Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 881
Filter
Add more filters

Publication year range
1.
Cell ; 187(20): 5587-5603.e19, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39293445

ABSTRACT

Filoviruses, including the Ebola and Marburg viruses, cause hemorrhagic fevers with up to 90% lethality. The viral nucleocapsid is assembled by polymerization of the nucleoprotein (NP) along the viral genome, together with the viral proteins VP24 and VP35. We employed cryo-electron tomography of cells transfected with viral proteins and infected with model Ebola virus to illuminate assembly intermediates, as well as a 9 Å map of the complete intracellular assembly. This structure reveals a previously unresolved third and outer layer of NP complexed with VP35. The intrinsically disordered region, together with the C-terminal domain of this outer layer of NP, provides the constant width between intracellular nucleocapsid bundles and likely functions as a flexible tether to the viral matrix protein in the virion. A comparison of intracellular nucleocapsids with prior in-virion nucleocapsid structures reveals that the nucleocapsid further condenses vertically in the virion. The interfaces responsible for nucleocapsid assembly are highly conserved and offer targets for broadly effective antivirals.


Subject(s)
Ebolavirus , Electron Microscope Tomography , Nucleocapsid , Virus Assembly , Ebolavirus/ultrastructure , Ebolavirus/chemistry , Ebolavirus/metabolism , Ebolavirus/physiology , Nucleocapsid/metabolism , Nucleocapsid/ultrastructure , Nucleocapsid/chemistry , Humans , Cryoelectron Microscopy/methods , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/ultrastructure , Nucleoproteins/chemistry , Nucleoproteins/metabolism , Nucleoproteins/ultrastructure , Animals , Viral Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/ultrastructure , Models, Molecular , Virion/ultrastructure , Virion/metabolism , Hemorrhagic Fever, Ebola/virology , Chlorocebus aethiops
2.
PLoS Pathog ; 20(10): e1012622, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39413144

ABSTRACT

Non-POU domain-containing octamer-binding protein (NONO) is a multi-functional nuclear protein which belongs to the Drosophila behavior/human splicing (DBHS) protein family. NONO is known to regulate multiple important biological processes including host antiviral immune response. However, whether NONO can inhibit porcine reproductive and respiratory syndrome virus (PRRSV) replication is less well understood. In this study, we demonstrated that swine NONO (sNONO) inhibited PRRSV replication, via increasing expression of IFN-ß, whereas NONO knockdown or knockout in PAM-KNU cells was more susceptible to PRRSV infection. As an IRF3 positive regulation factor, NONO promoted IFN-ß expression by enhancing activation of IRF3. During PRRSV infection, NONO further up-regulated IRF3-mediated IFN-ß expression by interacting with PRRSV N protein. Mechanistically, NONO functioned as a scaffold protein to detect PRRSV N protein and formed N-NONO-IRF3 complex in the nucleus. Interestingly, it was found that the NONO protein reversed the inhibitory effect of PRRSV N protein on type I IFN signaling pathway. Taken together, our study provides a novel mechanism for NONO to increase the IRF3-mediated IFN-ß activation by interacting with the viral N protein to inhibit PRRSV infection.


Subject(s)
Interferon Regulatory Factor-3 , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Virus Replication , Animals , Porcine respiratory and reproductive syndrome virus/immunology , Interferon Regulatory Factor-3/metabolism , Swine , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Humans , Interferon-beta/metabolism , Interferon-beta/immunology , Signal Transduction , Nucleocapsid Proteins/immunology , Nucleocapsid Proteins/metabolism , HEK293 Cells , Cell Line , Immunity, Innate
3.
PLoS Pathog ; 20(1): e1011925, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38190410

ABSTRACT

Hantaviruses have evolved a unique translation strategy to boost the translation of viral mRNA in infected cells. Hantavirus nucleocapsid protein (NP) binds to the viral mRNA 5' UTR and the 40S ribosomal subunit via the ribosomal protein S19. NP associated ribosomes are selectively loaded on viral transcripts to boost their translation. Here we demonstrate that NP expression upregulated the steady-state levels of a subset of host cell factors primarily involved in protein processing in the endoplasmic reticulum. Detailed investigation of Valosin-containing protein (VCP/p97), one of the upregulated host factors, in both transfected and virus infected cells revealed that NP with the assistance of VCP mRNA 5' UTR facilitates the translation of downstream VCP ORF. The VCP mRNA contains a 5' UTR of 987 nucleotides harboring six unusual start codons upstream of the correct start codon for VCP which is located at 988th position from the 5' cap. In vitro translation of a GFP reporter transcript harboring the VCP mRNA 5' UTR generated both GFP and a short polypeptide of ~14 KDa by translation initiation from start codon located in the 5' UTR at 542nd position from the 5' cap. The translation initiation from 542nd AUG in the UTR sequence was confirmed in cells using a dual reporter construct expressing mCherry and GFP. The synthesis of 14KDa polypeptide dramatically inhibited the translation of the ORF from the downstream correct start codon at 988th position from the 5' cap. We report that purified NP binds to the VCP mRNA 5' UTR with high affinity and NP binding site is located close to the 542ndAUG. NP binding shuts down the translation of 14KDa polypeptide which then facilitates the translation initiation at the correct AUG codon. Knockdown of VCP generated lower levels of poorly infectious hantavirus particle in the cellular cytoplasm whose egress was dramatically inhibited in human umbilical vein endothelial cells. We demonstrated that VCP binds to the hantavirus glycoprotein Gn before its incorporation into assembled virions and facilitates viral spread to neighboring cells during infection. Our results suggest that ribosome engagement at the 542nd AUG codon in the 5' UTR likely regulates the endogenous steady state levels of VCP in cells. Hantaviruses interrupt this regulatory mechanism to enhance the steady state levels of VCP in virus infected cells. This augmentation facilitates virus replication, supports the transmission of the virus to adjacent cells, and promotes the release of infectious virus particles from the host cell.


Subject(s)
Orthohantavirus , Proteome , Humans , Codon, Initiator , Proteome/metabolism , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Endothelial Cells/metabolism , 5' Untranslated Regions , Orthohantavirus/genetics , RNA, Messenger/genetics , Peptides/metabolism , Protein Biosynthesis
4.
Nucleic Acids Res ; 52(12): 7188-7210, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38686810

ABSTRACT

Genome-wide approaches have significantly advanced our knowledge of the repertoire of RNA-binding proteins (RBPs) that associate with cellular polyadenylated mRNAs within eukaryotic cells. Recent studies focusing on the RBP interactomes of viral mRNAs, notably SARS-Cov-2, have revealed both similarities and differences between the RBP profiles of viral and cellular mRNAs. However, the RBPome of influenza virus mRNAs remains unexplored. Herein, we identify RBPs that associate with the viral mRNA encoding the nucleoprotein (NP) of an influenza A virus. Focusing on TDP-43, we show that it binds several influenza mRNAs beyond the NP-mRNA, and that its depletion results in lower levels of viral mRNAs and proteins within infected cells, and a decreased yield of infectious viral particles. We provide evidence that the viral polymerase recruits TDP-43 onto viral mRNAs through a direct interaction with the disordered C-terminal domain of TDP-43. Notably, other RBPs found to be associated with influenza virus mRNAs also interact with the viral polymerase, which points to a role of the polymerase in orchestrating the assembly of viral messenger ribonucleoproteins.


Subject(s)
DNA-Binding Proteins , Influenza A virus , RNA, Messenger , RNA, Viral , RNA-Binding Proteins , Virus Replication , Humans , Virus Replication/genetics , RNA, Viral/metabolism , RNA, Viral/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Influenza A virus/genetics , Influenza A virus/physiology , Influenza A virus/metabolism , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/genetics , HEK293 Cells , Viral Core Proteins/metabolism , Viral Core Proteins/genetics , Protein Binding , Animals
5.
Nucleic Acids Res ; 52(11): 6647-6661, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38587193

ABSTRACT

The viral genome of SARS-CoV-2 is packaged by the nucleocapsid (N-)protein into ribonucleoprotein particles (RNPs), 38 ± 10 of which are contained in each virion. Their architecture has remained unclear due to the pleomorphism of RNPs, the high flexibility of N-protein intrinsically disordered regions, and highly multivalent interactions between viral RNA and N-protein binding sites in both N-terminal (NTD) and C-terminal domain (CTD). Here we explore critical interaction motifs of RNPs by applying a combination of biophysical techniques to ancestral and mutant proteins binding different nucleic acids in an in vitro assay for RNP formation, and by examining nucleocapsid protein variants in a viral assembly assay. We find that nucleic acid-bound N-protein dimers oligomerize via a recently described protein-protein interface presented by a transient helix in its long disordered linker region between NTD and CTD. The resulting hexameric complexes are stabilized by multivalent protein-nucleic acid interactions that establish crosslinks between dimeric subunits. Assemblies are stabilized by the dimeric CTD of N-protein offering more than one binding site for stem-loop RNA. Our study suggests a model for RNP assembly where N-protein scaffolding at high density on viral RNA is followed by cooperative multimerization through protein-protein interactions in the disordered linker.


Subject(s)
Coronavirus Nucleocapsid Proteins , Protein Multimerization , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus Nucleocapsid Proteins/genetics , RNA, Viral/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , Protein Binding , Binding Sites , Ribonucleoproteins/metabolism , Ribonucleoproteins/chemistry , Ribonucleoproteins/genetics , Virus Assembly/genetics , Humans , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/genetics , Models, Molecular , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphoproteins/genetics , COVID-19/virology
6.
J Biol Chem ; 300(4): 107135, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447796

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of the coronavirus family and caused severe economic losses to the global swine industry. Previous studies have established that p53 is a host restriction factor for PEDV infection, and p53 degradation occurs in PEDV-infected cells. However, the underlying molecular mechanisms through which PEDV viral proteins regulate p53 degradation remain unclear. In this study, we found that PEDV infection or expression of the nucleocapsid protein downregulates p53 through a post-translational mechanism: increasing the ubiquitination of p53 and preventing its nuclear translocation. We also show that the PEDV N protein functions by recruiting the E3 ubiquitin ligase COP1 and suppressing COP1 self-ubiquitination and protein degradation, thereby augmenting COP1-mediated degradation of p53. Additionally, COP1 knockdown compromises N-mediated p53 degradation. Functional mapping using truncation analysis showed that the N-terminal domains of N protein were responsible for interacting with COP1 and critical for COP1 stability and p53 degradation. The results presented here suggest the COP1-dependent mechanism for PEDV N protein to abolish p53 activity. This study significantly increases our understanding of PEDV in antagonizing the host antiviral factor p53 and will help initiate novel antiviral strategies against PEDV.


Subject(s)
Nucleocapsid Proteins , Porcine epidemic diarrhea virus , Proteolysis , Tumor Suppressor Protein p53 , Ubiquitin-Protein Ligases , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Porcine epidemic diarrhea virus/metabolism , Animals , Humans , Nucleocapsid Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Chlorocebus aethiops , HEK293 Cells , Swine , Vero Cells
7.
J Biol Chem ; 300(6): 107354, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718862

ABSTRACT

The nucleocapsid protein (N) of SARS-CoV-2 is essential for virus replication, genome packaging, evading host immunity, and virus maturation. N is a multidomain protein composed of an independently folded monomeric N-terminal domain that is the primary site for RNA binding and a dimeric C-terminal domain that is essential for efficient phase separation and condensate formation with RNA. The domains are separated by a disordered Ser/Arg-rich region preceding a self-associating Leu-rich helix. Phosphorylation in the Ser/Arg region in infected cells decreases the viscosity of N:RNA condensates promoting viral replication and host immune evasion. The molecular level effect of phosphorylation, however, is missing from our current understanding. Using NMR spectroscopy and analytical ultracentrifugation, we show that phosphorylation destabilizes the self-associating Leu-rich helix 30 amino-acids distant from the phosphorylation site. NMR and gel shift assays demonstrate that RNA binding by the linker is dampened by phosphorylation, whereas RNA binding to the full-length protein is not significantly affected presumably due to retained strong interactions with the primary RNA-binding domain. Introducing a switchable self-associating domain to replace the Leu-rich helix confirms the importance of linker self-association to droplet formation and suggests that phosphorylation not only increases solubility of the positively charged elongated Ser/Arg region as observed in other RNA-binding proteins but can also inhibit self-association of the Leu-rich helix. These data highlight the effect of phosphorylation both at local sites and at a distant self-associating hydrophobic helix in regulating liquid-liquid phase separation of the entire protein.


Subject(s)
Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Arginine/chemistry , Arginine/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , COVID-19/virology , COVID-19/metabolism , Magnetic Resonance Spectroscopy , Nucleocapsid/metabolism , Nucleocapsid/chemistry , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/chemistry , Phase Separation , Phosphoproteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphorylation , Protein Binding , RNA, Viral/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Serine/metabolism , Serine/chemistry
8.
J Virol ; 98(1): e0162523, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38084960

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes high mortality in piglets, thus posing a serious threat to the world pig industry. Porcine epidemic diarrhea (PED) is related to the imbalance of sodium absorption by small intestinal epithelial cells; however, the etiology of sodium imbalanced diarrhea caused by PEDV remains unclear. Herein, we first proved that PEDV can cause a significant decrease in Na+/H+ exchanger 3 (NHE3) expression on the cell membrane, in a viral dose-dependent manner. Further study showed that the PEDV nucleocapsid (N) protein participates in the regulation of NHE3 activity through interacting with Ezrin. Flame atomic absorption spectroscopy results indicated a serious imbalance in Na+ concentration inside and outside cells following overexpression of PEDV N. Meanwhile, molecular docking technology identified that the small molecule drug Pemetrexed acts on the PEDV N-Ezrin interaction region. It was confirmed that Pemetrexed can alleviate the imbalanced Na+ concentration in IPEC-J2 cells and the diarrhea symptoms of Rongchang pigs caused by PEDV infection. Overall, our data suggest that the interaction between PEDV N and Ezrin reduces the level of phosphorylated Ezrin, resulting in a decrease in the amount of NHE3 protein on the cell membrane. This leads to an imbalance of intracellular and extracellular Na+, which causes diarrhea symptoms in piglets. Pemetrexed is effective in relieving diarrhea caused by PEDV. Our results provide a reference to screen for anti-PEDV targets and to develop drugs to prevent PED.IMPORTANCEPorcine epidemic diarrhea (PED) has caused significant economic losses to the pig industry since its initial outbreak, and the pathogenic mechanism of porcine epidemic diarrhea virus (PEDV) is still under investigation. Herein, we found that the PEDV nucleocapsid protein interacts with Ezrin to regulate Na+/H+ exchanger 3 activity. In addition, we screened out Pemetrexed, a small molecule drug, which can effectively alleviate pig diarrhea caused by PEDV. These results provide support for further exploration of the pathogenesis of PEDV and the development of drugs to prevent PED.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Diarrhea/drug therapy , Diarrhea/veterinary , Molecular Docking Simulation , Nucleocapsid Proteins/metabolism , Pemetrexed/metabolism , Porcine epidemic diarrhea virus/physiology , Sodium/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Swine , Swine Diseases/drug therapy
9.
J Virol ; 98(3): e0170323, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38353535

ABSTRACT

The increased detection of H3 C-IVA (1990.4.a) clade influenza A viruses (IAVs) in US swine in 2019 was associated with a reassortment event to acquire an H1N1pdm09 lineage nucleoprotein (pdmNP) gene, replacing a TRIG lineage NP (trigNP). We hypothesized that acquiring the pdmNP conferred a selective advantage over prior circulating H3 viruses with a trigNP. To investigate the role of NP reassortment in transmission, we identified two contemporary 1990.4.a representative strains (NC/19 and MN/18) with different evolutionary origins of the NP gene. A reverse genetics system was used to generate wild-type (wt) strains and swap the pdm and TRIG lineage NP genes, generating four viruses: wtNC/19-pdmNP, NC/19-trigNP, wtMN/18-trigNP, and MN/18-pdmNP. The pathogenicity and transmission of the four viruses were compared in pigs. All four viruses infected 10 primary pigs and transmitted to five indirect contact pigs per group. Pigs infected via contact with MN/18-pdmNP shed virus 2 days earlier than pigs infected with wtMN/18-trigNP. The inverse did not occur for wtNC/19-pdmNP and NC/19-trigNP. This suggests that pdmNP reassortment resulted in a combination of genes that improved transmission efficiency when paired with the 1990.4.a hemagglutinin (HA). This is likely a multigenic trait, as replacing the trigNP gene did not diminish the transmission of a wild-type IAV in swine. This study demonstrates how reassortment and evolutionary change of internal genes can result in more transmissible viruses that influence HA clade detection frequency. Thus, rapidly identifying novel reassortants paired with dominant hemagglutinin/neuraminidase may improve the prediction of strains to include in vaccines.IMPORTANCEInfluenza A viruses (IAVs) are composed of eight non-continuous gene segments that can reassort during coinfection of a host, creating new combinations. Some gene combinations may convey a selective advantage and be paired together preferentially. A reassortment event was detected in swine in the United States that involved the exchange of two lineages of nucleoprotein (NP) genes (trigNP to pdmNP) that became a predominant genotype detected in surveillance. Using a transmission study, we demonstrated that exchanging the trigNP for a pdmNP caused the virus to shed from the nose at higher levels and transmit to other pigs more rapidly. Replacing a pdmNP with a trigNP did not hinder transmission, suggesting that transmission efficiency depends on interactions between multiple genes. This demonstrates how reassortment alters IAV transmission and that reassortment events can provide an explanation for why genetically related viruses with different internal gene combinations experience rapid fluxes in detection frequency.


Subject(s)
Influenza A virus , Nucleocapsid Proteins , Orthomyxoviridae Infections , Swine Diseases , Animals , Hemagglutinins , Influenza A virus/classification , Influenza A virus/genetics , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Reassortant Viruses/genetics , Swine , United States , Nucleocapsid Proteins/metabolism
10.
J Virol ; 98(3): e0018224, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38411947

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) results in PED, which is an infectious intestinal disease with the representative features of diarrhea, vomiting, and dehydration. PEDV infects neonatal piglets, causing high mortality rates. Therefore, elucidating the interaction between the virus and host in preventing and controlling PEDV infection is of immense significance. We found a new antiviral function of the host protein, RNA-binding motif protein 14 (RBM14), which can inhibit PEDV replication via the activation of autophagy and interferon (IFN) signal pathways. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV nucleocapsid (N) protein through the RBM14-p62-autophagosome pathway. Furthermore, RBM14 can also improve the antiviral ability of the hosts through interacting with mitochondrial antiviral signaling protein to induce IFN expression. These results highlight the novel mechanism underlying RBM14-induced viral restriction. This mechanism leads to the degradation of viral N protein via the autophagy pathway and upregulates IFN for inhibiting PEDV replication; thus, offering new ways for preventing and controlling PED.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) is a vital reason for diarrhea in neonatal piglets, which causes high morbidity and mortality rates. There is currently no effective vaccine or drug to treat and prevent infection with the PEDV. During virus infection, the host inhibits virus replication through various antiviral factors, and at the same time, the virus antagonizes the host's antiviral reaction through its own encoded protein, thus completing the process of virus replication. Our study has revealed that the expression of RNA-binding motif protein 14 (RBM14) was downregulated in PEDV infection. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV N protein via the RBM14-p62-autophagosome pathway and interacted with mitochondrial antiviral signaling protein and TRAF3 to activate the interferon signal pathway, resulting in the inhibition of PEDV replication.


Subject(s)
Coronavirus Infections , Interferons , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Autophagy , Cell Line , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/veterinary , Diarrhea/veterinary , Interferons/metabolism , Nucleocapsid Proteins/metabolism , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/immunology , Swine Diseases/metabolism , Virus Replication
11.
J Virol ; 98(8): e0092624, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39082816

ABSTRACT

The swine acute diarrhea syndrome coronavirus (SADS-CoV) has caused significant disruptions in porcine breeding and raised concerns about potential human infection. The nucleocapsid (N) protein of SADS-CoV plays a vital role in viral assembly and replication, but its structure and functions remain poorly understood. This study utilized biochemistry, X-ray crystallography, and immunization techniques to investigate the N protein's structure and function in SADS-CoV. Our findings revealed distinct domains within the N protein, including an RNA-binding domain, two disordered domains, and a dimerization domain. Through biochemical assays, we confirmed that the N-terminal domain functions as an RNA-binding domain, and the C-terminal domain is involved in dimerization, with the crystal structure analysis providing visual evidence of dimer formation. Immunization experiments demonstrated that the disordered domain 2 elicited a significant antibody response. These identified domains and their interactions are crucial for viral assembly. This comprehensive understanding of the N protein in SADS-CoV enhances our knowledge of its assembly and replication mechanisms, enabling the development of targeted interventions and therapeutic strategies. IMPORTANCE: SADS-CoV is a porcine coronavirus that originated from a bat HKU2-related coronavirus. It causes devastating swine diseases and poses a high risk of spillover to humans. The coronavirus N protein, as the most abundant viral protein in infected cells, likely plays a key role in viral assembly and replication. However, the structure and function of this protein remain unclear. Therefore, this study employed a combination of biochemistry and X-ray crystallography to uncover distinct structural domains in the N protein, including RNA-binding domains, two disordered domains, and dimerization domains. Additionally, we made the novel discovery that the disordered domain elicited a significant antibody response. These findings provide new insights into the structure and functions of the SADS-CoV N protein, which have important implications for future studies on SADS-CoV diagnosis, as well as the development of vaccines and anti-viral drugs.


Subject(s)
Nucleocapsid Proteins , Protein Multimerization , Animals , Nucleocapsid Proteins/immunology , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/genetics , Crystallography, X-Ray , Swine , Epitopes/immunology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Protein Binding , Antibodies, Viral/immunology , Humans , Protein Domains , Models, Molecular
12.
J Virol ; 98(1): e0131923, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38084961

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is a serious global pig industry disease. Understanding the mechanism of viral replication and developing efficient antiviral strategies are necessary for combating with PRRS virus (PRRSV) infection. Recently, nanobody is considered to be a promising antiviral drug, especially for respiratory viruses. The present study evaluated two nanobodies against PRRSV nucleocapsid (N) protein (PRRSV-N-Nb1 and -Nb2) for their anti-PRRSV activity in vitro and in vivo. The results showed that intracellularly expressed PRRSV-N-Nb1 significantly inhibited PRRSV-2 replication in MARC-145 cells (approximately 100%). Then, the PRRSV-N-Nb1 fused with porcine IgG Fc (Nb1-pFc) as a delivering tag was produced and used to determine its effect on PRRSV-2 replication in porcine alveolar macrophages (PAMs) and pigs. The inhibition rate of Nb1-pFc against PRRSV-2 in PAMs could reach >90%, and it can also inhibit viral replication in vivo. Epitope mapping showed that the motif Serine 105 (S105) in PRRSV-2 N protein was the key amino acid binding to PRRSV-N-Nb1, which is also pivotal for the self-interaction of N protein via binding to Arginine 97. Moreover, viral particles were not successfully rescued when the S105 motif was mutated to Alanine (S105A). Attachment, entry, genome replication, release, docking model analysis, and blocking enzyme-linked immunosorbent assay (ELISA) indicated that the binding of PRRSV-N-Nb1 to N protein could block its self-binding, which prevents the viral replication of PRRSV. PRRSV-N-Nb1 may be a promising drug to counter PRRSV-2 infection. We also provided some new insights into the molecular basis of PRRSV N protein self-binding and assembly of viral particles.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) causes serious economic losses to the swine industry worldwide, and there are no highly effective strategies for prevention. Nanobodies are considered a promising novel approach for treating diseases because of their ease of production and low costing. Here, we showed that PRRSV-N-Nb1 against PRRSV-N protein significantly inhibited PRRSV-2 replication in vitro and in vivo. Furthermore, we demonstrated that the motif Serine 105 (S105) in PRRSV-N protein was the key amino acid to interact with PRRSV-N-Nb1 and bond to its motif R97, which is important for the self-binding of N protein. The PRRSV-N-Nb1 could block the self-interaction of N protein following viral assembly. These findings not only provide insights into the molecular basis of PRRSV N protein self-binding as a key factor for viral replication for the first time but also highlight a novel target for the development of anti-PRRSV replication drugs.


Subject(s)
Nucleocapsid Proteins , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Single-Domain Antibodies , Animals , Amino Acids , Cell Line , Nucleocapsid Proteins/metabolism , Porcine Reproductive and Respiratory Syndrome/drug therapy , Porcine respiratory and reproductive syndrome virus/metabolism , Serine , Single-Domain Antibodies/pharmacology , Swine , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
13.
J Virol ; 98(10): e0098624, 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39230304

ABSTRACT

Nipah virus (NiV) is a highly pathogenic paramyxovirus causing frequently lethal encephalitis in humans. The NiV genome is encapsidated by the nucleocapsid (N) protein. RNA synthesis is mediated by the viral RNA-dependent RNA polymerase (RdRP), consisting of the polymerase (L) protein complexed with the homo-tetrameric phosphoprotein (P). The advance of the polymerase along its template requires iterative dissolution and reformation of transient interactions between P and N protomers in a highly regulated process that remains poorly understood. This study applied functional and biochemical NiV polymerase assays to the problem. We mapped three distinct protein interfaces on the C-terminal P-X domain (P-XD), which form a triangular prism and engage L, the C-terminal N tail, and the globular N core, respectively. Transcomplementation assays using NiV L and N-tail binding-deficient mutants revealed that only one XD of a P tetramer binds to L, whereas three must be available for N-binding for efficient polymerase activity. The dissolution of the N-tail complex with P-XD was coordinated by a transient interaction between N-core and the α-1/2 face of this XD but not unoccupied XDs of the P tetramer, creating a timer for coordinated polymerase advance. IMPORTANCE: Mononegaviruses comprise major human pathogens such as the Ebola virus, rabies virus, respiratory syncytial virus, measles virus, and Nipah virus (NiV). For replication and transcription, their polymerase complexes must negotiate a protein-encapsidated RNA genome, which requires the highly coordinated continuous formation and resolution of protein-protein interfaces as the polymerase advances along the template. The viral P protein assumes a central role in this process, but the molecular mechanism of ensuring polymerase mobility is poorly understood. Studying NiV polymerase complexes, we applied functional and biochemical assays to map three distinct interfaces in the NiV P XD and identified transient interactions between XD and the nucleocapsid core as instrumental in coordinating polymerase advance. These results define a conserved molecular principle regulating paramyxovirus polymerase dynamics and illuminate a promising druggable target for the structure-guided development of broad-spectrum polymerase inhibitors.


Subject(s)
Genome, Viral , Nipah Virus , Phosphoproteins , RNA-Dependent RNA Polymerase , Nipah Virus/genetics , Phosphoproteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/chemistry , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/chemistry , Humans , Protein Binding , RNA, Viral/metabolism , RNA, Viral/genetics , Protein Domains , Virus Replication , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/genetics
14.
J Virol ; 98(6): e0050324, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38780245

ABSTRACT

The henipaviruses, including Nipah virus (NiV) and Hendra virus (HeV), are biosafety level 4 (BSL-4) zoonotic pathogens that cause severe neurological and respiratory disease in humans. To study the replication machinery of these viruses, we developed robust minigenome systems that can be safely used in BSL-2 conditions. The nucleocapsid (N), phosphoprotein (P), and large protein (L) of henipaviruses are critical elements of their replication machinery and thus essential support components of the minigenome systems. Here, we tested the effects of diverse combinations of the replication support proteins on the replication capacity of the NiV and HeV minigenomes by exchanging the helper plasmids coding for these proteins among the two viruses. We demonstrate that all combinations including one or more heterologous proteins were capable of replicating both the NiV and HeV minigenomes. Sequence alignment showed identities of 92% for the N protein, 67% for P, and 87% for L. Notably, variations in amino acid residues were not concentrated in the N-P and P-L interacting regions implying that dissimilarities in amino acid composition among NiV and HeV polymerase complex proteins may not impact their interactions. The observed indiscriminate activity of NiV and HeV polymerase complex proteins is different from related viruses, which can support the replication of heterologous genomes only when the whole polymerase complex belongs to the same virus. This newly observed promiscuous property of the henipavirus polymerase complex proteins likely attributed to their conserved interaction regions could potentially be harnessed to develop universal anti-henipavirus antivirals.IMPORTANCEGiven the severity of disease induced by Hendra and Nipah viruses in humans and the continuous emergence of new henipaviruses as well as henipa-like viruses, it is necessary to conduct a more comprehensive investigation of the biology of henipaviruses and their interaction with the host. The replication of henipaviruses and the development of antiviral agents can be studied in systems that allow experiments to be performed under biosafety level 2 conditions. Here, we developed robust minigenome systems for the Nipah virus (NiV) and Hendra virus (HeV) that provide a convenient alternative for studying NiV and HeV replication. Using these systems, we demonstrate that any combination of the three polymerase complex proteins of NiV and HeV could effectively initiate the replication of both viral minigenomes, which suggests that the interaction regions of the polymerase complex proteins could be effective targets for universal and effective anti-henipavirus interventions.


Subject(s)
Genome, Viral , Nipah Virus , Virus Replication , Nipah Virus/genetics , Nipah Virus/physiology , Humans , Viral Proteins/metabolism , Viral Proteins/genetics , Hendra Virus/genetics , Hendra Virus/metabolism , Hendra Virus/physiology , Animals , Henipavirus/genetics , Henipavirus/metabolism , Henipavirus Infections/virology , Phosphoproteins/metabolism , Phosphoproteins/genetics , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/genetics , Cell Line
15.
J Virol ; 98(7): e0033424, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38829137

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an enteric pathogenic coronavirus that causes acute and severe watery diarrhea in piglets and has the ability of cross-species transmission, posing a great threat to swine production and public health. The interferon (IFN)-mediated signal transduction represents an important component of virus-host interactions and plays an essential role in regulating viral infection. Previous studies have suggested that multifunctional viral proteins encoded by coronaviruses antagonize the production of IFN via various means. However, the function of these viral proteins in regulating IFN-mediated signaling pathways is largely unknown. In this study, we demonstrated that PDCoV and its encoded nucleocapsid (N) protein antagonize type I IFN-mediated JAK-STAT signaling pathway. We identified that PDCoV infection stimulated but delayed the production of IFN-stimulated genes (ISGs). In addition, PDCoV inhibited JAK-STAT signal transduction by targeting the nuclear translocation of STAT1 and ISGF3 formation. Further evidence showed that PDCoV N is the essential protein involved in the inhibition of type I IFN signaling by targeting STAT1 nuclear translocation via its C-terminal domain. Mechanistically, PDCoV N targets STAT1 by interacting with it and subsequently inhibiting its nuclear translocation. Furthermore, PDCoV N inhibits STAT1 nuclear translocation by specifically targeting KPNA2 degradation through the lysosomal pathway, thereby inhibiting the activation of downstream sensors in the JAK-STAT signaling pathway. Taken together, our results reveal a novel mechanism by which PDCoV N interferes with the host antiviral response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a novel enteropathogenic coronavirus that receives increased attention and seriously threatens the pig industry and public health. Understanding the underlying mechanism of PDCoV evading the host defense during infection is essential for developing targeted drugs and effective vaccines against PDCoV. This study demonstrated that PDCoV and its encoded nucleocapsid (N) protein antagonize type I interferon signaling by targeting STAT1, which is a crucial signal sensor in the JAK-STAT signaling pathway. Further experiments suggested that PDCoV N-mediated inhibition of the STAT1 nuclear translocation involves the degradation of KPNA2, and the lysosome plays a role in KPNA2 degradation. This study provides new insights into the regulation of PDCoV N in the JAK-STAT signaling pathway and reveals a novel mechanism by which PDCoV evades the host antiviral response. The novel findings may guide us to discover new therapeutic targets and develop live attenuated vaccines for PDCoV infection.


Subject(s)
Deltacoronavirus , Nucleocapsid Proteins , STAT1 Transcription Factor , Signal Transduction , Animals , Swine , STAT1 Transcription Factor/metabolism , Deltacoronavirus/metabolism , Nucleocapsid Proteins/metabolism , Humans , Janus Kinases/metabolism , Swine Diseases/virology , Swine Diseases/metabolism , alpha Karyopherins/metabolism , Interferon Type I/metabolism , Coronavirus Infections/virology , Coronavirus Infections/metabolism , HEK293 Cells , Cell Line , Proteolysis , Host-Pathogen Interactions
16.
J Virol ; 98(4): e0197223, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38470155

ABSTRACT

The coordinated packaging of the segmented genome of the influenza A virus (IAV) into virions is an essential step of the viral life cycle. This process is controlled by the interaction of packaging signals present in all eight viral RNA (vRNA) segments and the viral nucleoprotein (NP), which binds vRNA via a positively charged binding groove. However, mechanistic models of how the packaging signals and NP work together to coordinate genome packaging are missing. Here, we studied genome packaging in influenza A/SC35M virus mutants that carry mutated packaging signals as well as specific amino acid substitutions at the highly conserved lysine (K) residues 184 and 229 in the RNA-binding groove of NP. Because these lysines are acetylated and thus neutrally charged in infected host cells, we replaced them with glutamine to mimic the acetylated, neutrally charged state or arginine to mimic the non-acetylated, positively charged state. Our analysis shows that the coordinated packaging of eight vRNAs is influenced by (i) the charge state of the replacing amino acid and (ii) its location within the RNA-binding groove. Accordingly, we propose that lysine acetylation induces different charge states within the RNA-binding groove of NP, thereby supporting the activity of specific packaging signals during coordinated genome packaging. IMPORTANCE: Influenza A viruses (IAVs) have a segmented viral RNA (vRNA) genome encapsidated by multiple copies of the viral nucleoprotein (NP) and organized into eight distinct viral ribonucleoprotein complexes. Although genome segmentation contributes significantly to viral evolution and adaptation, it requires a highly sophisticated genome-packaging mechanism. How eight distinct genome complexes are incorporated into the virion is poorly understood, but previous research suggests an essential role for both vRNA packaging signals and highly conserved NP amino acids. By demonstrating that the packaging process is controlled by charge-dependent interactions of highly conserved lysine residues in NP and vRNA packaging signals, our study provides new insights into the sophisticated packaging mechanism of IAVs.


Subject(s)
Influenza A virus , Nucleocapsid Proteins , Viral Genome Packaging , Animals , Dogs , Humans , Amino Acid Substitution , Cell Line , Genome, Viral , Influenza A virus/chemistry , Influenza A virus/genetics , Influenza A virus/metabolism , Lysine/genetics , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , RNA, Viral/metabolism , Viral Genome Packaging/genetics , Virion/chemistry , Virion/genetics , Virion/metabolism , Mutation , Static Electricity
17.
J Virol ; 98(9): e0085524, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39120134

ABSTRACT

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes mild-to-severe respiratory symptoms, including acute respiratory distress. Despite remarkable efforts to investigate the virological and pathological impacts of SARS-CoV-2, many of the characteristics of SARS-CoV-2 infection still remain unknown. The interferon-inducible ubiquitin-like protein ISG15 is covalently conjugated to several viral proteins to suppress their functions. It was reported that SARS-CoV-2 utilizes its papain-like protease (PLpro) to impede ISG15 conjugation, ISGylation. However, the role of ISGylation in SARS-CoV-2 infection remains unclear. We aimed to elucidate the role of ISGylation in SARS-CoV-2 replication. We observed that the SARS-CoV-2 nucleocapsid protein is a target protein for the HERC5 E3 ligase-mediated ISGylation in cultured cells. Site-directed mutagenesis reveals that the residue K374 within the C-terminal spacer B-N3 (SB/N3) domain is required for nucleocapsid-ISGylation, alongside conserved lysine residue in MERS-CoV (K372) and SARS-CoV (K375). We also observed that the nucleocapsid-ISGylation results in the disruption of nucleocapsid oligomerization, thereby inhibiting viral replication. Knockdown of ISG15 mRNA enhanced SARS-CoV-2 replication in the SARS-CoV-2 reporter replicon cells, while exogenous expression of ISGylation components partially hampered SARS-CoV-2 replication. Taken together, these results suggest that SARS-CoV-2 PLpro inhibits ISGylation of the nucleocapsid protein to promote viral replication by evading ISGylation-mediated disruption of the nucleocapsid oligomerization.IMPORTANCEISG15 is an interferon-inducible ubiquitin-like protein that is covalently conjugated to the viral protein via specific Lys residues and suppresses viral functions and viral propagation in many viruses. However, the role of ISGylation in SARS-CoV-2 infection remains largely unclear. Here, we demonstrated that the SARS-CoV-2 nucleocapsid protein is a target protein for the HERC5 E3 ligase-mediated ISGylation. We also found that the residue K374 within the C-terminal spacer B-N3 (SB/N3) domain is required for nucleocapsid-ISGylation. We obtained evidence suggesting that nucleocapsid-ISGylation results in the disruption of nucleocapsid-oligomerization, thereby suppressing SARS-CoV-2 replication. We discovered that SARS-CoV-2 papain-like protease inhibits ISG15 conjugation of nucleocapsid protein via its de-conjugating enzyme activity. The present study may contribute to gaining new insight into the roles of ISGylation-mediated anti-viral function in SARS-CoV-2 infection and may lead to the development of more potent and selective inhibitors targeted to SARS-CoV-2 nucleocapsid protein.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , Coronavirus Papain-Like Proteases , Cytokines , SARS-CoV-2 , Ubiquitin-Protein Ligases , Ubiquitins , Virus Replication , Humans , Ubiquitins/metabolism , Ubiquitins/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Cytokines/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus Nucleocapsid Proteins/genetics , COVID-19/virology , COVID-19/immunology , COVID-19/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Coronavirus Papain-Like Proteases/metabolism , HEK293 Cells , Phosphoproteins/metabolism , Phosphoproteins/genetics , Immune Evasion , Nucleocapsid Proteins/metabolism , Coronavirus 3C Proteases/metabolism , Intracellular Signaling Peptides and Proteins
18.
Mol Cell Proteomics ; 22(7): 100579, 2023 07.
Article in English | MEDLINE | ID: mdl-37211047

ABSTRACT

There is still much to uncover regarding the molecular details of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. As the most abundant protein, coronavirus nucleocapsid (N) protein encapsidates viral RNAs, serving as the structural component of ribonucleoprotein and virion, and participates in transcription, replication, and host regulations. Virus-host interaction might give clues to better understand how the virus affects or is affected by its host during infection and identify promising therapeutic candidates. Considering the critical roles of N, we here established a new cellular interactome of SARS-CoV-2 N by using a high-specific affinity purification (S-pulldown) assay coupled with quantitative mass spectrometry and immunoblotting validations, uncovering many N-interacting host proteins unreported previously. Bioinformatics analysis revealed that these host factors are mainly involved in translation regulations, viral transcription, RNA processes, stress responses, protein folding and modification, and inflammatory/immune signaling pathways, in line with the supposed actions of N in viral infection. Existing pharmacological cellular targets and the directing drugs were then mined, generating a drug-host protein network. Accordingly, we experimentally identified several small-molecule compounds as novel inhibitors against SARS-CoV-2 replication. Furthermore, a newly identified host factor, DDX1, was verified to interact and colocalize with N mainly by binding to the N-terminal domain of the viral protein. Importantly, loss/gain/reconstitution-of-function experiments showed that DDX1 acts as a potent anti-SARS-CoV-2 host factor, inhibiting the viral replication and protein expression. The N-targeting and anti-SARS-CoV-2 abilities of DDX1 are consistently independent of its ATPase/helicase activity. Further mechanism studies revealed that DDX1 impedes multiple activities of N, including the N-N interaction, N oligomerization, and N-viral RNA binding, thus likely inhibiting viral propagation. These data provide new clues to better depiction of the N-cell interactions and SARS-CoV-2 infection and may help inform the development of new therapeutic candidates.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Chlorocebus aethiops , SARS-CoV-2/metabolism , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Vero Cells , Virus Replication , RNA, Viral
19.
J Biol Chem ; 299(12): 105362, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863261

ABSTRACT

The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) compacts the RNA genome into viral ribonucleoprotein (vRNP) complexes within virions. Assembly of vRNPs is inhibited by phosphorylation of the N protein serine/arginine (SR) region. Several SARS-CoV-2 variants of concern carry N protein mutations that reduce phosphorylation and enhance the efficiency of viral packaging. Variants of the dominant B.1.1 viral lineage also encode a truncated N protein, termed N∗ or Δ(1-209), that mediates genome packaging despite lacking the N-terminal RNA-binding domain and SR region. Here, we use mass photometry and negative stain electron microscopy to show that purified Δ(1-209) and viral RNA assemble into vRNPs that are remarkably similar in size and shape to those formed with full-length N protein. We show that assembly of Δ(1-209) vRNPs requires the leucine-rich helix of the central disordered region and that this helix promotes N protein oligomerization. We also find that fusion of a phosphomimetic SR region to Δ(1-209) inhibits RNA binding and vRNP assembly. Our results provide new insights into the mechanisms by which RNA binding promotes N protein self-association and vRNP assembly, and how this process is modulated by phosphorylation.


Subject(s)
Nucleocapsid Proteins , SARS-CoV-2 , Humans , COVID-19/virology , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/ultrastructure , RNA, Viral/metabolism , RNA, Viral/ultrastructure , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/ultrastructure , Phosphorylation , Virus Assembly/genetics
20.
J Gen Virol ; 105(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39136113

ABSTRACT

Porcine deltacoronavirus (PDCoV), an enteropathogenic coronavirus, causes severe watery diarrhoea, dehydration and high mortality in piglets, which has the potential for cross-species transmission in recent years. Growth factor receptor-bound protein 2 (Grb2) is a bridging protein that can couple cell surface receptors with intracellular signal transduction events. Here, we investigated the reciprocal regulation between Grb2 and PDCoV. It is found that Grb2 regulates PDCoV infection and promotes IFN-ß production through activating Raf/MEK/ERK/STAT3 pathway signalling in PDCoV-infected swine testis cells to suppress viral replication. PDCoV N is capable of interacting with Grb2. The proline-rich motifs in the N- or C-terminal region of PDCoV N were critical for the interaction between PDCoV-N and Grb2. Except for Deltacoronavirus PDCoV N, the Alphacoronavirus PEDV N protein could interact with Grb2 and affect the regulation of PEDV replication, while the N protein of Betacoronavirus PHEV and Gammacoronavirus AIBV could not interact with Grb2. PDCoV N promotes Grb2 degradation by K48- and K63-linked ubiquitin-proteasome pathways. Overexpression of PDCoV N impaired the Grb2-mediated activated effect on the Raf/MEK/ERK/STAT3 signal pathway. Thus, our study reveals a novel mechanism of how host protein Grb2 protein regulates viral replication and how PDCoV N escaped natural immunity by interacting with Grb2.


Subject(s)
GRB2 Adaptor Protein , Nucleocapsid Proteins , Virus Replication , Animals , Swine , GRB2 Adaptor Protein/metabolism , GRB2 Adaptor Protein/genetics , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/genetics , Swine Diseases/virology , Swine Diseases/metabolism , Deltacoronavirus/metabolism , Deltacoronavirus/genetics , MAP Kinase Signaling System , Coronavirus Infections/virology , Coronavirus Infections/metabolism , Humans , Signal Transduction , Cell Line , raf Kinases/metabolism , raf Kinases/genetics , HEK293 Cells
SELECTION OF CITATIONS
SEARCH DETAIL