Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.343
Filter
Add more filters

Publication year range
1.
Mol Cell ; 72(1): 112-126.e5, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30217558

ABSTRACT

Maintenance of epigenetic integrity relies on coordinated recycling and partitioning of parental histones and deposition of newly synthesized histones during DNA replication. This process depends upon a poorly characterized network of histone chaperones, remodelers, and binding proteins. Here we implicate the POLE3-POLE4 subcomplex of the leading-strand polymerase, Polε, in replication-coupled nucleosome assembly through its ability to selectively bind to histones H3-H4. Using hydrogen/deuterium exchange mass spectrometry and physical mapping, we define minimal domains necessary for interaction between POLE3-POLE4 and histones H3-H4. Biochemical analyses establish that POLE3-POLE4 is a histone chaperone that promotes tetrasome formation and DNA supercoiling in vitro. In cells, POLE3-POLE4 binds both newly synthesized and parental histones, and its depletion hinders helicase unwinding and chromatin PCNA unloading and compromises coordinated parental histone retention and new histone deposition. Collectively, our study reveals that POLE3-POLE4 possesses intrinsic H3-H4 chaperone activity, which facilitates faithful nucleosome dynamics at the replication fork.


Subject(s)
DNA Polymerase III/genetics , DNA Replication/genetics , DNA-Binding Proteins/genetics , Epigenesis, Genetic/genetics , Histones/biosynthesis , Nucleoproteins/genetics , Chromatin/genetics , DNA Polymerase II/chemistry , DNA Polymerase II/genetics , DNA Polymerase III/chemistry , DNA-Binding Proteins/chemistry , Histone Chaperones/chemistry , Histone Chaperones/genetics , Histones/genetics , Humans , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Nucleoproteins/chemistry , Nucleosomes/chemistry , Nucleosomes/genetics , Poly-ADP-Ribose Binding Proteins/chemistry , Poly-ADP-Ribose Binding Proteins/genetics , Proliferating Cell Nuclear Antigen/genetics , Protein Binding
2.
Proc Natl Acad Sci U S A ; 120(42): e2307717120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37824526

ABSTRACT

Archaeal lemon-shaped viruses have unique helical capsids composed of highly hydrophobic protein strands which can slide past each other resulting in remarkable morphological reorganization. Here, using atomic force microscopy, we explore the biomechanical properties of the lemon-shaped virions of Sulfolobus monocaudavirus 1 (SMV1), a double-stranded DNA virus which infects hyperthermophilic (~80 °C) and acidophilic (pH ~ 2) archaea. Our results reveal that SMV1 virions are extremely soft and withstand repeated extensive deformations, reaching remarkable strains of 80% during multiple cycles of consecutive mechanical assaults, yet showing scarce traces of disruption. SMV1 virions can reversibly collapse wall-to-wall, reducing their volume by ~90%. Beyond revealing the exceptional malleability of the SMV1 protein shell, our data also suggest a fluid-like nucleoprotein cargo which can flow inside the capsid, resisting and accommodating mechanical deformations without further alteration. Our experiments suggest a packing fraction of the virus core to be as low as 11%, with the amount of the accessory proteins almost four times exceeding that of the viral genome. Our findings indicate that SMV1 protein capsid displays biomechanical properties of lipid membranes, which is not found among protein capsids of other viruses. The remarkable malleability and fluidity of the SMV1 virions are likely necessary for the structural transformations during the infection and adaptation to extreme environmental conditions.


Subject(s)
Archaeal Viruses , Sulfolobus , Archaeal Viruses/genetics , Archaeal Viruses/chemistry , Capsid/metabolism , Nucleoproteins/genetics , Capsid Proteins/genetics , Genome, Viral , Tomography
3.
J Virol ; 98(7): e0020224, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38842318

ABSTRACT

Nucleoprotein (N) is well known for its function in the encapsidation of the genomic RNAs of negative-strand RNA viruses, which leads to the formation of ribonucleoproteins that serve as templates for viral transcription and replication. However, the function of the N protein in other aspects during viral infection is far from clear. In this study, the N protein of snakehead vesiculovirus (SHVV), a kind of fish rhabdovirus, was proved to be ubiquitinated mainly via K63-linked ubiquitination. We identified nine host E3 ubiquitin ligases that interacted with SHVV N, among which seven E3 ubiquitin ligases facilitated ubiquitination of the N protein. Further investigation revealed that only two E3 ubiquitin ligases, Siah E3 ubiquitin protein ligase 2 (Siah2) and leucine-rich repeat and sterile alpha motif containing 1 (LRSAM1), mediated K63-linked ubiquitination of the N protein. SHVV infection upregulated the expression of Siah2 and LRSAM1, which maintained the stability of SHVV N. Besides, overexpression of Siah2 or LRSAM1 promoted SHVV replication, while knockdown of Siah2 or LRSAM1 inhibited SHVV replication. Deletion of the ligase domain of Siah2 or LRSAM1 did not affect their interactions with SHVV N but reduced the K63-linked ubiquitination of SHVV N and SHVV replication. In summary, Siah2 and LRSAM1 mediate K63-linked ubiquitination of SHVV N to facilitate SHVV replication, which provides novel insights into the role of the N proteins of negative-strand RNA viruses. IMPORTANCE: Ubiquitination of viral protein plays an important role in viral replication. However, the ubiquitination of the nucleoprotein (N) of negative-strand RNA viruses has rarely been investigated. This study aimed at investigating the ubiquitination of the N protein of a fish rhabdovirus SHVV (snakehead vesiculovirus), identifying the related host E3 ubiquitin ligases, and determining the role of SHVV N ubiquitination and host E3 ubiquitin ligases in viral replication. We found that SHVV N was ubiquitinated mainly via K63-linked ubiquitination, which was mediated by host E3 ubiquitin ligases Siah2 (Siah E3 ubiquitin protein ligase 2) and LRSAM1 (leucine-rich repeat and sterile alpha motif containing 1). The data suggested that Siah2 and LRSAM1 were hijacked by SHVV to ubiquitinate the N protein for viral replication, which exhibited novel anti-SHVV targets for drug design.


Subject(s)
Nucleoproteins , Ubiquitin-Protein Ligases , Ubiquitination , Vesiculovirus , Virus Replication , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Nucleoproteins/metabolism , Nucleoproteins/genetics , Vesiculovirus/physiology , Vesiculovirus/metabolism , Vesiculovirus/genetics , Humans , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , HEK293 Cells , Viral Proteins/metabolism , Viral Proteins/genetics , Cell Line , Rhabdoviridae Infections/virology , Rhabdoviridae Infections/metabolism , Fish Diseases/virology , Fish Diseases/metabolism
4.
J Virol ; 98(6): e0057824, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38767352

ABSTRACT

The mammarenavirus Lassa virus (LASV) causes the life-threatening hemorrhagic fever disease, Lassa fever. The lack of licensed medical countermeasures against LASV underscores the urgent need for the development of novel LASV vaccines, which has been hampered by the requirement for a biosafety level 4 facility to handle live LASV. Here, we investigated the efficacy of mRNA-lipid nanoparticle (mRNA-LNP)-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), in mice. Two doses of LASgpc- or LCMnp-mRNA-LNP administered intravenously (i.v.) protected C57BL/6 mice from a lethal challenge with a recombinant (r) LCMV expressing a modified LASgpc (rLCMV/LASgpc2m) inoculated intracranially. Intramuscular (i.m.) immunization with two doses of LASgpc- or LCMnp-mRNA-LNP significantly reduced the viral load in C57BL/6 mice inoculated i.v. with rLCMV/LASgpc2m. High levels of viremia and lethality were observed in CBA mice inoculated i.v. with rLCMV/LASgpc2m, which were abrogated by i.m. immunization with two doses of LASgpc-mRNA-LNP. The protective efficacy of two i.m. doses of LCMnp-mRNA-LNP was confirmed in a lethal hemorrhagic disease model of FVB mice i.v. inoculated with wild-type rLCMV. In all conditions tested, negligible and high levels of LASgpc- and LCMnp-specific antibodies were detected in mRNA-LNP-immunized mice, respectively, but robust LASgpc- and LCMnp-specific CD8+ T cell responses were induced. Accordingly, plasma from LASgpc-mRNA-LNP-immunized mice did not exhibit neutralizing activity. Our findings and surrogate mouse models of LASV infection, which can be studied at a reduced biocontainment level, provide a critical foundation for the rapid development of mRNA-LNP-based LASV vaccines.IMPORTANCELassa virus (LASV) is a highly pathogenic mammarenavirus responsible for several hundred thousand infections annually in West African countries, causing a high number of lethal Lassa fever (LF) cases. Despite its significant impact on human health, clinically approved, safe, and effective medical countermeasures against LF are not available. The requirement of a biosafety level 4 facility to handle live LASV has been one of the main obstacles to the research and development of LASV countermeasures. Here, we report that two doses of mRNA-lipid nanoparticle-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of lymphocytic choriomeningitis virus (LCMV), a mammarenavirus genetically closely related to LASV, conferred protection to recombinant LCMV-based surrogate mouse models of lethal LASV infection. Notably, robust LASgpc- and LCMnp-specific CD8+ T cell responses were detected in mRNA-LNP-immunized mice, whereas no virus-neutralizing activity was observed.


Subject(s)
Lassa Fever , Lassa virus , Lymphocytic choriomeningitis virus , Nanoparticles , Viral Vaccines , Animals , Female , Mice , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Disease Models, Animal , Glycoproteins/immunology , Glycoproteins/genetics , Lassa Fever/prevention & control , Lassa Fever/immunology , Lassa virus/immunology , Lassa virus/genetics , Liposomes , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/genetics , Mice, Inbred C57BL , Nanoparticles/administration & dosage , Nucleoproteins/immunology , Nucleoproteins/genetics , RNA, Messenger/genetics , RNA, Messenger/immunology , Viral Load , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
5.
J Virol ; 98(2): e0197523, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38294249

ABSTRACT

The highly pathogenic arenavirus, Junín virus (JUNV), expresses three truncated alternative isoforms of its nucleoprotein (NP), i.e., NP53kD, NP47kD, and NP40kD. While both NP47kD and NP40kD have been previously shown to be products of caspase cleavage, here, we show that expression of the third isoform NP53kD is due to alternative in-frame translation from M80. Based on this information, we were able to generate recombinant JUNVs lacking each of these isoforms. Infection with these mutants revealed that, while all three isoforms contribute to the efficient control of caspase activation, NP40kD plays the predominant role. In contrast to full-length NP (i.e., NP65kD), which is localized to inclusion bodies, where viral RNA synthesis takes place, the loss of portions of the N-terminal coiled-coil region in these isoforms leads to a diffuse cytoplasmic distribution and a loss of function in viral RNA synthesis. Nonetheless, NP53kD, NP47kD, and NP40kD all retain robust interferon antagonistic and 3'-5' exonuclease activities. We suggest that the altered localization of these NP isoforms allows them to be more efficiently targeted by activated caspases for cleavage as decoy substrates, and to be better positioned to degrade viral double-stranded (ds)RNA species that accumulate in the cytoplasm during virus infection and/or interact with cytosolic RNA sensors, thereby limiting dsRNA-mediated innate immune responses. Taken together, this work provides insight into the mechanism by which JUNV leverages apoptosis during infection to generate biologically distinct pools of NP and contributes to our understanding of the expression and biological relevance of alternative protein isoforms during virus infection.IMPORTANCEA limited coding capacity means that RNA viruses need strategies to diversify their proteome. The nucleoprotein (NP) of the highly pathogenic arenavirus Junín virus (JUNV) produces three N-terminally truncated isoforms: two (NP47kD and NP40kD) are known to be produced by caspase cleavage, while, here, we show that NP53kD is produced by alternative translation initiation. Recombinant JUNVs lacking individual NP isoforms revealed that all three isoforms contribute to inhibiting caspase activation during infection, but cleavage to generate NP40kD makes the biggest contribution. Importantly, all three isoforms retain their ability to digest double-stranded (ds)RNA and inhibit interferon promoter activation but have a diffuse cytoplasmic distribution. Given the cytoplasmic localization of both aberrant viral dsRNAs, as well as dsRNA sensors and many other cellular components of innate immune activation pathways, we suggest that the generation of NP isoforms not only contributes to evasion of apoptosis but also robust control of the antiviral response.


Subject(s)
Caspases , Cytoplasm , Hemorrhagic Fever, American , Host-Pathogen Interactions , Immunity, Innate , Junin virus , Nucleoproteins , Protein Biosynthesis , Humans , Apoptosis , Caspase Inhibitors/metabolism , Caspases/metabolism , Cytoplasm/metabolism , Cytoplasm/virology , Enzyme Activation , Hemorrhagic Fever, American/immunology , Hemorrhagic Fever, American/virology , Interferons/genetics , Interferons/immunology , Junin virus/genetics , Junin virus/metabolism , Junin virus/pathogenicity , Nucleoproteins/biosynthesis , Nucleoproteins/genetics , Nucleoproteins/metabolism , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Viral/biosynthesis , RNA, Viral/genetics , Virus Replication
6.
J Virol ; 98(8): e0071124, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39082839

ABSTRACT

Cytotoxic T lymphocytes (CTLs) mediate host defense against viral and intracellular bacterial infections and tumors. However, the magnitude of CTL response and their function needed to confer heterosubtypic immunity against influenza virus infection are unknown. We addressed the role of CD8+ T cells in the absence of any cross-reactive antibody responses to influenza viral proteins using an adenoviral vector expressing a 9mer amino acid sequence recognized by CD8+ T cells. Our results indicate that both CD8+ T cell frequency and function are crucial for heterosubtypic immunity. Low morbidity, lower viral lung titers, low to minimal lung pathology, and better survival upon heterosubtypic virus challenge correlated with the increased frequency of NP-specific CTLs. NP-CD8+ T cells induced by differential infection doses displayed distinct RNA transcriptome profiles and functional properties. CD8+ T cells induced by a high dose of influenza virus secreted significantly higher levels of IFN-γ and exhibited higher levels of cytotoxic function. The mice that received NP-CD8+ T cells from the high-dose virus recipients through adoptive transfer had lower viral titers following viral challenge than those induced by the low dose of virus, suggesting differential cellular programming by antigen dose. Enhanced NP-CD8+ T-cell functions induced by a higher dose of influenza virus strongly correlated with the increased expression of cellular and metabolic genes, indicating a shift to a more glycolytic metabolic phenotype. These findings have implications for developing effective T cell vaccines against infectious diseases and cancer. IMPORTANCE: Cytotoxic T lymphocytes (CTLs) are an important component of the adaptive immune system that clears virus-infected cells or tumor cells. Hence, developing next-generation vaccines that induce or recall CTL responses against cancer and infectious diseases is crucial. However, it is not clear if the frequency, function, or both are essential in conferring protection, as in the case of influenza. In this study, we demonstrate that both CTL frequency and function are crucial for providing heterosubtypic immunity to influenza by utilizing an Ad-viral vector expressing a CD8 epitope only to rule out the role of antibodies, single-cell RNA-seq analysis, as well as adoptive transfer experiments. Our findings have implications for developing T cell vaccines against infectious diseases and cancer.


Subject(s)
CD8-Positive T-Lymphocytes , Orthomyxoviridae Infections , T-Lymphocytes, Cytotoxic , Animals , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Mice , CD8-Positive T-Lymphocytes/immunology , T-Lymphocytes, Cytotoxic/immunology , Mice, Inbred C57BL , Female , Adoptive Transfer , Interferon-gamma/immunology , Interferon-gamma/metabolism , Nucleocapsid Proteins/immunology , Lung/immunology , Lung/virology , RNA-Binding Proteins/immunology , RNA-Binding Proteins/genetics , Nucleoproteins/immunology , Nucleoproteins/genetics , Viral Core Proteins/immunology , Viral Core Proteins/genetics
7.
PLoS Pathog ; 19(1): e1011049, 2023 01.
Article in English | MEDLINE | ID: mdl-36603036

ABSTRACT

The arenavirus nucleoprotein (NP) plays an important role in the virus' ability to block interferon (IFN) production, and its exonuclease function appears to contribute to this activity. However, efforts to analyze this contribution are complicated by the functional overlap between the exonuclease active site and a neighboring region involved in IKKε-binding and subsequent inhibition of IRF3 activation, which also plays an important role in IFN production. To circumvent this issue, we mutated a residue located away from the active site that is involved in binding of the dsRNA substrate being targeted for exonuclease digestion, i.e. H426A. We found that expression of Tacaribe virus (TCRV) NP containing this RNA-binding H426A mutation was still able to efficiently block IFN-ß promoter activity in response to Sendai virus infection, despite being strongly impaired in its exonuclease activity. This was in contrast to a conventional exonuclease active site mutant (E388A), which was impaired with respect to both exonuclease activity and IFN antagonism. Importantly, growth of a recombinant virus encoding the RNA-binding mutation (rTCRV-H426A) was similar to wild-type in IFN-deficient cells, unlike the active site mutant (rTCRV-E388A), which was already markedly impaired in these cells. Further, in IFN-competent cells, the TCRV-H426A RNA-binding mutant showed more robust growth and delayed IFN-ß mRNA upregulation compared to the TCRV-E388A active site mutant. Taken together, this novel mutational approach, which allows us to now dissect the different contributions of the NP exonuclease activity and IKKε-binding/IRF3 inhibition to IFN antagonism, clearly suggests that conventional exonuclease mutants targeting the active site overestimate the contribution of the exonuclease function, and that rather other IFN antagonistic functions of NP play the dominant role in IFN-antagonism.


Subject(s)
Arenavirus , Arenavirus/genetics , Interferons , Nucleoproteins/genetics , Nucleoproteins/metabolism , I-kappa B Kinase , Exonucleases/genetics , RNA
8.
Plant Cell ; 34(8): 3110-3127, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35567529

ABSTRACT

Signaling by the evolutionarily conserved mitogen-activated protein kinase or extracellular signal-regulated kinase (MAPK/ERK) plays critical roles in converting extracellular stimuli into immune responses. However, whether MAPK/ERK signaling induces virus immunity by directly phosphorylating viral effectors remains largely unknown. Barley yellow striate mosaic virus (BYSMV) is an economically important plant cytorhabdovirus that is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a propagative manner. Here, we found that the barley (Hordeum vulgare) MAPK MPK3 (HvMPK3) and the planthopper ERK (LsERK) proteins interact with the BYSMV nucleoprotein (N) and directly phosphorylate N protein primarily on serine 290. The overexpression of HvMPK3 inhibited BYSMV infection, whereas barley plants treated with the MAPK pathway inhibitor U0126 displayed greater susceptibility to BYSMV. Moreover, knockdown of LsERK promoted virus infection in SBPHs. A phosphomimetic mutant of the N Ser290 (S290D) completely abolished virus infection because of impaired self-interaction of BYSMV N and formation of unstable N-RNA complexes. Altogether, our results demonstrate that the conserved MAPK and ERK directly phosphorylate the viral nucleoprotein to trigger immunity against cross-kingdom infection of BYSMV in host plants and its insect vectors.


Subject(s)
Hemiptera , Hordeum , Rhabdoviridae , Animals , Antiviral Agents , Hordeum/genetics , Insect Vectors , Nucleoproteins/genetics , Rhabdoviridae/physiology
9.
Nucleic Acids Res ; 51(5): 2270-2283, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36807462

ABSTRACT

The recombinase RecA/Rad51 ATPase family proteins catalyze paramount DNA strand exchange reactions that are critically involved in maintaining genome integrity. However, it remains unclear how DNA strand exchange proceeds when encountering RecA-free defects in recombinase nucleoprotein filaments. Herein, by designing a series of unique substrates (e.g. truncated or conjugated incoming single-stranded DNA, and extended donor double-stranded DNA) and developing a two-color alternating excitation-modified single-molecule real-time fluorescence imaging assay, we resolve the two key steps (donor strand separation and new base-pair formation) that are usually inseparable during the reaction, revealing a novel long-range flanking strand separation activity of synaptic RecA nucleoprotein filaments. We further evaluate the kinetics and free energetics of strand exchange reactions mediated by various substrates, and elucidate the mechanism of flanking strand separation. Based on these findings, we propose a potential fundamental molecular model involved in flanking strand separation, which provides new insights into strand exchange mechanism and homologous recombination.


Subject(s)
Nucleoproteins , Recombination, Genetic , Nucleoproteins/genetics , Adenosine Triphosphate/metabolism , DNA/genetics , DNA/chemistry , DNA, Single-Stranded/genetics , Rec A Recombinases/genetics , Rad51 Recombinase/metabolism
10.
Nucleic Acids Res ; 51(21): 11717-11731, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37843130

ABSTRACT

Fork reversal is a conserved mechanism to prevent stalled replication forks from collapsing. Formation and protection of reversed forks are two crucial steps in ensuring fork integrity and stability. Five RAD51 paralogs, namely, RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, which share sequence and structural similarity to the recombinase RAD51, play poorly defined mechanistic roles in these processes. Here, using purified BCDX2 (RAD51BCD-XRCC2) and CX3 (RAD51C-XRCC3) complexes and in vitro reconstituted biochemical systems, we mechanistically dissect their functions in forming and protecting reversed forks. We show that both RAD51 paralog complexes lack fork reversal activities. Whereas CX3 exhibits modest fork protection activity, BCDX2 significantly synergizes with RAD51 to protect DNA against attack by the nucleases MRE11 and EXO1. DNA protection is contingent upon the ability of RAD51 to form a functional nucleoprotein filament on DNA. Collectively, our results provide evidence for a hitherto unknown function of RAD51 paralogs in synergizing with RAD51 nucleoprotein filament to prevent degradation of stressed replication forks.


Subject(s)
DNA Replication , Rad51 Recombinase , Cell Line , Chromosomes/metabolism , DNA/genetics , DNA/metabolism , Nucleoproteins/genetics , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Humans
11.
Emerg Infect Dis ; 30(4): 681-690, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526081

ABSTRACT

Although pigs are naturally susceptible to Reston virus and experimentally to Ebola virus (EBOV), their role in Orthoebolavirus ecology remains unknown. We tested 888 serum samples collected from pigs in Guinea during 2017-2019 (between the 2013-16 epidemic and its resurgence in 2021) by indirect ELISA against the EBOV nucleoprotein. We identified 2 hotspots of possible pig exposure by IgG titer levels: the northern coast had 48.7% of positive serum samples (37/76), and Forest Guinea, bordering Sierra Leone and Liberia, where the virus emerged and reemerged, had 50% of positive serum samples (98/196). The multitarget Luminex approach confirms ELISA results against Ebola nucleoprotein and highlights cross-reactivities to glycoprotein of EBOV, Reston virus, and Bundibugyo virus. Those results are consistent with previous observations of the circulation of Orthoebolavirus species in pig farming regions in Sierra Leone and Ghana, suggesting potential risk for Ebola virus disease in humans, especially in Forest Guinea.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Swine , Animals , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/veterinary , Guinea/epidemiology , Sus scrofa , Sierra Leone/epidemiology , Nucleoproteins/genetics
12.
Development ; 148(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33766931

ABSTRACT

During spermatogenesis, intricate gene expression is coordinately regulated by epigenetic modifiers, which are required for differentiation of spermatogonial stem cells (SSCs) contained among undifferentiated spermatogonia. We have previously found that KMT2B conveys H3K4me3 at bivalent and monovalent promoters in undifferentiated spermatogonia. Because these genes are expressed late in spermatogenesis or during embryogenesis, we expect that many of them are potentially programmed by KMT2B for future expression. Here, we show that one of the genes targeted by KMT2B, Tsga8, plays an essential role in spermatid morphogenesis. Loss of Tsga8 in mice leads to male infertility associated with abnormal chromosomal distribution in round spermatids, malformation of elongating spermatid heads and spermiation failure. Tsga8 depletion leads to dysregulation of thousands of genes, including the X-chromosome genes that are reactivated in spermatids, and insufficient nuclear condensation accompanied by reductions of TNP1 and PRM1, key factors for histone-to-protamine transition. Intracytoplasmic sperm injection (ICSI) of spermatids rescued the infertility phenotype, suggesting competency of the spermatid genome for fertilization. Thus, Tsga8 is a KMT2B target that is vitally necessary for spermiogenesis and fertility.


Subject(s)
Fertility , Nucleoproteins/metabolism , Spermatids/metabolism , Spermatogenesis , Stem Cells/metabolism , Animals , Female , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Infertility, Male/genetics , Infertility, Male/metabolism , Male , Mice , Mice, Knockout , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Nucleoproteins/genetics , Spermatogonia/metabolism
13.
PLoS Pathog ; 18(12): e1011022, 2022 12.
Article in English | MEDLINE | ID: mdl-36480574

ABSTRACT

Rabies virus (RABV) transcription and replication take place within viral factories having liquid properties, called Negri bodies (NBs), that are formed by liquid-liquid phase separation (LLPS). The co-expression of RABV nucleoprotein (N) and phosphoprotein (P) in mammalian cells is sufficient to induce the formation of cytoplasmic biocondensates having properties that are like those of NBs. This cellular minimal system was previously used to identify P domains that are essential for biocondensates formation. Here, we constructed fluorescent versions of N and analyzed by FRAP their dynamics inside the biocondensates formed in this minimal system as well as in NBs of RABV-infected cells using FRAP. The behavior of N appears to be different of P as there was no fluorescence recovery of N proteins after photobleaching. We also identified arginine residues as well as two exposed loops of N involved in condensates formation. Corresponding N mutants exhibited distinct phenotypes in infected cells ranging from co-localization with NBs to exclusion from them associated with a dominant-negative effect on infection. We also demonstrated that in vitro, in crowded environments, purified P as well as purified N0-P complex (in which N is RNA-free) form liquid condensates. We identified P domains required for LLPS in this acellular system. P condensates were shown to associate with liposomes, concentrate RNA, and undergo a liquid-gel transition upon ageing. Conversely, N0-P droplets were disrupted upon incubation with RNA. Taken together, our data emphasize the central role of P in NBs formation and reveal some physicochemical features of P and N0-P droplets relevant for explaining NBs properties such as their envelopment by cellular membranes at late stages of infection and nucleocapsids ejections from the viral factories.


Subject(s)
Rabies virus , Rabies , Animals , Rabies virus/genetics , Rabies virus/metabolism , Nucleoproteins/genetics , Rabies/metabolism , Nucleocapsid/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Virus Replication , Mammals
14.
Biotechnol Appl Biochem ; 71(2): 280-294, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38054375

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is classified among top 10 priority pathogens by World Health Organization. CCHFV belongs to Bunyaviridae family and negative sense ssRNA genome composed of three RNA segments: L, M, and S. RNA viruses show higher mutation rate as compared to DNA viruses. To gain deeper understanding of impact of point mutations in CCHFV M and S segment, mutation profiling, homology modeling, and molecular dynamic (MD) simulation were performed. Structural glycoproteins (glycoprotein C [Gc] and glycoprotein N [Gn]) of CCHFV are important for host-virus interaction and genome packaging, whereas CCHFV nucleoprotein (NP) is crucial for viral replication. Hence, current study is focused on evaluation of eight mutations in structural glycoproteins (Gc: 7 and Gn: 1) of M segment and seven mutations in NP of S segment. All these mutations were highly frequent, with mutation frequency between 0.81 and 1.0 and found to be persistent in the recent strains of CCHFV. Solubility analysis predicted that selected point mutations reduce solubility of Gc protein and increase solubility of Gn and NP proteins. MD simulation study deciphered that A1046V and G1158E in Gc protein, I778T in Gn protein, and H195R in NP protein displayed large deviation and fluctuation, and affected intramolecular interactions. In conclusion, we observed that point mutations could impact structure, stability, and host-virus interaction of protein, and might lead to evolution of new strains for better survival and drug resistance.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Viral Envelope Proteins , Hemorrhagic Fever Virus, Crimean-Congo/chemistry , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever Virus, Crimean-Congo/metabolism , Nucleoproteins/genetics , Nucleoproteins/metabolism , Point Mutation , Glycoproteins/genetics , Glycoproteins/chemistry , RNA
15.
Nucleic Acids Res ; 50(10): 5713-5725, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35639917

ABSTRACT

The segmented negative-sense RNA genome of influenza A virus is assembled into ribonucleoprotein complexes (RNP) with viral RNA-dependent RNA polymerase and nucleoprotein (NP). It is in the context of these RNPs that the polymerase transcribes and replicates viral RNA (vRNA). Host acidic nuclear phosphoprotein 32 (ANP32) family proteins play an essential role in vRNA replication by mediating the dimerization of the viral polymerase via their N-terminal leucine-rich repeat (LRR) domain. However, whether the C-terminal low-complexity acidic region (LCAR) plays a role in RNA synthesis remains unknown. Here, we report that the LCAR is required for viral genome replication during infection. Specifically, we show that the LCAR directly interacts with NP and this interaction is mutually exclusive with RNA. Furthermore, we show that the replication of a short vRNA-like template that can be replicated in the absence of NP is less sensitive to LCAR truncations compared with the replication of full-length vRNA segments which is NP-dependent. We propose a model in which the LCAR interacts with NP to promote NP recruitment to nascent RNA during influenza virus replication, ensuring the co-replicative assembly of RNA into RNPs.


Subject(s)
Nuclear Proteins , RNA, Viral , Genome, Viral , Nuclear Proteins/metabolism , Nucleocapsid Proteins/genetics , Nucleoproteins/genetics , Nucleoproteins/metabolism , Phosphoproteins/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Virus Replication/genetics
16.
Int J Mol Sci ; 25(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38928101

ABSTRACT

In our prior investigations, we elucidated the role of the tryptophan-to-tyrosine substitution at the 61st position in the nonstructural protein NSsW61Y in diminishing the interaction between nonstructural proteins (NSs) and nucleoprotein (NP), impeding viral replication. In this study, we focused on the involvement of NSs in replication via the modulation of autophagosomes. Initially, we examined the impact of NP expression levels, a marker for replication, upon the infection of HeLa cells with severe fever thrombocytopenia syndrome virus (SFTSV), with or without the inhibition of NP binding. Western blot analysis revealed a reduction in NP levels in NSsW61Y-expressing conditions. Furthermore, the expression levels of the canonical autophagosome markers p62 and LC3 decreased in HeLa cells expressing NSsW61Y, revealing the involvement of individual viral proteins on autophagy. Subsequent experiments confirmed that NSsW61Y perturbs autophagy flux, as evidenced by reduced levels of LC3B and p62 upon treatment with chloroquine, an inhibitor of autophagosome-lysosome fusion. LysoTracker staining demonstrated a decrease in lysosomes in cells expressing the NS mutant compared to those expressing wild-type NS. We further explored the mTOR-associated regulatory pathway, a key regulator affected by NS mutant expression. The observed inhibition of replication could be linked to conformational changes in the NSs, impairing their binding to NP and altering mTOR regulation, a crucial upstream signaling component in autophagy. These findings illuminate the intricate interplay between NSsW61Y and the suppression of host autophagy machinery, which is crucial for the generation of autophagosomes to facilitate viral replication.


Subject(s)
Autophagosomes , Autophagy , Phlebovirus , Tryptophan , Tyrosine , Viral Nonstructural Proteins , Virus Replication , Humans , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Virus Replication/genetics , Autophagosomes/metabolism , HeLa Cells , Phlebovirus/genetics , Phlebovirus/physiology , Phlebovirus/metabolism , Autophagy/genetics , Tyrosine/metabolism , Tryptophan/metabolism , TOR Serine-Threonine Kinases/metabolism , Mutation , Amino Acid Substitution , Severe Fever with Thrombocytopenia Syndrome/metabolism , Severe Fever with Thrombocytopenia Syndrome/virology , Severe Fever with Thrombocytopenia Syndrome/genetics , Lysosomes/metabolism , Nucleoproteins/metabolism , Nucleoproteins/genetics
17.
J Biol Chem ; 298(1): 101500, 2022 01.
Article in English | MEDLINE | ID: mdl-34929171

ABSTRACT

In HIV, the polyprotein precursor Gag orchestrates the formation of the viral capsid. In the current view of this viral assembly, Gag forms low-order oligomers that bind to the viral genomic RNA triggering the formation of high-ordered ribonucleoprotein complexes. However, this assembly model was established using biochemical or imaging methods that do not describe the cellular location hosting Gag-gRNA complex nor distinguish gRNA packaging in single particles. Here, we studied the intracellular localization of these complexes by electron microscopy and monitored the distances between the two partners by morphometric analysis of gold beads specifically labeling Gag and gRNA. We found that formation of these viral clusters occurred shortly after the nuclear export of the gRNA. During their transport to the plasma membrane, the distance between Gag and gRNA decreases together with an increase of gRNA packaging. Point mutations in the zinc finger patterns of the nucleocapsid domain of Gag caused an increase in the distance between Gag and gRNA as well as a sharp decrease of gRNA packaged into virions. Finally, we show that removal of stem loop 1 of the 5'-untranslated region does not interfere with gRNA packaging, whereas combined with the removal of stem loop 3 is sufficient to decrease but not abolish Gag-gRNA cluster formation and gRNA packaging. In conclusion, this morphometric analysis of Gag-gRNA cluster formation sheds new light on HIV-1 assembly that can be used to describe at nanoscale resolution other viral assembly steps involving RNA or protein-protein interactions.


Subject(s)
Gene Products, gag , HIV-1 , Nucleoproteins , 5' Untranslated Regions , Gene Products, gag/genetics , Gene Products, gag/metabolism , Genomics , HIV-1/genetics , HIV-1/metabolism , Microscopy, Electron, Transmission , Nucleoproteins/genetics , Nucleoproteins/metabolism , RNA, Guide, Kinetoplastida , RNA, Viral/genetics , RNA, Viral/metabolism , Virus Assembly/genetics
18.
J Gen Virol ; 104(9)2023 09.
Article in English | MEDLINE | ID: mdl-37698490

ABSTRACT

Arenaviridae is a family for ambisense RNA viruses with genomes of about 10.5 kb that infect mammals, snakes, and fish. The arenavirid genome consists of two or three single-stranded RNA segments and encodes a nucleoprotein (NP), a glycoprotein (GP) and a large (L) protein containing RNA-directed RNA polymerase (RdRP) domains; some arenavirids encode a zinc-binding protein (Z). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) report on the family Arenaviridae, which is available at www.ictv.global/report/arenaviridae.


Subject(s)
Arenaviridae , Animals , Arenaviridae/genetics , Nucleoproteins/genetics , RNA , RNA-Dependent RNA Polymerase , Mammals
19.
J Gen Virol ; 104(12)2023 12.
Article in English | MEDLINE | ID: mdl-38064269

ABSTRACT

Leishbuviridae is a family of negative-sense RNA viruses with genomes of about 8.0 kb that have been found in protists. The leishbuvirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Leishbuviridae, which is available at ictv.global/report/leishbuviridae.


Subject(s)
Genome, Viral , RNA Viruses , RNA Viruses/genetics , Negative-Sense RNA Viruses , Nucleoproteins/genetics , Virus Replication , Virion/genetics
20.
J Gen Virol ; 104(12)2023 12.
Article in English | MEDLINE | ID: mdl-38059782

ABSTRACT

Discoviridae is a family of negative-sense RNA viruses with genomes of 6.2-9.7 kb that have been associated with fungi and stramenopiles. The discovirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a nonstructural protein (Ns), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Discoviridae, which is available at ictv.global/report/discoviridae.


Subject(s)
RNA Viruses , Viruses , RNA Viruses/genetics , Genome, Viral , Viruses/genetics , Negative-Sense RNA Viruses , Nucleoproteins/genetics , Virus Replication , Virion/genetics
SELECTION OF CITATIONS
SEARCH DETAIL