Acid Sequence , Animals , Antimalarials , Biological Transport , Glucose/metabolism , Humans , Malaria , Malaria, Falciparum/parasitology , Monosaccharide Transport Proteins/chemistry , Monosaccharide Transport Proteins/metabolism , Parasites , Plasmodium falciparum/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Sugars/metabolism
2.
Cell ; 175(1): 239-253.e17, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30197081

ABSTRACT

Many disease-causing missense mutations affect intrinsically disordered regions (IDRs) of proteins, but the molecular mechanism of their pathogenicity is enigmatic. Here, we employ a peptide-based proteomic screen to investigate the impact of mutations in IDRs on protein-protein interactions. We find that mutations in disordered cytosolic regions of three transmembrane proteins (GLUT1, ITPR1, and CACNA1H) lead to an increased clathrin binding. All three mutations create dileucine motifs known to mediate clathrin-dependent trafficking. Follow-up experiments on GLUT1 (SLC2A1), the glucose transporter causative of GLUT1 deficiency syndrome, revealed that the mutated protein mislocalizes to intracellular compartments. Mutant GLUT1 interacts with adaptor proteins (APs) in vitro, and knocking down AP-2 reverts the cellular mislocalization and restores glucose transport. A systematic analysis of other known disease-causing variants revealed a significant and specific overrepresentation of gained dileucine motifs in structurally disordered cytosolic domains of transmembrane proteins. Thus, several mutations in disordered regions appear to cause "dileucineopathies."


Subject(s)
Glucose Transporter Type 1/physiology , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/physiology , Amino Acid Motifs/genetics , Amino Acid Sequence , Animals , Binding Sites , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/physiology , Carbohydrate Metabolism, Inborn Errors , Clathrin/metabolism , Cytoplasm/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Humans , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/physiology , Intrinsically Disordered Proteins/metabolism , Leucine/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Monosaccharide Transport Proteins/deficiency , Mutation/genetics , Peptides , Protein Binding , Proteomics/methods
3.
Cell ; 157(7): 1577-90, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24949970

ABSTRACT

Clec16a has been identified as a disease susceptibility gene for type 1 diabetes, multiple sclerosis, and adrenal dysfunction, but its function is unknown. Here we report that Clec16a is a membrane-associated endosomal protein that interacts with E3 ubiquitin ligase Nrdp1. Loss of Clec16a leads to an increase in the Nrdp1 target Parkin, a master regulator of mitophagy. Islets from mice with pancreas-specific deletion of Clec16a have abnormal mitochondria with reduced oxygen consumption and ATP concentration, both of which are required for normal ß cell function. Indeed, pancreatic Clec16a is required for normal glucose-stimulated insulin release. Moreover, patients harboring a diabetogenic SNP in the Clec16a gene have reduced islet Clec16a expression and reduced insulin secretion. Thus, Clec16a controls ß cell function and prevents diabetes by controlling mitophagy. This pathway could be targeted for prevention and control of diabetes and may extend to the pathogenesis of other Clec16a- and Parkin-associated diseases.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Islets of Langerhans/pathology , Lectins, C-Type/metabolism , Mitophagy , Monosaccharide Transport Proteins/metabolism , Amino Acid Sequence , Animals , Carrier Proteins/chemistry , Diabetes Mellitus, Type 1/pathology , Genetic Predisposition to Disease , Glucose/metabolism , Humans , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Lectins, C-Type/chemistry , Lectins, C-Type/genetics , Lysosomes/chemistry , Lysosomes/metabolism , Membrane Proteins/metabolism , Mice , Molecular Sequence Data , Monosaccharide Transport Proteins/chemistry , Monosaccharide Transport Proteins/genetics , Polymorphism, Single Nucleotide , Ubiquitin-Protein Ligases
4.
Cell ; 153(2): 426-37, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23582330

ABSTRACT

Glucose homeostasis is strictly controlled in all domains of life. Bacteria that are unable to balance intracellular sugar levels and deal with potentially toxic phosphosugars cease growth and risk being outcompeted. Here, we identify the conserved haloacid dehalogenase (HAD)-like enzyme YigL as the previously hypothesized phosphatase for detoxification of phosphosugars and reveal that its synthesis is activated by an Hfq-dependent small RNA in Salmonella typhimurium. We show that the glucose-6-P-responsive small RNA SgrS activates YigL synthesis in a translation-independent fashion by the selective stabilization of a decay intermediate of the dicistronic pldB-yigL messenger RNA (mRNA). Intriguingly, the major endoribonuclease RNase E, previously known to function together with small RNAs to degrade mRNA targets, is also essential for this process of mRNA activation. The exploitation of and targeted interference with regular RNA turnover described here may constitute a general route for small RNAs to rapidly activate both coding and noncoding genes.


Subject(s)
Glucose/metabolism , Hydrolases/genetics , RNA, Bacterial/metabolism , RNA, Small Untranslated/metabolism , Salmonella typhimurium/metabolism , Base Sequence , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Hydrolases/metabolism , Molecular Sequence Data , Monosaccharide Transport Proteins/metabolism , Operon , Phosphoric Monoester Hydrolases/genetics , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Salmonella typhimurium/enzymology , Salmonella typhimurium/genetics
5.
Nature ; 578(7794): 321-325, 2020 02.
Article in English | MEDLINE | ID: mdl-31996846

ABSTRACT

Elucidating the mechanism of sugar import requires a molecular understanding of how transporters couple sugar binding and gating events. Whereas mammalian glucose transporters (GLUTs) are specialists1, the hexose transporter from the malaria parasite Plasmodium falciparum PfHT12,3 has acquired the ability to transport both glucose and fructose sugars as efficiently as the dedicated glucose (GLUT3) and fructose (GLUT5) transporters. Here, to establish the molecular basis of sugar promiscuity in malaria parasites, we determined the crystal structure of PfHT1 in complex with D-glucose at a resolution of 3.6 Å. We found that the sugar-binding site in PfHT1 is very similar to those of the distantly related GLUT3 and GLUT5 structures4,5. Nevertheless, engineered PfHT1 mutations made to match GLUT sugar-binding sites did not shift sugar preferences. The extracellular substrate-gating helix TM7b in PfHT1 was positioned in a fully occluded conformation, providing a unique glimpse into how sugar binding and gating are coupled. We determined that polar contacts between TM7b and TM1 (located about 15 Å from D-glucose) are just as critical for transport as the residues that directly coordinate D-glucose, which demonstrates a strong allosteric coupling between sugar binding and gating. We conclude that PfHT1 has achieved substrate promiscuity not by modifying its sugar-binding site, but instead by evolving substrate-gating dynamics.


Subject(s)
Malaria/parasitology , Monosaccharide Transport Proteins/chemistry , Monosaccharide Transport Proteins/metabolism , Plasmodium falciparum/chemistry , Plasmodium falciparum/metabolism , Sugars/metabolism , Allosteric Regulation , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Biological Transport , Crystallography, X-Ray , Glucose/chemistry , Glucose/metabolism , Glucose Transport Proteins, Facilitative/chemistry , Glucose Transport Proteins, Facilitative/metabolism , Humans , Models, Molecular , Protein Conformation , Substrate Specificity
6.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35046045

ABSTRACT

SWEETs are transporters with homologs in Archeae, plants, some fungi, and animals. As the only transporters known to facilitate the cellular release of sugars in plants, SWEETs play critical roles in the allocation of sugars from photosynthetic leaves to storage tissues in seeds, fruits, and tubers. Here, we report the design and use of genetically encoded biosensors to measure the activity of SWEETs. We created a SweetTrac1 sensor by inserting a circularly permutated green fluorescent protein into the Arabidopsis SWEET1, resulting in a chimera that translates substrate binding during the transport cycle into detectable changes in fluorescence intensity. We demonstrate that a combination of cell sorting and bioinformatics can accelerate the design of biosensors and formulate a mass action kinetics model to correlate the fluorescence response of SweetTrac1 with the transport of glucose. Our analysis suggests that SWEETs are low-affinity, symmetric transporters that can rapidly equilibrate intra- and extracellular concentrations of sugars. This approach can be extended to SWEET homologs and other transporters.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Biosensing Techniques , Monosaccharide Transport Proteins/metabolism , Sugars/metabolism , Arabidopsis Proteins/genetics , Biological Transport , Biosensing Techniques/methods , Monosaccharide Transport Proteins/genetics
7.
Proc Natl Acad Sci U S A ; 119(42): e2207558119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215460

ABSTRACT

SWEET sucrose transporters play important roles in the allocation of sucrose in plants. Some SWEETs were shown to also mediate transport of the plant growth regulator gibberellin (GA). The close physiological relationship between sucrose and GA raised the questions of whether there is a functional connection and whether one or both of the substrates are physiologically relevant. To dissect these two activities, molecular dynamics were used to map the binding sites of sucrose and GA in the pore of SWEET13 and predicted binding interactions that might be selective for sucrose or GA. Transport assays confirmed these predictions. In transport assays, the N76Q mutant had 7x higher relative GA3 activity, and the S142N mutant only transported sucrose. The impaired pollen viability and germination in sweet13;14 double mutants were complemented by the sucrose-selective SWEET13S142N, but not by the SWEET13N76Q mutant, indicating that sucrose is the physiologically relevant substrate and that GA transport capacity is dispensable in the context of male fertility. Therefore, GA supplementation to counter male sterility may act indirectly via stimulating sucrose supply in male sterile mutants. These findings are also relevant in the context of the role of SWEETs in pathogen susceptibility.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Fertility/genetics , Gene Expression Regulation, Plant , Gibberellins/metabolism , Monosaccharide Transport Proteins , Plant Growth Regulators/metabolism , Sucrose/metabolism
8.
Proc Natl Acad Sci U S A ; 119(23): e2118566119, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35648826

ABSTRACT

Recent work indicates that killing of bacteria by diverse antimicrobial classes can involve reactive oxygen species (ROS), as if a common, self-destructive response to antibiotics occurs. However, the ROS-bacterial death theory has been challenged. To better understand stress-mediated bacterial death, we enriched spontaneous antideath mutants of Escherichia coli that survive treatment by diverse bactericidal agents that include antibiotics, disinfectants, and environmental stressors, without a priori consideration of ROS. The mutants retained bacteriostatic susceptibility, thereby ruling out resistance. Surprisingly, pan-tolerance arose from carbohydrate metabolism deficiencies in ptsI (phosphotransferase) and cyaA (adenyl cyclase); these genes displayed the activity of upstream regulators of a widely shared, stress-mediated death pathway. The antideath effect was reversed by genetic complementation, exogenous cAMP, or a Crp variant that bypasses cAMP binding for activation. Downstream events comprised a metabolic shift from the TCA cycle to glycolysis and to the pentose phosphate pathway, suppression of stress-mediated ATP surges, and reduced accumulation of ROS. These observations reveal how upstream signals from diverse stress-mediated lesions stimulate shared, late-stage, ROS-mediated events. Cultures of these stable, pan-tolerant mutants grew normally and were therefore distinct from tolerance derived from growth defects described previously. Pan-tolerance raises the potential for unrestricted disinfectant use to contribute to antibiotic tolerance and resistance. It also weakens host defenses, because three agents (hypochlorite, hydrogen peroxide, and low pH) affected by pan-tolerance are used by the immune system to fight infections. Understanding and manipulating the PtsI-CyaA-Crp­mediated death process can help better control pathogens and maintain beneficial microbiota during antimicrobial treatment.


Subject(s)
Anti-Infective Agents , Colicins , Cyclic AMP Receptor Protein , Escherichia coli Proteins , Escherichia coli , Monosaccharide Transport Proteins , Oxidative Stress , Phosphoenolpyruvate Sugar Phosphotransferase System , Anti-Infective Agents/pharmacology , Colicins/metabolism , Cyclic AMP/metabolism , Cyclic AMP Receptor Protein/metabolism , Drug Tolerance , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/physiology , Escherichia coli Proteins/metabolism , Monosaccharide Transport Proteins/metabolism , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Reactive Oxygen Species/metabolism
9.
J Allergy Clin Immunol ; 153(6): 1668-1680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38191060

ABSTRACT

BACKGROUND: CLEC16A intron 19 has been identified as a candidate locus for common variable immunodeficiency (CVID). OBJECTIVES: This study sought to elucidate the molecular mechanism by which variants at the CLEC16A intronic locus may contribute to the pathogenesis of CVID. METHODS: The investigators performed fine-mapping of the CLEC16A locus in a CVID cohort, then deleted the candidate functional SNP in T-cell lines by the CRISPR-Cas9 technique and conducted RNA-sequencing to identify target gene(s). The interactions between the CLEC16A locus and its target genes were identified using circular chromosome conformation capture. The transcription factor complexes mediating the chromatin interactions were determined by proteomic approach. The molecular pathways regulated by the CLEC16A locus were examined by RNA-sequencing and reverse phase protein array. RESULTS: This study showed that the CLEC16A locus is an enhancer regulating expression of multiple target genes including a distant gene ATF7IP2 through chromatin interactions. Distinct transcription factor complexes mediate the chromatin interactions in an allele-specific manner. Disruption of the CLEC16A locus affects the AKT signaling pathway, as well as the molecular response of CD4+ T cells to immune stimulation. CONCLUSIONS: Through multiomics and targeted experimental approaches, this study elucidated the underlying target genes and signaling pathways involved in the genetic association of CLEC16A with CVID, and highlighted plausible molecular targets for developing novel therapeutics.


Subject(s)
Common Variable Immunodeficiency , Introns , Lectins, C-Type , Monosaccharide Transport Proteins , Humans , Lectins, C-Type/genetics , Introns/genetics , Monosaccharide Transport Proteins/genetics , Common Variable Immunodeficiency/genetics , Common Variable Immunodeficiency/immunology , Polymorphism, Single Nucleotide , Gene Expression Regulation , Female , Male , Signal Transduction/genetics , CD4-Positive T-Lymphocytes/immunology , Adult
10.
J Biol Chem ; 299(12): 105389, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890779

ABSTRACT

Sugars Will Eventually be Exported Transporters (SWEETs) are central for sugar allocation in plants. The SWEET family has approximately 20 homologs in most plant genomes, and despite extensive research on their structures and molecular functions, it is still unclear how diverse SWEETs recognize different substrates. Previous work using SweetTrac1, a biosensor constructed by the intramolecular fusion of a conformation-sensitive fluorescent protein in the plasma membrane transporter SWEET1 from Arabidopsis thaliana, identified common features in the transporter's substrates. Here, we report SweetTrac2, a new biosensor based on the Arabidopsis vacuole membrane transporter SWEET2, and use it to explore the substrate specificity of this second protein. Our results show that SWEET1 and SWEET2 recognize similar substrates but some with different affinities. Sequence comparison and mutagenesis analysis support the conclusion that the differences in affinity depend on nonspecific interactions involving previously uncharacterized residues in the substrate-binding pocket. Furthermore, SweetTrac2 can be an effective tool for monitoring sugar transport at vacuolar membranes that would be otherwise challenging to study.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Monosaccharide Transport Proteins , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Biological Transport , Gene Expression Regulation, Plant , Membrane Transport Proteins/metabolism , Monosaccharide Transport Proteins/metabolism , Plant Proteins/metabolism , Sugars/metabolism
11.
J Biol Chem ; 299(12): 105406, 2023 12.
Article in English | MEDLINE | ID: mdl-38270391

ABSTRACT

Slc35c1 encodes an antiporter that transports GDP-fucose into the Golgi and returns GMP to the cytoplasm. The closely related gene Slc35c2 encodes a putative GDP-fucose transporter and promotes Notch fucosylation and Notch signaling in cultured cells. Here, we show that HEK293T cells lacking SLC35C1 transferred reduced amounts of O-fucose to secreted epidermal growth factor-like repeats from NOTCH1 or secreted thrombospondin type I repeats from thrombospondin 1. However, cells lacking SLC35C2 did not exhibit reduced fucosylation of these epidermal growth factor-like repeats or thrombospondin type I repeats. To investigate SLC35C2 functions in vivo, WW6 embryonic stem cells were targeted for Slc35c2. Slc35c2[-/-] mice were viable and fertile and exhibited no evidence of defective Notch signaling during skeletal or T cell development. By contrast, mice with inactivated Slc35c1 exhibited perinatal lethality and marked skeletal defects in late embryogenesis, typical of defective Notch signaling. Compound Slc35c1[-/-]Slc35c2[-/-] mutants were indistinguishable in skeletal phenotype from Slc35c1[-/-] embryos and neonates. Double mutants did not exhibit the exacerbated skeletal defects predicted if SLC35C2 was functionally important for Notch signaling in vivo. In addition, NOTCH1 immunoprecipitated from Slc35c1[-/-]Slc35c2[-/-] neonatal lung carried fucose detected by binding of Aleuria aurantia lectin. Given that the absence of both SLC35C1, a known GDP-fucose transporter, and SLC35C2, a putative GDP-fucose transporter, did not lead to afucosylated NOTCH1 nor to the severe Notch signaling defects and embryonic lethality expected if all GDP-fucose transport were abrogated, at least one more mechanism of GDP-fucose transport into the secretory pathway must exist in mammals.


Subject(s)
Fucose , Monosaccharide Transport Proteins , Nucleotide Transport Proteins , Animals , Female , Humans , Mice , Pregnancy , Epidermal Growth Factor , Fucose/metabolism , HEK293 Cells , Monosaccharide Transport Proteins/genetics , Neoplasm Proteins , Nucleotide Transport Proteins/genetics , Thrombospondins/metabolism , Mice, Knockout , Receptor, Notch1/metabolism , Signal Transduction
12.
J Biol Chem ; 299(4): 103057, 2023 04.
Article in English | MEDLINE | ID: mdl-36822331

ABSTRACT

CLEC16A is an E3 ubiquitin ligase that regulates mitochondrial quality control through mitophagy and is associated with over 20 human diseases. CLEC16A forms a complex with another E3 ligase, RNF41, and a ubiquitin-specific peptidase, USP8; however, regions that regulate CLEC16A activity or the assembly of the tripartite mitophagy regulatory complex are unknown. Here, we report that CLEC16A contains an internal intrinsically disordered protein region (IDPR) that is crucial for CLEC16A function and turnover. IDPRs lack a fixed secondary structure and possess emerging yet still equivocal roles in protein stability, interactions, and enzymatic activity. We find that the internal IDPR of CLEC16A is crucial for its degradation. CLEC16A turnover was promoted by RNF41, which binds and acts upon the internal IDPR to destabilize CLEC16A. Loss of this internal IDPR also destabilized the ubiquitin-dependent tripartite CLEC16A-RNF41-USP8 complex. Finally, the presence of an internal IDPR within CLEC16A was confirmed using NMR and CD spectroscopy. Together, our studies reveal that an IDPR is essential to control the reciprocal regulatory balance between CLEC16A and RNF41, which could be targeted to improve mitochondrial health in disease.


Subject(s)
Intrinsically Disordered Proteins , Mitophagy , Humans , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Monosaccharide Transport Proteins/metabolism , Lectins, C-Type/metabolism
13.
Neurogenetics ; 25(2): 69-78, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38190079

ABSTRACT

Glucose transporter type 1 deficiency syndrome (GLUT-1DS) is characterized by alterations in glucose translocation through the blood-brain barrier (BBB) due to mutation involving the GLUT-1 transporter. The fundamental therapy is ketogenic diet (KD) that provide an alternative energetic substrate - ketone bodies that across the BBB via MCT-1 - for the brain. Symptoms are various and include intractable seizure, acquired microcephalia, abnormal ocular movement, movement disorder, and neurodevelopment delay secondary to an energetic crisis for persistent neuroglycopenia. KD is extremely effective in controlling epileptic seizures and has a positive impact on movement disorders and cognitive impairment. Cases of KD resistance are rare, and only a few of them are reported in the literature, all regarding seizure. Our study describes a peculiar case of GLUT-1DS due to a new deletion involving the first codon of SLC2A1 gene determining a loss of function with a resistance to KD admitted to hospital due to intractable episodes of dystonia. This patient presented a worsening of symptomatology at higher ketonemia values but without hyperketosis and showed a complete resolution of symptomatology while maintaining low ketonemia values. Our study proposes an in-silico genomic and proteomic analysis aimed at explaining the atypical response to KD exhibited by our patient. In this way, we propose a new clinical and research approach based on precision medicine and molecular modelling to be applied to patients with GLUT-1DS resistant to first-line treatment with ketogenic diet by in silico study of genetic and altered protein product.


Subject(s)
Carbohydrate Metabolism, Inborn Errors , Diet, Ketogenic , Glucose Transporter Type 1 , Monosaccharide Transport Proteins/deficiency , Humans , Glucose Transporter Type 1/genetics , Carbohydrate Metabolism, Inborn Errors/genetics , Carbohydrate Metabolism, Inborn Errors/diet therapy , Carbohydrate Metabolism, Inborn Errors/diagnosis , Male , Female , Computer Simulation
14.
Am J Hum Genet ; 108(6): 1040-1052, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33964207

ABSTRACT

SLC37A4 encodes an endoplasmic reticulum (ER)-localized multitransmembrane protein required for transporting glucose-6-phosphate (Glc-6P) into the ER. Once transported into the ER, Glc-6P is subsequently hydrolyzed by tissue-specific phosphatases to glucose and inorganic phosphate during times of glucose depletion. Pathogenic variants in SLC37A4 cause an established recessive disorder known as glycogen storage disorder 1b characterized by liver and kidney dysfunction with neutropenia. We report seven individuals who presented with liver dysfunction multifactorial coagulation deficiency and cardiac issues and were heterozygous for the same variant, c.1267C>T (p.Arg423∗), in SLC37A4; the affected individuals were from four unrelated families. Serum samples from affected individuals showed profound accumulation of both high mannose and hybrid type N-glycans, while N-glycans in fibroblasts and undifferentiated iPSC were normal. Due to the liver-specific nature of this disorder, we generated a CRISPR base-edited hepatoma cell line harboring the c.1267C>T (p.Arg423∗) variant. These cells replicated the secreted abnormalities seen in serum N-glycosylation, and a portion of the mutant protein appears to relocate to a distinct, non-Golgi compartment, possibly ER exit sites. These cells also show a gene dosage-dependent alteration in the Golgi morphology and reduced intraluminal pH that may account for the altered glycosylation. In summary, we identify a recurrent mutation in SLC37A4 that causes a dominantly inherited congenital disorder of glycosylation characterized by coagulopathy and liver dysfunction with abnormal serum N-glycans.


Subject(s)
Antiporters/genetics , Congenital Disorders of Glycosylation/etiology , Endoplasmic Reticulum/pathology , Liver Diseases/complications , Monosaccharide Transport Proteins/genetics , Mutation , Adult , Child , Child, Preschool , Congenital Disorders of Glycosylation/pathology , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Genes, Dominant , Glycosylation , Humans , Infant , Infant, Newborn , Male , Pedigree
15.
Br J Haematol ; 204(1): 45-55, 2024 01.
Article in English | MEDLINE | ID: mdl-38049194

ABSTRACT

Neutrophils are the shortest-lived blood cells, which requires a prodigious degree of proliferation and differentiation to sustain physiologically sufficient numbers and be poised to respond quickly to infectious emergencies. More than 107 neutrophils are produced every minute in an adult bone marrow-a process that is tightly regulated by a small group of cytokines and chemical mediators and dependent on nutrients and energy. Like granulocyte colony-stimulating factor, the primary growth factor for granulopoiesis, they stimulate signalling pathways, some affecting metabolism. Nutrient or energy deficiency stresses the survival, proliferation, and differentiation of neutrophils and their precursors. Thus, it is not surprising that monogenic disorders related to metabolism exist that result in neutropenia. Among these are pathogenic mutations in HAX1, G6PC3, SLC37A4, TAFAZZIN, SBDS, EFL1 and the mitochondrial disorders. These mutations perturb carbohydrate, lipid and/or protein metabolism. We hypothesize that metabolic disturbances may drive the pathogenesis of a subset of inherited neutropenias just as defects in DNA damage response do in Fanconi anaemia, telomere maintenance in dyskeratosis congenita and ribosome formation in Diamond-Blackfan anaemia. Greater understanding of metabolic pathways in granulopoiesis will identify points of vulnerability in production and may point to new strategies for the treatment of neutropenias.


Subject(s)
Bone Marrow Diseases , Fanconi Anemia , Neutropenia , Adult , Humans , Bone Marrow Diseases/genetics , Fanconi Anemia/genetics , Bone Marrow/pathology , Bone Marrow Failure Disorders , Neutropenia/pathology , Adaptor Proteins, Signal Transducing , Monosaccharide Transport Proteins , Antiporters
16.
Biochem Biophys Res Commun ; 696: 149494, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38219491

ABSTRACT

Skeletal muscle is the largest metabolic tissue responsible for systemic glucose handling. Glucose uptake into skeletal tissue is highly dynamic and delicately regulated, in part through the controlled expression and subcellular trafficking of multiple types of glucose transporters. Although the roles of GLUT4 in skeletal muscle metabolism are well established, the physiological significance of other, seemingly redundant, glucose transporters remain incompletely understood. Nonetheless, recent studies have shed light on the roles of several glucose transporters, such as GLUT1 and GLUT10, in skeletal muscle. Mice experiments suggest that GLUT10 could be a novel player in skeletal muscle metabolism in the context of mechanical overload, which is in line with the meta-analytical results of gene expression changes after resistance exercise in humans. Herein we discuss the knowns, unknowns, and implications of these recent findings.


Subject(s)
Glucose Transport Proteins, Facilitative , Monosaccharide Transport Proteins , Animals , Humans , Mice , Biological Transport , Glucose/metabolism , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Insulin/metabolism , Monosaccharide Transport Proteins/genetics , Muscle, Skeletal/metabolism
17.
BMC Plant Biol ; 24(1): 496, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831278

ABSTRACT

BACKGROUND: Monosaccharide transporter (MST) family, as a carrier for monosaccharide transport, plays an important role in carbon partitioning and widely involves in plant growth and development, stress response, and signaling transduction. However, little information on the MST family genes is reported in maize (Zea mays), especially in response to abiotic stresses. In this study, the genome-wide identification of MST family genes was performed in maize. RESULT: A total of sixty-six putative members of MST gene family were identified and divided into seven subfamilies (including SPT, PMT, VGT, INT, pGlcT, TMT, and ERD) using bioinformatics approaches, and gene information, phylogenetic tree, chromosomal location, gene structure, motif composition, and cis-acting elements were investigated. Eight tandem and twelve segmental duplication events were identified, which played an important role in the expansion of the ZmMST family. Synteny analysis revealed the evolutionary features of MST genes in three gramineous crop species. The expression analysis indicated that most of the PMT, VGT, and ERD subfamilies members responded to osmotic and cadmium stresses, and some of them were regulated by ABA signaling, while only a few members of other subfamilies responded to stresses. In addition, only five genes were induced by NaCl stress in MST family. CONCLUSION: These results serve to understand the evolutionary relationships of the ZmMST family genes and supply some insight into the processes of monosaccharide transport and carbon partitioning on the balance between plant growth and development and stress response in maize.


Subject(s)
Monosaccharide Transport Proteins , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Zea mays , Zea mays/genetics , Zea mays/physiology , Stress, Physiological/genetics , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Evolution, Molecular , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Genes, Plant
18.
Fungal Genet Biol ; 173: 103909, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38885923

ABSTRACT

In the filamentous fungus Aspergillus oryzae, large amounts of amylolytic enzymes are inducibly produced by isomaltose, which is converted from maltose incorporated via the maltose transporter MalP. In contrast, the preferred sugar glucose strongly represses the expression of both amylolytic and malP genes through carbon catabolite repression. Simultaneously, the addition of glucose triggers the endocytic degradation of MalP on the plasma membrane. In budding yeast, the signal-dependent ubiquitin modification of plasma membrane transporters leads to selective endocytosis into the vacuole for degradation. In addition, during glucose-induced MalP degradation, the homologous of E6AP C-terminus-type E3 ubiquitin ligase (HulA) is responsible for the ubiquitin modification of MalP, and the arrestin-like protein CreD is required for HulA targeting. Although CreD-mediated MalP internalization occurs in response to glucose, the mechanism by which CreD regulates HulA-dependent MalP ubiquitination remains unclear. In this study, we demonstrated that three (P/L)PxY motifs present in the CreD protein are essential for functioning as HulA adaptors so that HulA can recognize MalP in response to glucose stimulation, enabling MalP internalization. Furthermore, four lysine residues (three highly conserved among Aspergillus species and yeast and one conserved among Aspergillus species) of CreD were found to be necessary for its ubiquitination, resulting in efficient glucose-induced MalP endocytosis. The results of this study pave the way for elucidating the regulatory mechanism of MalP endocytic degradation through ubiquitination by the HulA-CreD complex at the molecular level.


Subject(s)
Aspergillus oryzae , Endocytosis , Fungal Proteins , Glucose , Monosaccharide Transport Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Aspergillus oryzae/genetics , Aspergillus oryzae/metabolism , Aspergillus oryzae/enzymology , Glucose/metabolism , Endocytosis/drug effects , Fungal Proteins/metabolism , Fungal Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Maltose/metabolism , Proteolysis , Gene Expression Regulation, Fungal/drug effects , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics
19.
Plant Biotechnol J ; 22(6): 1566-1581, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38205680

ABSTRACT

In plants under drought stress, sugar content in roots increases, which is important for drought resistance. However, the molecular mechanisms for controlling the sugar content in roots during response to drought remain elusive. Here, we found that the MdDOF3-MdHT1.2 module-mediated glucose influx into the root is essential for drought resistance in apple (Malus × domestica). Drought induced glucose uptake from the rhizosphere and up-regulated the transcription of hexose transporter MdHT1.2. Compared with the wild-type plants, overexpression of MdHT1.2 promoted glucose uptake from the rhizosphere, thereby facilitating sugar accumulation in root and enhancing drought resistance, whereas silenced plants showed the opposite phenotype. Furthermore, ATAC-seq, RNA-seq and biochemical analysis demonstrated that MdDOF3 directly bound to the promoter of MdHT1.2 and was strongly up-regulated under drought. Overexpression of MdDOF3 in roots improved MdHT1.2-mediated glucose transport capacity and enhanced plant resistance to drought, but MdDOF3-RNAihr apple plants showed the opposite phenotype. Moreover, overexpression of MdDOF3 in roots did not attenuate drought sensitivity in MdHT1.2-RNAi plants, which was correlated with a lower glucose uptake capacity and glucose content in root. Collectively, our findings deciphered the molecular mechanism through which glucose uptake from the rhizosphere is mediated by MdDOF3-MdHT1.2, which acts to modulate sugar content in root and promote drought resistance.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Glucose , Malus , Plant Proteins , Plants, Genetically Modified , Rhizosphere , Malus/genetics , Malus/metabolism , Glucose/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plant Roots/genetics , Monosaccharide Transport Proteins/metabolism , Monosaccharide Transport Proteins/genetics , Drought Resistance
20.
Mol Genet Metab ; 141(3): 108144, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38277989

ABSTRACT

Glycogen storage disease type Ib (GSD Ib, biallelic variants in SLC37A4) is a rare disorder of glycogen metabolism complicated by neutropenia/neutrophil dysfunction. Since 2019, the SGLT2-inhibitor empagliflozin has provided a mechanism-based treatment option for the symptoms caused by neutropenia/neutrophil dysfunction (e.g. mucosal lesions, inflammatory bowel disease). Because of the rarity of GSD Ib, the published evidence on safety and efficacy of empagliflozin is still limited and does not allow to develop evidence-based guidelines. Here, an international group of experts provides 14 best practice consensus treatment recommendations based on expert practice and review of the published evidence. We recommend to start empagliflozin in all GSD Ib individuals with clinical or laboratory signs related to neutropenia/neutrophil dysfunction with a dose of 0.3-0.4 mg/kg/d given as a single dose in the morning. Treatment can be started in an outpatient setting. The dose should be adapted to the weight and in case of inadequate clinical treatment response or side effects. We strongly recommend to pause empagliflozin immediately in case of threatening dehydration and before planned longer surgeries. Discontinuation of G-CSF therapy should be attempted in all individuals. If available, 1,5-AG should be monitored. Individuals who have previously not tolerated starches should be encouraged to make a new attempt to introduce starch in their diet after initiation of empagliflozin treatment. We advise to monitor certain safety and efficacy parameters and recommend continuous, alternatively frequent glucose measurements during the introduction of empagliflozin. We provide specific recommendations for special circumstances like pregnancy and liver transplantation.


Subject(s)
Benzhydryl Compounds , Glucosides , Glycogen Storage Disease Type I , Neutropenia , Humans , Neutrophils/metabolism , Consensus , Glycogen Storage Disease Type I/complications , Glycogen Storage Disease Type I/drug therapy , Glycogen Storage Disease Type I/genetics , Neutropenia/drug therapy , Neutropenia/etiology , Monosaccharide Transport Proteins , Antiporters/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL