Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.070
Filter
Add more filters

Publication year range
1.
Drug Metab Dispos ; 52(4): 288-295, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38331874

ABSTRACT

Gemcitabine (dFdC) and emtricitabine (FTC) are first-line drugs that are used for the treatment of pancreatic cancer and human immunodeficiency virus, respectively. The above drugs must undergo sequential phosphorylation to become pharmacologically active. Interindividual variability associated with the responses of the above drugs has been reported. The molecular mechanisms underlying the observed variability are yet to be elucidated. Although this could be multifactorial, nucleotidases may be involved in the dephosphorylation of drug metabolites due to their structural similarity to endogenous nucleosides. With these in mind, we performed in vitro assays using recombinant nucleotidases to assess their enzymatic activities toward the metabolites of dFdC and FTC. From the above in vitro experiments, we noticed the dephosphorylation of dFdC-monophosphate in the presence of two 5'-nucleotidases (5'-NTs), cytosolic 5'-nucleotidase IA (NT5C1A) and cytosolic 5'-nucleotidase III (NT5C3), individually. Interestingly, FTC monophosphate was dephosphorylated only in the presence of NT5C3 enzyme. Additionally, nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1) exhibited enzymatic activity toward both triphosphate metabolites of dFdC and FTC. Enzyme kinetic analysis further revealed Michaelis-Menten kinetics for both NT5C3-mediated dephosphorylation of monophosphate metabolites, as well as NTPDase 1-mediated dephosphorylation of triphosphate metabolites. Immunoblotting results confirmed the presence of NT5C3 and NTPDase 1 in both pancreatic and colorectal tissue that are target sites for dFdC and FTC treatment, respectively. Furthermore, sex-specific expression patterns of NT5C3 and NTPDase 1 were determined using mass spectrometry-based proteomics approach. Based on the above results, NT5C3 and NTPDase 1 may function in the control of the levels of dFdC and FTC metabolites. SIGNIFICANCE STATEMENT: Emtricitabine and gemcitabine are commonly used drugs for the treatment of human immunodeficiency virus and pancreatic cancer. To become pharmacologically active, both the above drugs must be phosphorylated. The variability in the responses of the above drugs can lead to poor clinical outcomes. Although the sources of drug metabolite concentration variability are multifactorial, it is vital to understand the role of nucleotidases in the tissue disposition of the above drug metabolites due to their structural similarities to endogenous nucleosides.


Subject(s)
Gemcitabine , Pancreatic Neoplasms , Polyphosphates , Female , Humans , Male , 5'-Nucleotidase/metabolism , Deoxycytidine , Emtricitabine/chemistry , Emtricitabine/metabolism , Kinetics , Nucleotidases/metabolism , Nucleotides , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism
2.
BMC Cancer ; 23(1): 1007, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37858061

ABSTRACT

BACKGROUND: CANT1, as calcium-activated protein nucleotidase 1, is a kind of phosphatase. It is overexpressed in some tumors and related to poor prognosis, but few studies explore its function and carcinogenic mechanism in hepatocellular carcinoma (HCC). METHODS: The expression of CANT1 mRNA and protein was analyzed by the Cancer Genome Atlas (TCGA) database and immunohistochemistry(IHC) staining. The relationship between CANT1 expression and clinicopathology was evaluated by various public databases. The receiver operating characteristic (ROC) curve was used to assess the diagnostic accuracy of CANT1 by the area under curve (AUC). Univariate, multivariate Cox regression and Kaplan-Meier curves were applied to evaluate the predictive value of CANT1 on the prognosis of HCC. Methsurv was used to analyze gene changes and DNA methylation, and its impact on prognosis. The enrichment analysis of DEGs associated with CANT1 revealed the biological process of CANT1 based on Gene Set Enrichment Analysis (GSEA). The relationship between immune cell infiltration level and CANT1 expression in HCC was investigated using the single-sample GSEA (ssGSEA) method and the Tumor Immune Estimation Resource (TIMER) database. Finally, the association between CANT1 and immune checkpoints and drug sensitivity was also analyzed. RESULTS: CANT1 was highly expressed in 22 cancers, including HCC, and CANT1 overexpression in HCC was confirmed by IHC. The expression of CANT1 was correlated with clinical features, such as histologic grade. Highly expressed CANT1 caused poor overall survival (OS) of HCC patients. Univariate and multivariate regression analysis suggested that CANT1 was an independent prognostic marker. Of the 31 DNA methylation at CpG sites, three CpG sites were associated with the prognosis of HCC. GSEA indicated that CANT1 was mainly involved in the cell cycle, DNA replication, and etc. Moreover, CANT1 expression was correlated with immune cell infiltration and independently associated with the prognosis of HCC patients. Finally, CANT1 expression was correlated with most immune checkpoints and drug sensitivity. CONCLUSION: CANT1 may be a latent oncogene of HCC, and associated with immune cells and immune checkpoints, which may assist in HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Hydrolases , Oncogenes , Phosphoric Monoester Hydrolases , Prognosis , Nucleotidases
3.
Appl Microbiol Biotechnol ; 107(7-8): 2289-2302, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36820897

ABSTRACT

To study the ability of Streptomyces to utilize environmental nucleotides, we screened for strains exhibiting extracellular 5'-inosine monophosphate (IMP)-dephosphorylating activity in our collection of soil isolates and obtained two producers: NE5-10 and Y2F8-2. The enzyme responsible for the activity was purified from the culture supernatant of each strain, and its mass spectral data were used to identify the coding sequence. The gene was successfully identified in the whole genome sequence of each strain; it was located in a conserved gene cluster of phosphate-related functions and encoded an approximately 600-amino acid long protein containing an N-terminal secretion signal. The mature part of the protein exhibited similarity to a known bacterial 5'-nucleotidase. The locus of the 5'-nucleotidase gene contained genes encoding proteins involved in phosphate utilization. The conserved gene arrangement of the locus in various Streptomyces genomes suggested the genetic region to be involved in phosphate-scavenging in this group of bacteria. Phylogenetic analysis demonstrated that the isolated Streptomyces enzymes represent an uncharacterized group of bacterial 5'-nucleotidases. Enzymatic characterization of the two Streptomyces enzymes demonstrated that both enzymes exhibited 5'-nucleotidase activity but differed in terms of optimal temperature and pH, dependence on divalent cations, and substrate specificity. The Km and Vmax values of the 5'-IMP-dephosphorylating activity were 0.239 mM and 9.47 U/mg, respectively, for NE5-10 and 0.221 mM and 38.17 U/mg, respectively, for Y2F8-2. Enzyme activity in the culture broth of the two Streptomyces producers occurred in a phosphate-limitation-dependent manner, supporting their involvement in the acquisition of phosphorus. KEY POINTS: • We purified and characterized nucleotidases from two Streptomyces. • Two nucleotidases were presumed to be involved in phosphate acquisition. • It showed diversity in phosphate acquisition among microorganisms.


Subject(s)
5'-Nucleotidase , Streptomyces , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , Amino Acid Sequence , Phylogeny , Nucleotidases/genetics , Nucleotidases/metabolism , Phosphates
4.
Proc Natl Acad Sci U S A ; 117(2): 993-999, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31879354

ABSTRACT

An intimate link exists between circadian clocks and metabolism with nearly every metabolic pathway in the mammalian liver under circadian control. Circadian regulation of metabolism is largely driven by rhythmic transcriptional activation of clock-controlled genes. Among these output genes, Nocturnin (Noct) has one of the highest amplitude rhythms at the mRNA level. The Noct gene encodes a protein (NOC) that is highly conserved with the endonuclease/exonuclease/phosphatase (EEP) domain-containing CCR4 family of deadenylases, but highly purified NOC possesses little or no ribonuclease activity. Here, we show that NOC utilizes the dinucleotide NADP(H) as a substrate, removing the 2' phosphate to generate NAD(H), and is a direct regulator of oxidative stress response through its NADPH 2' phosphatase activity. Furthermore, we describe two isoforms of NOC in the mouse liver. The cytoplasmic form of NOC is constitutively expressed and associates externally with membranes of other organelles, including the endoplasmic reticulum, via N-terminal glycine myristoylation. In contrast, the mitochondrial form of NOC possesses high-amplitude circadian rhythmicity with peak expression level during the early dark phase. These findings suggest that NOC regulates local intracellular concentrations of NADP(H) in a manner that changes over the course of the day.


Subject(s)
Circadian Rhythm/physiology , Liver/metabolism , Nuclear Proteins/metabolism , Nucleotidases/metabolism , Oxidative Stress/physiology , Transcription Factors/metabolism , Animals , Circadian Clocks/genetics , Circadian Clocks/physiology , Circadian Rhythm/genetics , Gene Expression Regulation , HEK293 Cells , Humans , Mice , Mice, Knockout , Mitochondria/metabolism , Nuclear Proteins/genetics , RNA, Messenger/metabolism , Transcription Factors/genetics , Transcriptome
5.
J Neurochem ; 160(3): 305-324, 2022 02.
Article in English | MEDLINE | ID: mdl-34905223

ABSTRACT

Extracellular adenosine plays prominent roles in the brain in both physiological and pathological conditions. Adenosine can be generated following the degradation of extracellular nucleotides by various types of ectonucleotidases. Several ectonucleotidases are present in the brain parenchyma: ecto-nucleotide triphosphate diphosphohydrolases 1 and 3 (NTPDase 1 and 3), ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP 1), ecto-5'-nucleotidase (eN), and tissue non-specific alkaline phosphatase (TNAP, whose function in the brain has received little attention). Here we examined, in a living brain preparation, the role of these ectonucleotidases in generating extracellular adenosine. We recorded local field potentials evoked by electrical stimulation of the lateral olfactory tract in the mouse piriform cortex in vitro. Variations in adenosine level were evaluated by measuring changes in presynaptic inhibition generated by adenosine A1 receptors (A1Rs) activation. A1R-mediated presynaptic inhibition was present endogenously and was enhanced by bath-applied AMP and ATP. We hypothesized that inhibiting ectonucleotidases would reduce extracellular adenosine concentration, which would result in a weakening of presynaptic inhibition. However, inhibiting TNAP had no effect in controlling endogenous adenosine action and no effect on presynaptic inhibition induced by bath-applied AMP. Furthermore, contrary to our expectation, inhibiting TNAP reinforced, rather than reduced, presynaptic inhibition induced by bath-applied ATP. Similarly, inhibition of NTPDase 1 and 3, NPP1, and eN induced stronger, rather than weaker, presynaptic inhibition, both in endogenous condition and with bath-applied ATP and AMP. Consequently, attempts to suppress the functions of extracellular adenosine by blocking its extracellular synthesis in living brain tissue could have functional impacts opposite to those anticipated.


Subject(s)
Cerebral Cortex/drug effects , Enzyme Inhibitors/pharmacology , Nucleotidases/antagonists & inhibitors , Synaptic Transmission/drug effects , 5'-Nucleotidase/antagonists & inhibitors , Adenosine/metabolism , Adenosine A1 Receptor Agonists/pharmacology , Adenosine Monophosphate/pharmacology , Adenosine Triphosphate/pharmacology , Alkaline Phosphatase/antagonists & inhibitors , Animals , Electric Stimulation , Evoked Potentials/drug effects , Female , Mice , Mice, Inbred C57BL , Olfactory Bulb/drug effects , Receptor, Adenosine A1/drug effects , Receptor, Adenosine A1/metabolism
6.
RNA ; 26(1): 29-43, 2020 01.
Article in English | MEDLINE | ID: mdl-31619505

ABSTRACT

During tRNA maturation in yeast, aberrant pre-tRNAs are targeted for 3'-5' degradation by the nuclear surveillance pathway, and aberrant mature tRNAs are targeted for 5'-3' degradation by the rapid tRNA decay (RTD) pathway. RTD is catalyzed by the 5'-3' exonucleases Xrn1 and Rat1, which act on tRNAs with an exposed 5' end due to the lack of certain body modifications or the presence of destabilizing mutations in the acceptor stem, T-stem, or tRNA fold. RTD is inhibited by mutation of MET22, likely due to accumulation of the Met22 substrate adenosine 3',5' bis-phosphate, which inhibits 5'-3' exonucleases. Here we provide evidence for a new tRNA quality control pathway in which intron-containing pre-tRNAs with destabilizing mutations in the anticodon stem are targeted for Met22-dependent pre-tRNA decay (MPD). Multiple SUP4οc anticodon stem variants that are subject to MPD each perturb the bulge-helix-bulge structure formed by the anticodon stem-loop and intron, which is important for splicing, resulting in substantial accumulation of end-matured unspliced pre-tRNA as well as pre-tRNA decay. Mutations that restore exon-intron structure commensurately reduce pre-tRNA accumulation and MPD. The MPD pathway can contribute substantially to decay of anticodon stem variants, since pre-tRNA decay is largely suppressed by removal of the intron or by restoration of exon-intron structure, each also resulting in increased tRNA levels. The MPD pathway is general as it extends to variants of tRNATyr(GUA) and tRNASer(CGA) These results demonstrate that the integrity of the anticodon stem-loop and the efficiency of tRNA splicing are monitored by a quality control pathway.


Subject(s)
Anticodon/genetics , Nucleotidases/metabolism , RNA Precursors/genetics , RNA Stability , RNA, Transfer/genetics , Saccharomyces cerevisiae/genetics , Exons/genetics , Introns/genetics , Mutation , Nucleic Acid Conformation , Nucleotidases/genetics , RNA Splicing
7.
J Virol ; 95(19): e0110421, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34232734

ABSTRACT

Modified vaccinia virus Ankara (MVA) was derived by repeated passaging in chick fibroblasts, during which deletions and mutations rendered the virus unable to replicate in most mammalian cells. Marker rescue experiments demonstrated that the host range defect could be overcome by replacing DNA that had been deleted from near the left end of the genome. One virus isolate, however, recovered the ability to replicate in monkey BS-C-1 cells but not human cells without added DNA, suggesting that it arose from a spontaneous mutation. Here, we showed that variants with enhanced ability to replicate in BS-C-1 cells could be isolated by blind passaging of MVA and that in each there was a point mutation leading to an amino acid substitution in the D10 decapping enzyme. The sufficiency of these single mutations to enhance host range was confirmed by constructing recombinant viruses. The D10 mutations occurred at N- or C-terminal locations distal to the active site, suggesting an indirect effect on decapping or on another previously unknown role of D10. Although increased amounts of viral mRNA and proteins were found in BS-C-1 cells infected with the mutants compared to those with parental MVA, the increases were much less than the 1- to 2-log-higher virus yields. Nevertheless, a contributing role for diminished decapping in overcoming the host range defect was consistent with increased replication and viral protein synthesis in BS-C-1 cells infected with an MVA engineered to have active-site mutations that abrogate decapping activity entirely. Optimal decapping may vary depending on the biological context. IMPORTANCE Modified vaccinia virus Ankara (MVA) is an attenuated virus that is approved as a smallpox vaccine and is in clinical trials as a vector for other pathogens. The safety of MVA is due in large part to its inability to replicate in mammalian cells. Although host range restriction is considered a stable feature of the virus, we describe the occurrence of spontaneous mutations in MVA that increase replication considerably in monkey BS-C-1 cells but only slightly in human cells. The mutants contain single nucleotide changes that lead to amino acid substitutions in one of the two decapping enzymes. Although the spontaneous mutations are distant from the decapping enzyme active site, engineered active-site mutations also increased virus replication in BS-C-1 cells. The effects of these mutations on the immunogenicity of MVA vectors remain to be determined.


Subject(s)
Nucleotidases/genetics , Nucleotidases/metabolism , Vaccinia virus/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Animals , Catalytic Domain , Cell Line , Chick Embryo , Chlorocebus aethiops , Homologous Recombination , Host Specificity , Humans , Nucleotidases/chemistry , Open Reading Frames , Point Mutation , RNA, Messenger/metabolism , RNA, Viral/metabolism , Sequence Deletion , Vaccinia virus/genetics , Viral Plaque Assay , Viral Proteins/chemistry , Virus Replication
8.
BMC Cancer ; 22(1): 117, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35090419

ABSTRACT

BACKGROUND: Calcium-activated nucleotidase 1 (CANT1), functions as a calcium-dependent nucleotidase with a preference for UDP. However, the potential clinical value of CANT1 in lung adenocarcinoma (LA) has not been fully clarified. Thus, we sought to identify its potential biological function and mechanism through bioinformatics analysis and in vitro experiments in LA. METHODS: In the present study, we comprehensively investigated the prognostic role of CANT1 in LA patients through bioinformatics analysis and in vitro experiments. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were utilized to analyze the expression of CANT1 in LA patients and their clinical-prognostic value. The immunohistochemistry staining was obtained from the Human Protein Atlas (HPA). A Cox regression model was used to evaluate prognostic factors. Gene ontology (GO) and Gene set enrichment analysis (GSEA) was performed to explore the potential regulatory mechanism of CANT1 in the development of LA. Moreover, we also examined the relationship between CANT1 expression and DNA methylation. Finally, we did in vitro experiments to evaluate the biological behavior and role of CANT1 in LA cells (LACs). RESULTS: Our study showed that the CANT1 expression was significantly elevated in the LA tissues compared with the normal lung tissues. Increased CANT1 expression was significantly associated with the TN stage. A univariate Cox analysis indicated that high CANT1 expression levels were correlated with poor overall survival (OS) in LA. Besides, CANT1 expression was independently associated with OS in multivariate analysis. GO and GSEA analysis showed the enrichment of mitotic nuclear division, DNA methylation, and DNA damage. Then we found that the high expression of CANT1 is positively correlated with hypomethylation. The methylation level was associated with prognosis in LA patients. Finally, in vitro experiments indicated that knockdown of CANT1 resulted in decreased cell proliferation, invasion, and G1 phase cell-cycle arrest in LACs. CONCLUSION: The present study suggested that CANT1 may serve as a potential prognosis biomarker in patients with LA. High CANT1 expression and promoter demethylation was associated with worse outcome. Finally, in vitro experiments verified the biological functions and behaviors of CANT1 in LA.


Subject(s)
Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/mortality , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Nucleotidases/metabolism , Aged , Biomarkers, Tumor/genetics , Cell Proliferation/genetics , DNA Damage/genetics , DNA Methylation/genetics , Female , Gene Ontology , Humans , Male , Prognosis
9.
Immunity ; 38(4): 729-41, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23562161

ABSTRACT

The therapeutic efficacy of anthracyclines relies on antitumor immune responses elicited by dying cancer cells. How chemotherapy-induced cell death leads to efficient antigen presentation to T cells, however, remains a conundrum. We found that intratumoral CD11c(+)CD11b(+)Ly6C(hi) cells, which displayed some characteristics of inflammatory dendritic cells and included granulomonocytic precursors, were crucial for anthracycline-induced anticancer immune responses. ATP released by dying cancer cells recruited myeloid cells into tumors and stimulated the local differentiation of CD11c(+)CD11b(+)Ly6C(hi) cells. Such cells efficiently engulfed tumor antigens in situ and presented them to T lymphocytes, thus vaccinating mice, upon adoptive transfer, against a challenge with cancer cells. Manipulations preventing tumor infiltration by CD11c(+)CD11b(+)Ly6C(hi) cells, such as the local overexpression of ectonucleotidases, the blockade of purinergic receptors, or the neutralization of CD11b, abolished the immune system-dependent antitumor activity of anthracyclines. Our results identify a subset of tumor-infiltrating leukocytes as therapy-relevant antigen-presenting cells.


Subject(s)
Anthracyclines/administration & dosage , Antigen-Presenting Cells/immunology , Antineoplastic Agents/administration & dosage , Dendritic Cells/immunology , Neoplasms, Experimental/immunology , Adoptive Transfer , Animals , Anthracyclines/adverse effects , Antigens, Ly/metabolism , Antigens, Neoplasm/immunology , Antineoplastic Agents/adverse effects , Apoptosis , CD11b Antigen/metabolism , CD11c Antigen/metabolism , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Granulocyte Precursor Cells/immunology , Immunity, Cellular , Mice , Mice, Inbred C57BL , Monocyte-Macrophage Precursor Cells/immunology , Neoplasms, Experimental/drug therapy , Nucleotidases/metabolism , Receptors, Purinergic/metabolism
10.
Anticancer Drugs ; 32(7): 693-702, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33675611

ABSTRACT

Lung squamous carcinoma (LUSC) is the second most frequent subtype of non-small cell lung cancer. Rarely gene alterations are identified in LUSC. Therefore, identifying LUSC-related genes to explain the relevant molecular mechanism is urgently needed. A potential biomarker, calcium-activated nucleotidase 1 (CANT1), was elevated in tissues of LUSC patients relative to normal cases based on the TCGA and/or GTEx database. CCK-8 and transwell tests were then implemented to measure the proliferative, invasive and migratory capacities, and showed that knockdown of CANT1 blocked LUSC cells proliferation. miR-607, predicted as an upstream factor for CANT1, was declined in LUSC using TargetScan analysis and luciferase activity test. Low miR-607 expression was related with unfavorable outcomes of LUSC patients. Moreover, miR-607 downregulation elevated cell viability, invasion and migration in LUSC cells, which was antagonized by si-CANT1. GEPIA website was accessed to estimate the relevance between CANT1 and epithelial-mesenchymal transition (EMT)-related positive factors. The protein levels of Fibronectin, Vimentin, Snail and ß-catenin were altered due to the abnormal CANT1 and miR-607 expression. Together, these data unveiled that miR-607/CANT1 pair may exert a vital role in the progression of LUSC through mediating EMT process, which would furnish an available therapeutic therapy for LUSC.


Subject(s)
Carcinoma, Squamous Cell/pathology , Lung Neoplasms/pathology , MicroRNAs/metabolism , Nucleotidases/metabolism , Biomarkers, Tumor , Cell Line, Tumor , Cell Survival , Down-Regulation , Fibronectins/biosynthesis , Gene Expression Regulation, Neoplastic , Humans , Vimentin/biosynthesis
11.
J Med Genet ; 57(7): 454-460, 2020 07.
Article in English | MEDLINE | ID: mdl-31988067

ABSTRACT

BACKGROUND: Pseudodiastrophic dysplasia (PDD) is a severe skeletal dysplasia associated with prenatal manifestation and early lethality. Clinically, PDD is classified as a 'dysplasia with multiple joint dislocations'; however, the molecular aetiology of the disorder is currently unknown. METHODS: Whole exome sequencing (WES) was performed on three patients from two unrelated families, clinically diagnosed with PDD, in order to identify the underlying genetic cause. The functional effects of the identified variants were characterised using primary cells and human cell-based overexpression assays. RESULTS: WES resulted in the identification of biallelic variants in the established skeletal dysplasia genes, B3GAT3 (family 1) and CANT1 (family 2). Mutations in these genes have previously been reported to cause 'multiple joint dislocations, short stature, and craniofacial dysmorphism with or without congenital heart defects' ('JDSCD'; B3GAT3) and Desbuquois dysplasia 1 (CANT1), disorders in the same nosological group as PDD. Follow-up of the B3GAT3 variants demonstrated significantly reduced B3GAT3/GlcAT-I expression. Downstream in vitro functional analysis revealed abolished biosynthesis of glycosaminoglycan side chains on proteoglycans. Functional evaluation of the CANT1 variant showed impaired nucleotidase activity, which results in inhibition of glycosaminoglycan synthesis through accumulation of uridine diphosphate. CONCLUSION: For the families described in this study, the PDD phenotype was caused by mutations in the known skeletal dysplasia genes B3GAT3 and CANT1, demonstrating the advantage of genomic analyses in delineating the molecular diagnosis of skeletal dysplasias. This finding expands the phenotypic spectrum of B3GAT3-related and CANT1-related skeletal dysplasias to include PDD and highlights the significant phenotypic overlap of conditions within the proteoglycan biosynthesis pathway.


Subject(s)
Dwarfism/genetics , Glucuronosyltransferase/genetics , Heart Defects, Congenital/genetics , Hernia, Umbilical/genetics , Nucleotidases/genetics , Dwarfism/pathology , Female , Gene Expression Regulation/genetics , Genetic Predisposition to Disease , Heart Defects, Congenital/pathology , Hernia, Umbilical/pathology , Humans , Male , Mutation, Missense/genetics , Phenotype , Pregnancy , Proteoglycans , Exome Sequencing
12.
Nucleic Acids Res ; 47(22): 11826-11838, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31722405

ABSTRACT

Fungal tRNA ligase (Trl1) rectifies RNA breaks with 2',3'-cyclic-PO4 and 5'-OH termini. Trl1 consists of three catalytic modules: an N-terminal ligase (LIG) domain; a central polynucleotide kinase (KIN) domain; and a C-terminal cyclic phosphodiesterase (CPD) domain. Trl1 enzymes found in all human fungal pathogens are untapped targets for antifungal drug discovery. Here we report a 1.9 Å crystal structure of Trl1 KIN-CPD from the pathogenic fungus Candida albicans, which adopts an extended conformation in which separate KIN and CPD domains are connected by an unstructured linker. CPD belongs to the 2H phosphotransferase superfamily by dint of its conserved central concave ß sheet and interactions of its dual HxT motif histidines and threonines with phosphate in the active site. Additional active site motifs conserved among the fungal CPD clade of 2H enzymes are identified. We present structures of the Candida Trl1 KIN domain at 1.5 to 2.0 Å resolution-as apoenzyme and in complexes with GTP•Mg2+, IDP•PO4, and dGDP•PO4-that highlight conformational switches in the G-loop (which recognizes the guanine base) and lid-loop (poised over the nucleotide phosphates) that accompany nucleotide binding.


Subject(s)
Catalytic Domain , Guanosine Triphosphate/metabolism , RNA Ligase (ATP)/chemistry , RNA Ligase (ATP)/metabolism , Amino Acid Sequence , Base Sequence , Candida albicans , Catalytic Domain/genetics , Crystallography, X-Ray , Models, Molecular , Nucleotidases/chemistry , Polynucleotide 5'-Hydroxyl-Kinase/chemistry , Protein Binding , Protein Conformation , Protein Folding , RNA Ligase (ATP)/genetics , Structure-Activity Relationship
13.
Proc Natl Acad Sci U S A ; 115(12): 3000-3005, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29507250

ABSTRACT

Sulfur assimilation is an evolutionarily conserved pathway that plays an essential role in cellular and metabolic processes, including sulfation, amino acid biosynthesis, and organismal development. We report that loss of a key enzymatic component of the pathway, bisphosphate 3'-nucleotidase (Bpnt1), in mice, both whole animal and intestine-specific, leads to iron-deficiency anemia. Analysis of mutant enterocytes demonstrates that modulation of their substrate 3'-phosphoadenosine 5'-phosphate (PAP) influences levels of key iron homeostasis factors involved in dietary iron reduction, import and transport, that in part mimic those reported for the loss of hypoxic-induced transcription factor, HIF-2α. Our studies define a genetic basis for iron-deficiency anemia, a molecular approach for rescuing loss of nucleotidase function, and an unanticipated link between nucleotide hydrolysis in the sulfur assimilation pathway and iron homeostasis.


Subject(s)
Homeostasis/physiology , Intestines/physiology , Iron/metabolism , Sulfur/metabolism , Animals , Gene Expression Regulation, Enzymologic , Genotype , Mice , Mice, Knockout , Nucleotidases
14.
Int J Mol Sci ; 22(21)2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34768881

ABSTRACT

Although the enhanced responses against serum cell-free DNA (cfDNA) in cases of sepsis-a life-threatening organ dysfunction due to systemic infection-are understood, the influence of the cytosolic DNA receptor cGAS (cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase) on sepsis is still unclear. Here, experiments on cGAS deficient (cGAS-/-) mice were conducted using cecal ligation and puncture (CLP) and lipopolysaccharide (LPS) injection sepsis models and macrophages. Severity of CLP in cGAS-/- mice was less severe than in wildtype (WT) mice, as indicated by mortality, serum LPS, cfDNA, leukopenia, cytokines (TNF-α, IL-6 and IL-10), organ histology (lung, liver and kidney) and spleen apoptosis. With the LPS injection model, serum cytokines in cGAS-/- mice were lower than in WT mice, despite the similar serum cfDNA level. Likewise, in LPS-activated WT macrophages, the expression of several mitochondria-associated genes (as revealed by RNA sequencing analysis) and a profound reduction in mitochondrial parameters, including maximal respiration (determined by extracellular flux analysis), DNA (mtDNA) and mitochondrial abundance (revealed by fluorescent staining), were demonstrated. These data implied the impact of cfDNA resulting from LPS-induced cell injury. In parallel, an additive effect of bacterial DNA on LPS, seen in comparison with LPS alone, was demonstrated in WT macrophages, but not in cGAS-/- cells, as indicated by supernatant cytokines (TNF-α and IL-6), M1 proinflammatory polarization (iNOS and IL-1ß), cGAS, IFN-γ and supernatant cyclic GMP-AMP (cGAMP). In conclusion, cGAS activation by cfDNA from hosts (especially mtDNA) and bacteria was found to induce an additive proinflammatory effect on LPS-activated macrophages which was perhaps responsible for the more pronounced sepsis hyperinflammation observed in WT mice compared with the cGAS-/- group.


Subject(s)
Nucleotidyltransferases/metabolism , Sepsis/metabolism , Animals , Cecum/metabolism , Cytokines/metabolism , DNA/metabolism , Interleukin-10/metabolism , Lipopolysaccharides/adverse effects , Lipopolysaccharides/pharmacology , Liver/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Nucleotidases/metabolism , Nucleotides, Cyclic , Nucleotidyltransferases/deficiency , Nucleotidyltransferases/genetics , Sepsis/prevention & control , Severity of Illness Index , Tumor Necrosis Factor-alpha/metabolism
15.
Molecules ; 26(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923386

ABSTRACT

The 5'-nucleotidase UshA and the 3'-nucleotidase CpdB from Escherichia coli are broad-specificity phosphohydrolases with similar two-domain structures. Their N-terminal domains (UshA_Ndom and CpdB_Ndom) contain the catalytic site, and their C-terminal domains (UshA_Cdom and CpdB_Cdom) contain a substrate-binding site responsible for specificity. Both enzymes show only partial overlap in their substrate specificities. So, it was decided to investigate the catalytic behavior of chimeras bearing the UshA catalytic domain and the CpdB specificity domain, or vice versa. UshA_Ndom-CpdB_Cdom and CpdB_Ndom-UshA_Cdom were constructed and tested on substrates specific to UshA (5'-AMP, CDP-choline, UDP-glucose) or to CpdB (3'-AMP), as well as on 2',3'-cAMP and on the common phosphodiester substrate bis-4-NPP (bis-4-nitrophenylphosphate). The chimeras did show neither 5'-nucleotidase nor 3'-nucleotidase activity. When compared to UshA, UshA_Ndom-CpdB_Cdom conserved high activity on bis-4-NPP, some on CDP-choline and UDP-glucose, and displayed activity on 2',3'-cAMP. When compared to CpdB, CpdB_Ndom-UshA_Cdom conserved phosphodiesterase activities on 2',3'-cAMP and bis-4-NPP, and gained activity on the phosphoanhydride CDP-choline. Therefore, the non-nucleotidase activities of UshA and CpdB are not fully dependent on the interplay between domains. The specificity domains may confer the chimeras some of the phosphodiester or phosphoanhydride selectivity displayed when associated with their native partners. Contrarily, the nucleotidase activity of UshA and CpdB depends strictly on the interplay between their native catalytic and specificity domains.


Subject(s)
Nucleotidases/metabolism , Binding Sites , Catalysis , Phosphoric Diester Hydrolases/metabolism , Substrate Specificity
16.
Angew Chem Int Ed Engl ; 60(19): 10775-10783, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33325148

ABSTRACT

Recent demonstrations of RNA-DNA chimeras (RDNA) enabling RNA and DNA replication, coupled with prebiotic co-synthesis of deoxyribo- and ribo-nucleotides, have resurrected the hypothesis of co-emergence of RNA and DNA. As further support, we show that diamidophosphate (DAP) with 2-aminoimidazole (amido)phosphorylates and oligomerizes deoxynucleosides to form DNA-under conditions similar to those of ribonucleosides. The pyrimidine deoxynucleoside 5'-O-amidophosphates are formed in good (≈60 %) yields. Intriguingly, the presence of pyrimidine deoxynucleos(t)ides increased the yields of purine deoxynucleotides (≈20 %). Concomitantly, oligomerization (≈18-31 %) is observed with predominantly 3',5'-phosphodiester DNA linkages, and some (<5 %) pyrophosphates. Combined with previous observations of DAP-mediated chemistries and the constructive role of RDNA chimeras, the results reported here help set the stage for systematic investigation of a systems chemistry approach of RNA-DNA coevolution.


Subject(s)
DNA/chemistry , Nucleotidases/chemical synthesis , Molecular Structure , Nucleotidases/chemistry , Phosphorylation
17.
Trends Biochem Sci ; 41(12): 1050-1060, 2016 12.
Article in English | MEDLINE | ID: mdl-27658684

ABSTRACT

The GTPase superfamily of proteins provides molecular switches to regulate numerous cellular processes. The 'GTPase switch' paradigm, in which external regulatory factors control the switch of a GTPase between 'on' and 'off' states, has been used to interpret the regulatory mechanism of many GTPases. However, recent work unveiled a class of nucleotide hydrolases that do not adhere to this classical paradigm. Instead, they use nucleotide-dependent dimerization cycles to regulate key cellular processes. In this review article, recent studies of dimeric GTPases and ATPases involved in intracellular protein targeting are summarized. It is suggested that these proteins can use the conformational plasticity at their dimer interface to generate multiple points of regulation, thereby providing the driving force and spatiotemporal coordination of complex cellular pathways.


Subject(s)
Adenosine Triphosphatases/chemistry , Evolution, Molecular , GTP Phosphohydrolases/chemistry , Guanine Nucleotide Exchange Factors/chemistry , Nucleotidases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Adenosine Triphosphatases/classification , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Archaea/classification , Archaea/genetics , Archaea/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , GTP Phosphohydrolases/classification , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Gene Expression , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Nucleotidases/classification , Nucleotidases/genetics , Nucleotidases/metabolism , Phylogeny , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Transport , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
18.
Purinergic Signal ; 16(2): 187-211, 2020 06.
Article in English | MEDLINE | ID: mdl-32367441

ABSTRACT

The goal of this study was to determine the validity of using N6-etheno-bridged adenine nucleotides to evaluate ecto-nucleotidase activity. We observed that the metabolism of N6-etheno-ATP versus ATP was quantitatively similar when incubated with recombinant CD39, ENTPD2, ENTPD3, or ENPP-1, and the quantitative metabolism of N6-etheno-AMP versus AMP was similar when incubated with recombinant CD73. This suggests that ecto-nucleotidases process N6-etheno-bridged adenine nucleotides similarly to endogenous adenine nucleotides. Four cell types rapidly (t1/2, 0.21 to 0.66 h) metabolized N6-etheno-ATP. Applied N6-etheno-ATP was recovered in the medium as N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and surprisingly N6-etheno-adenine; intracellular N6-etheno compounds were undetectable. This suggests minimal cellular uptake, intracellular metabolism, or deamination of these compounds. N6-etheno-ATP, N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and N6-etheno-adenine had little affinity for recombinant A1, A2A, or A2B receptors, for a subset of P2X receptors (3H-α,ß-methylene-ATP binding to rat bladder membranes), or for a subset of P2Y receptors (35S-ATP-αS binding to rat brain membranes), suggesting minimal pharmacological activity. N6-etheno-adenosine was partially converted to N6-etheno-adenine in four different cell types; this was blocked by purine nucleoside phosphorylase (PNPase) inhibition. Intravenous N6-etheno-ATP was quickly metabolized, with N6-etheno-adenine being the main product in naïve rats, but not in rats pretreated with a PNPase inhibitor. PNPase inhibition reduced the urinary excretion of endogenous adenine and attenuated the conversion of exogenous adenosine to adenine in the renal cortex. The N6-etheno-bridge method is a valid technique to assess extracellular metabolism of adenine nucleotides by ecto-nucleotidases. Also, rats express an enzyme with PNPase-like activity that metabolizes N6-etheno-adenosine to N6-etheno-adenine.


Subject(s)
Adenine Nucleotides/metabolism , Adenosine Triphosphatases/metabolism , Adenosine/metabolism , Purine-Nucleoside Phosphorylase/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/metabolism , Animals , Male , Nucleotidases/metabolism , Rats
19.
Mol Cell ; 45(3): 357-70, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22325353

ABSTRACT

DNA methylation is an important epigenetic mark established by the combined actions of methylation and demethylation reactions. Plants use a base excision repair pathway for active DNA demethylation. After 5-methylcytosine removal, the Arabidopsis DNA glycosylase/lyase ROS1 incises the DNA backbone and part of the product has a single-nucleotide gap flanked by 3'- and 5'-phosphate termini. Here we show that the DNA phosphatase ZDP removes the blocking 3' phosphate, allowing subsequent DNA polymerization and ligation steps needed to complete the repair reactions. ZDP and ROS1 interact in vitro and colocalize in vivo in nucleoplasmic foci. Extracts from zdp mutant plants are unable to complete DNA demethylation in vitro, and the mutations cause DNA hypermethylation and transcriptional silencing of a reporter gene. Genome-wide methylation analysis in zdp mutant plants identified hundreds of hypermethylated endogenous loci. Our results show that ZDP functions downstream of ROS1 in one branch of the active DNA demethylation pathway.


Subject(s)
Arabidopsis/enzymology , DNA Methylation , Nucleotidases/chemistry , 5-Methylcytosine/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Base Sequence , Cell Nucleus/metabolism , DNA Cleavage , Gene Expression Regulation, Plant , Gene Silencing , Genes, Reporter , Genetic Loci , Genome, Plant , Kinetics , Luciferases/biosynthesis , Luciferases/genetics , Molecular Sequence Data , Mutagenesis, Insertional , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Nucleotidases/genetics , Nucleotidases/metabolism , Protein Binding , RNA-Binding Proteins/metabolism , Transcription, Genetic
20.
J Cell Physiol ; 234(12): 22635-22647, 2019 12.
Article in English | MEDLINE | ID: mdl-31102300

ABSTRACT

Calcium-activated nucleotidase 1 (CANT1, belongs to the apyrase family, is widely expressed in various organs. However, the biological function of CANT1 remains poorly explored. In this study, we aimed to investigate the expression profile and functions of CANT1 in clear cell renal cell carcinoma (ccRCC). Our data show that the protein level of CANT1 was significantly higher in tumor tissues than in adjacent normal tissues. CANT1 silencing suppressed cell proliferation, migration, and invasion obviously in 769-P and 786-O cells, arrested cell cycle in S phase and promoted apoptosis in 769-P cells. In conclusion, the present study shows the different expression mode of CANT1 in human ccRCC tumor tissue and adjacent normal tissue, denotes the function of CANT1 in ccRCC cells and provides potential molecular mechanisms and pathways of CANT1 antitumor function in ccRCC.


Subject(s)
Carcinoma, Renal Cell/enzymology , Cell Proliferation , Kidney Neoplasms/enzymology , Nucleotidases/metabolism , RNA Interference , Apoptosis , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Movement , Enzyme Repression , Gene Expression Regulation, Neoplastic , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Neoplasm Invasiveness , Nucleotidases/genetics , S Phase Cell Cycle Checkpoints , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL