Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 513
Filter
Add more filters

Publication year range
1.
BMC Biol ; 22(1): 34, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331819

ABSTRACT

BACKGROUND: Viviparity-live birth-is a complex and innovative mode of reproduction that has evolved repeatedly across the vertebrate Tree of Life. Viviparous species exhibit remarkable levels of reproductive diversity, both in the amount of care provided by the parent during gestation, and the ways in which that care is delivered. The genetic basis of viviparity has garnered increasing interest over recent years; however, such studies are often undertaken on small evolutionary timelines, and thus are not able to address changes occurring on a broader scale. Using whole genome data, we investigated the molecular basis of this innovation across the diversity of vertebrates to answer a long held question in evolutionary biology: is the evolution of convergent traits driven by convergent genomic changes? RESULTS: We reveal convergent changes in protein family sizes, protein-coding regions, introns, and untranslated regions (UTRs) in a number of distantly related viviparous lineages. Specifically, we identify 15 protein families showing evidence of contraction or expansion associated with viviparity. We additionally identify elevated substitution rates in both coding and noncoding sequences in several viviparous lineages. However, we did not find any convergent changes-be it at the nucleotide or protein level-common to all viviparous lineages. CONCLUSIONS: Our results highlight the value of macroevolutionary comparative genomics in determining the genomic basis of complex evolutionary transitions. While we identify a number of convergent genomic changes that may be associated with the evolution of viviparity in vertebrates, there does not appear to be a convergent molecular signature shared by all viviparous vertebrates. Ultimately, our findings indicate that a complex trait such as viviparity likely evolves with changes occurring in multiple different pathways.


Subject(s)
Biological Evolution , Lizards , Animals , Viviparity, Nonmammalian/genetics , Oviparity/genetics , Lizards/genetics , Genomics
2.
Heredity (Edinb) ; 132(2): 67-76, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37968348

ABSTRACT

Selective processes act on phenotypic variation although the evolutionary potential of a trait relies on the underlying heritable variation. Developmental plasticity is an important source of phenotypic variation, but it can also promote changes in genetic variation, yet we have a limited understanding of how they are both impacted. Here, we quantified the influence of developmental temperature on growth in delicate skinks (Lampropholis delicata) and partitioned total phenotypic variance using an animal model fitted with a genomic relatedness matrix. We measured mass for 261 individuals (nhot = 125, ncold = 136) over 16 months (nobservations = 3002) and estimated heritability and maternal effects over time. Our results show that lizards reared in cold developmental temperatures had consistently higher mass across development compared to lizards that were reared in hot developmental temperatures. However, developmental temperature did not impact the rate of growth. On average, additive genetic variance, maternal effects and heritability were higher in the hot developmental temperature treatment; however, these differences were not statistically significant. Heritability increased with age, whereas maternal effects decreased upon hatching but increased again at a later age, which could be driven by social competition or intrinsic changes in the expression of variation as an individual's growth. Our work suggests that the evolutionary potential of growth is complex, age-dependent and not overtly affected by extremes in natural nest temperatures.


Subject(s)
Lizards , Oviparity , Animals , Lizards/genetics , Temperature , Hot Temperature , Biological Evolution
3.
J Exp Biol ; 227(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39109475

ABSTRACT

Animals at early life stages are generally more sensitive to environmental stress than adults. This is especially true of oviparous vertebrates that develop in variable environments with little or no parental care. These organisms regularly experience environmental fluctuations as part of their natural development, but climate change is increasing the frequency and intensity of these events. The developmental plasticity of oviparous vertebrates will therefore play a critical role in determining their future fitness and survival. In this Review, we discuss and compare the phenotypic consequences of chronic developmental hypoxia on the cardiovascular system of oviparous vertebrates. In particular, we focus on species-specific responses, critical windows, thresholds for responses and the interactive effects of other stressors, such as temperature and hypercapnia. Although important progress has been made, our Review identifies knowledge gaps that need to be addressed if we are to fully understand the impact of climate change on the developmental plasticity of the oviparous vertebrate cardiovascular system.


Subject(s)
Cardiovascular System , Climate Change , Hypoxia , Stress, Physiological , Vertebrates , Animals , Hypoxia/physiopathology , Vertebrates/physiology , Vertebrates/growth & development , Cardiovascular System/growth & development , Cardiovascular System/physiopathology , Oviparity , Adaptation, Physiological
4.
Conserv Biol ; 38(4): e14266, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38578127

ABSTRACT

Survival of the immobile embryo in response to rising temperature is important to determine a species' vulnerability to climate change. However, the collective effects of 2 key thermal characteristics associated with climate change (i.e., rising average temperature and acute heat events) on embryonic survival remain largely unexplored. We used empirical measurements and niche modeling to investigate how chronic and acute heat stress independently and collectively influence the embryonic survival of lizards across latitudes. We collected and bred lizards from 5 latitudes and incubated their eggs across a range of temperatures to quantify population-specific responses to chronic and acute heat stress. Using an embryonic development model parameterized with measured embryonic heat tolerances, we further identified a collective impact of embryonic chronic and acute heat tolerances on embryonic survival. We also incorporated embryonic chronic and acute heat tolerance in hybrid species distribution models to determine species' range shifts under climate change. Embryos' tolerance of chronic heat (T-chronic) remained consistent across latitudes, whereas their tolerance of acute heat (T-acute) was higher at high latitudes than at low latitudes. Tolerance of acute heat exerted a more pronounced influence than tolerance of chronic heat. In species distribution models, climate change led to the most significant habitat loss for each population and species in its low-latitude distribution. Consequently, habitat for populations across all latitudes will shift toward high latitudes. Our study also highlights the importance of considering embryonic survival under chronic and acute heat stresses to predict species' vulnerability to climate change.


Efectos colectivos del aumento de las temperaturas promedio y los eventos de calor en embriones ovíparos Resumen La supervivencia de los embriones inmóviles en respuesta al incremento de temperatura es importante para determinar la vulnerabilidad de las especies al cambio climático. Sin embargo, los efectos colectivos de dos características térmicas claves asociadas con el cambio climático (i. e., aumento de temperatura promedio y eventos de calor agudo) sobre la supervivencia embrionaria permanecen en gran parte inexplorados. Utilizamos mediciones empíricas y modelos de nicho para investigar cómo el estrés térmico crónico y agudo influye de forma independiente y colectiva en la supervivencia embrionaria de los lagartos en todas las latitudes. Recolectamos y criamos lagartos de cinco latitudes e incubamos sus huevos en un rango de temperaturas para cuantificar las respuestas específicas de la población al estrés por calor crónico y agudo. Posteriormente, mediante un modelo de desarrollo embrionario parametrizado con mediciones de tolerancia embrionaria al calor, identificamos un impacto colectivo de las tolerancias embrionarias al calor agudo y crónico en la supervivencia embrionaria. También incorporamos la tolerancia embrionaria crónica y aguda al calor en modelos de distribución de especies híbridas para determinar los cambios de distribución de las especies bajo el cambio climático. La tolerancia embrionaria al calor crónico (T­crónico) permaneció constante, mientras que la tolerancia al calor agudo (T­agudo) fue mayor en latitudes altas que en latitudes bajas. La tolerancia al calor agudo ejerció una influencia más pronunciada que la tolerancia al calor crónico. En los modelos de distribución de especies, el cambio climático provocó la pérdida de hábitat más significativa para cada población y especie en su distribución de latitudes bajas. En consecuencia, el hábitat para poblaciones en todas las latitudes se desplazará a latitudes altas. Nuestro estudio también resalta la importancia de considerar la supervivencia embrionaria bajo estrés térmico crónico y agudo para predecir la vulnerabilidad de las especies al cambio climático.


Subject(s)
Climate Change , Embryo, Nonmammalian , Hot Temperature , Lizards , Animals , Lizards/physiology , Lizards/embryology , Embryo, Nonmammalian/physiology , Oviparity , Female , Models, Biological , Embryonic Development , Thermotolerance
5.
Article in English | MEDLINE | ID: mdl-38302008

ABSTRACT

Eggs of oviparous reptiles are ideal models for studying evolutionary patterns of embryonic metabolism since they allow tracking of energy allocation during development. Analyzing oxygen consumption of whole eggs throughout development indicates three patterns among reptiles. Embryos initially grow and consume oxygen exponentially, but oxygen consumption slows, or drops before hatching in some species. Turtles, crocodilians, and most lizards follow curves with initial exponential increases followed by declines, whereas embryonic snakes that have been studied exhibit a consistently exponential pattern. This study measured oxygen consumption of corn snake, Pantherophis guttatus, embryos to determine if this species also exhibits an exponential increase in oxygen consumption. Individual eggs, sampled weekly from oviposition to hatching, were placed in respirometry chambers for 24-h during which oxygen consumption was recorded. Embryos were staged and carcasses and yolk were weighed separately. Results indicate steady inclines in oxygen consumption during early stages of development, with a rapid increase prior to hatching. The findings support the hypothesis that embryonic oxygen consumption of snakes differs from most other non-avian reptiles. Total energy required for development was determined based on calorimetry of initial yolk compared to hatchlings and residual yolk and by integration of the area under the curve plotting oxygen consumption versus age of embryos. The cost of development estimates based on these two methods were 6.4 and 10.0 kJ, respectively. Our results emphasize the unique physiological aspects of snake embryogenesis and illustrate how the study of physiological characteristics can contribute to the broader understanding of reptilian evolution.


Subject(s)
Colubridae , Oviparity , Zea mays , Female , Animals , Oviparity/physiology , Embryo, Nonmammalian/physiology , Snakes
6.
Dev Biol ; 483: 13-21, 2022 03.
Article in English | MEDLINE | ID: mdl-34971598

ABSTRACT

Asymmetric cell division is an essential feature of normal development and certain pathologies. The process and its regulation have been studied extensively in the Caenorhabditis elegans embryo, particularly how symmetry of the actomyosin cortical cytoskeleton is broken by a sperm-derived signal at fertilization, upstream of polarity establishment. Diploscapter pachys is the closest parthenogenetic relative to C. elegans, and D. pachys one-cell embryos also divide asymmetrically. However how polarity is triggered in the absence of sperm remains unknown. In post-meiotic embryos, we find that the nucleus inhabits principally one embryo hemisphere, the future posterior pole. When forced to one pole by centrifugation, the nucleus returns to its preferred pole, although poles appear identical as concerns cortical ruffling and actin cytoskeleton. The location of the meiotic spindle also correlates with the future posterior pole and slight actin enrichment is observed at that pole in some early embryos along with microtubule structures emanating from the meiotic spindle. Polarized location of the nucleus is not observed in pre-meiotic D. pachys oocytes. All together our results are consistent with the idea that polarity of the D. pachys embryo is attained during meiosis, seemingly based on the location of the meiotic spindle, by a mechanism that may be present but suppressed in C. elegans.


Subject(s)
Asymmetric Cell Division/physiology , Meiosis/physiology , Oocytes/cytology , Oocytes/physiology , Parthenogenesis/physiology , Rhabditoidea/cytology , Rhabditoidea/embryology , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/embryology , Cell Nucleus/physiology , Female , Microtubules/physiology , Oviparity/physiology , Spindle Apparatus/physiology
7.
Dev Biol ; 483: 1-12, 2022 03.
Article in English | MEDLINE | ID: mdl-34963554

ABSTRACT

The ascidian larval tail contains muscle cells for swimming. Most of these muscle cells differentiate autonomously. The genetic program behind this autonomy has been studied extensively and the genetic cascade from maternal factors to initiation of expression of a muscle structural gene, Myl.c, has been uncovered; Myl.c expression is directed initially by transcription factor Tbx6-r.b at the 64-cell stage and then by the combined actions of Tbx6-r.b and Mrf from the gastrula to early tailbud stages. In the present study, we showed that transcription of Myl.c continued in late tailbud embryos and larvae, although a fusion protein of Tbx6-r.b and GFP was hardly detectable in late tailbud embryos. A knockdown experiment, reporter assay, and in vitro binding assay indicated that an essential cis-regulatory element of Myl.c that bound Tbx6-r.b in early embryos bound Tbx15/18/22 in late embryos to maintain expression of Myl.c. We also found that Tbx15/18/22 was controlled by Mrf, which constitutes a regulatory loop with Tbx6-r.b. Therefore, our data indicated that Tbx15/18/22 was activated initially under control of this regulatory loop as in the case of Myl.c, and then Tbx15/18/22 maintained the expression of Myl.c after Tbx6-r.b had disappeared. RNA-sequencing of Tbx15/18/22 morphant embryos revealed that many muscle structural genes were regulated similarly by Tbx15/18/22. Thus, the present study revealed the mechanisms of maintenance of transcription of muscle structural genes in late embryos in which Tbx15/18/22 takes the place of Tbx6-r.b.


Subject(s)
Gene Expression Regulation, Developmental , Gene Expression , Muscles/embryology , Muscles/metabolism , T-Box Domain Proteins/metabolism , Urochordata/embryology , Urochordata/genetics , Animals , Binding Sites , Cell Differentiation/genetics , Female , Gastrula/metabolism , Gene Knockdown Techniques , Gene Regulatory Networks , Muscle Cells/cytology , Myosin Light Chains/genetics , Myosin Light Chains/metabolism , Oviparity/genetics , T-Box Domain Proteins/genetics , Transcription, Genetic/genetics
8.
Dev Biol ; 483: 39-57, 2022 03.
Article in English | MEDLINE | ID: mdl-34990731

ABSTRACT

Neural crest (NC) cells are a dynamic population of embryonic stem cells that create various adult tissues in vertebrate species including craniofacial bone and cartilage and the peripheral and enteric nervous systems. NC development is thought to be a conserved and complex process that is controlled by a tightly-regulated gene regulatory network (GRN) of morphogens, transcription factors, and cell adhesion proteins. While multiple studies have characterized the expression of several GRN factors in single species, a comprehensive protein analysis that directly compares expression across development is lacking. To address this lack in information, we used three closely related avian models, Gallus gallus (chicken), Coturnix japonica (Japanese quail), and Pavo cristatus (Indian peafowl), to compare the localization and timing of four GRN transcription factors, PAX7, SNAI2, SOX9, and SOX10, from the onset of neurulation to migration. While the spatial expression of these factors is largely conserved, we find that quail NC cells express SNAI2, SOX9, and SOX10 proteins at the equivalent of earlier developmental stages than chick and peafowl. In addition, quail NC cells migrate farther and more rapidly than the larger organisms. These data suggest that despite a conservation of NC GRN players, differences in the timing of NC development between species remain a significant frontier to be explored with functional studies.


Subject(s)
Avian Proteins/genetics , Avian Proteins/metabolism , Cell Movement/genetics , Chickens/genetics , Coturnix/embryology , Coturnix/genetics , Gene Expression Regulation, Developmental , Neural Crest/metabolism , Neurulation/genetics , Animals , Chick Embryo , Chickens/metabolism , Coturnix/metabolism , Female , Gene Regulatory Networks , Neural Crest/embryology , Neural Tube/embryology , Neural Tube/metabolism , Oviparity/genetics , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
9.
Mol Ecol ; 32(4): 753-755, 2023 02.
Article in English | MEDLINE | ID: mdl-36655908

ABSTRACT

Pregnancy, the post-fertilization period when embryos are incubated within the body, is a dynamic multistage process that has convergently evolved in many vertebrates. To increase independence from environmental fluctuations and protect offspring from predation, challenges had to be initially overcome. The most obvious, when considering such an intimate relationship between the parent and its semi-allogenic offspring, was the pressing need to dodge immunity-associated embryo rejection. In mammals, immunological tolerance was found to be dependent on the active modulation of the immune system. Even though supporting much of the current knowledge on vertebrate pregnancy, mammals lack extant transitional stages that could help reconstruct the evolutionary pathway of this fascinatingly complex reproduction mode. In this issue of Molecular Ecology, Parker et al. selected an untraditional model-the seahorse and pipefish family, whose species evolved male pregnancy across an almost continuous gradient of complexity, from external oviparity to internal gestation. By contrasting gene expression profiles of syngnathids with distinct brooding architectures, this study allowed for the observation of subtle evolutionary adaptations, while confirming the existence of remarkable similarities to "female" pregnancy (e.g., the evolution of male pregnancy in pouched species occurred alongside immune downregulation, and inflammation seems vital during early pregnancy stages). In a world where the debate on sex-roles takes centre stage, Parker et al.'s appeasing results hint at the fact that the strongly convergent evolution of vertebrate pregnancy was seemingly unaffected by which sex carries the burden of gestation.


Subject(s)
Biological Evolution , Reproduction , Animals , Male , Pregnancy , Female , Reproduction/genetics , Ecology , Transcriptome , Oviparity , Mammals/genetics
10.
Biol Lett ; 19(8): 20230097, 2023 08.
Article in English | MEDLINE | ID: mdl-37554010

ABSTRACT

The thermal environment experienced by developing embryos can influence the utilization of maternally provisioned resources. Despite being particularly consequential for oviparous ectotherms, these dynamics are largely unexplored within ecotoxicological frameworks. Here, we test if incubation temperature interacts with maternally transferred mercury to affect subsequent body burdens and tissue distributions of mercury in hatchling American alligators (Alligator mississippiensis). Nine clutches of alligator eggs were collected from a mercury-contaminated reservoir and incubated at either female- or male-promoting temperatures. Total mercury (THg) concentration was measured in egg yolk collected during incubation and in a suite of tissues collected from hatchlings. THg concentrations in residual yolk and blood were higher in hatchlings incubated at cooler, female-promoting temperatures compared to the warmer, male-promoting temperatures. THg concentrations in most tissues were positively correlated with THg concentrations in blood and dermis, and egg yolk THg concentration was the best predictor of THg concentration in many resultant tissues. Our results highlight a hereto unknown role of the developmental environment in mediating tissue specific uptake of contaminants in an oviparous reptile.


Subject(s)
Oviparity , Animals , Male , Female , Oviparity/drug effects , Mercury/toxicity , Temperature , Alligators and Crocodiles
11.
Dev Genes Evol ; 232(2-4): 51-65, 2022 08.
Article in English | MEDLINE | ID: mdl-35678925

ABSTRACT

Aphids are hemimetabolous insects that undergo incomplete metamorphosis without pupation. The annual life cycle of most aphids includes both an asexual (viviparous) and a sexual (oviparous) phase. Sexual reproduction only occurs once per year and is followed by many generations of asexual reproduction, during which aphids propagate exponentially with telescopic development. Here, we discuss the potential links between viviparous embryogenesis and derived developmental features in the pea aphid Acyrthosiphon pisum, particularly focusing on germline specification and axis determination, both of which are key events of early development in insects. We also discuss potential evolutionary paths through which both viviparous and oviparous females might have come to utilize maternal germ plasm to drive germline specification. This developmental strategy, as defined by germline markers, has not been reported in other hemimetabolous insects. In viviparous females, furthermore, we discuss whether molecules that in other insects characterize germ plasm, like Vasa, also participate in posterior determination and how the anterior localization of the hunchback orthologue Ap-hb establishes the anterior-posterior axis. We propose that the linked chain of developing oocytes and embryos within each ovariole and the special morphology of early embryos might have driven the formation of evolutionary novelties in germline specification and axis determination in the viviparous aphids. Moreover, based upon the finding that the endosymbiont Buchnera aphidicola is closely associated with germ cells throughout embryogenesis, we propose presumptive roles for B. aphidicola in aphid development, discussing how it might regulate germline migration in both reproductive modes of pea aphids. In summary, we expect that this review will shed light on viviparous as well as oviparous development in aphids.


Subject(s)
Aphids , Animals , Aphids/physiology , Female , Germ Cells , Insect Proteins , Oviparity , Pisum sativum
12.
J Exp Zool B Mol Dev Evol ; 338(6): 331-341, 2022 09.
Article in English | MEDLINE | ID: mdl-35652464

ABSTRACT

The chorioallantoic membrane of oviparous reptiles forms a vascular interface with the eggshell. The eggshell contains calcium, primarily as calcium carbonate. Extraction and mobilization of this calcium by the chorioallantoic membrane contributes importantly to embryonic nutrition. Development of the chorioallantoic membrane is primarily known from studies of squamates and birds. Although there are pronounced differences in eggshell structure, squamate and bird embryos each mobilize calcium from eggshells. Specialized cells in the chicken chorionic epithelium transport calcium from the eggshell aided by a second population of cells that secrete protons generated by the enzyme carbonic anhydrase. Calcium transporting cells also are present in the chorioallantoic membrane of corn snakes, although these cells function differently than those of chickens. We used histology and immunohistology to characterize the morphology and functional attributes of the chorioallantoic membrane of corn snakes. We identified two populations of cells in the outer layer of the chorionic epithelium. Calbindin-D28K , a cellular marker for calcium transport expressed in squamate chorioallantoic membranes, is localized in large, flattened cells that predominate in the chorionic epithelium. Smaller cells, interspersed among the large cells, express carbonic anhydrase 2, an enzyme not previously localized in the chorionic epithelium of an oviparous squamate. These findings indicate that differentiation of chorionic epithelial cells contributes to extraction and transport of calcium from the eggshell. The presence of specializations of chorioallantoic membranes for calcium uptake from eggshells in chickens and corn snakes suggests that eggshell calcium was a source of embryonic nutrition early in the evolution of Sauropsida.


Subject(s)
Carbonic Anhydrases , Colubridae , Animals , Calcium/metabolism , Carbonic Anhydrases/metabolism , Chickens , Chorioallantoic Membrane , Egg Shell , Oviparity
13.
Mol Phylogenet Evol ; 167: 107347, 2022 02.
Article in English | MEDLINE | ID: mdl-34763070

ABSTRACT

The ability to bear live offspring, viviparity, has evolved multiple times across the tree of life and is a remarkable adaptation with profound life-history and ecological implications. Within amphibians the ancestral reproductive mode is oviparity followed by a larval life stage, but viviparity has evolved independently in all three amphibian orders. Two types of viviparous reproduction can be distinguished in amphibians; larviparity and pueriparity. Larviparous amphibians deliver larvae into nearby ponds and streams, while pueriparous amphibians deliver fully developed juveniles and thus do not require waterbodies for reproduction. Among amphibians, the salamander genus Salamandra is remarkable as it exhibits both inter- and intraspecific variation in the occurrence of larviparity and pueriparity. While the evolutionary relationships among Salamandra lineages have been the focus of several recent studies, our understanding of how often and when transitions between modes occurred is still incomplete. Furthermore, in species with intraspecific variation, the reproductive mode of a given population can only be confirmed by direct observation of births and thus the prevalence of pueriparous populations is also incompletely documented. We used sequence capture to obtain 1,326 loci from 94 individuals from across the geographic range of the genus, focusing on potential reproductive mode transition zones. We also report additional direct observations of pueriparous births for 20 new locations and multiple lineages. We identify at least five independent transitions from the ancestral mode of larviparity to pueriparity among and within species, occurring at different evolutionary timescales ranging from the Pliocene to the Holocene. Four of these transitions occurred within species. Based on a distinct set of markers and analyses, we also confirm previous findings of introgression between species and the need for taxonomic revisions in the genus. We discuss the implications of our findings with respect to the evolution of this complex trait, and the potential of using five independent convergent transitions for further studies on the ecological context in which pueriparity evolves and the genetic architecture of this specialized reproductive mode.


Subject(s)
Salamandra , Animals , Biological Evolution , Humans , Oviparity/genetics , Phylogeny , Urodela/genetics , Viviparity, Nonmammalian/genetics
14.
J Evol Biol ; 35(5): 708-718, 2022 05.
Article in English | MEDLINE | ID: mdl-35384114

ABSTRACT

Blood oxygen-carrying capacity is shaped both by the ambient oxygen availability as well as species-specific oxygen demand. Erythrocytes are a critical part of oxygen transport and both their size and shape can change in relation to species-specific life-history, behavioural or ecological conditions. Here, we test whether components of the environment (altitude), life history (reproductive mode, body temperature) and behaviour (diving, foraging mode) drive erythrocyte size variation in the Lepidosauria (lizards, snakes and rhynchocephalians). We collected data on erythrocyte size (area) and shape (L/W: elongation ratio) from Lepidosauria across the globe (N = 235 species). Our analyses show the importance of oxygen requirements as a driver of erythrocyte size. Smaller erythrocytes were associated with the need for faster delivery (active foragers, high-altitude species, warmer body temperatures), whereas species with greater oxygen demands (diving species, viviparous species) had larger erythrocytes. Erythrocyte size shows considerable cross-species variation, with a range of factors linked to the oxygen delivery requirements being major drivers of these differences. A key future aspect for study would include within-individual plasticity and how changing states, for example, pregnancy, perhaps alter the size and shape of erythrocytes in Lepidosaurs.


Subject(s)
Lizards , Viviparity, Nonmammalian , Animals , Erythrocytes , Oviparity , Oxygen , Snakes
15.
J Evol Biol ; 35(11): 1568-1575, 2022 11.
Article in English | MEDLINE | ID: mdl-36129910

ABSTRACT

Thickness reduction or loss of the calcareous eggshell is one of major phenotypic changes in the transition from oviparity to viviparity. Whether the reduction of eggshells in viviparous squamates is associated with specific gene losses is unknown. Taking advantage of a newly generated high-quality genome of the viviparous Chinese crocodile lizard (Shinisaurus crocodilurus), we found that ovocleidin-17 gene (OC-17), which encodes an eggshell matrix protein that is essential for calcium deposition in eggshells, is not intact in the crocodile lizard genome. Only OC-17 transcript fragments were found in the oviduct transcriptome, and no OC-17 peptides were identified in the eggshell proteome of crocodile lizards. In contrast, OC-17 was present in the eggshells of the oviparous Mongolia racerunner (Eremias argus). Although the loss of OC-17 is not common in viviparous species, viviparous squamates show fewer intact eggshell-specific proteins than oviparous squamates. Our study implies that functional loss of eggshell-matrix protein genes may be involved in the reduction of eggshells during the transition from oviparity to viviparity in the crocodile lizard.


Subject(s)
Alligators and Crocodiles , Lizards , Animals , Viviparity, Nonmammalian , Egg Shell , Oviparity , Lizards/genetics , China
16.
Gen Comp Endocrinol ; 327: 114076, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35710034

ABSTRACT

The many diverse reproductive strategies of elasmobranchs (sharks, skates and rays) from lecithotrophic oviparity to matrotrophic viviparity have attracted significant research attention. However, the endocrine control of elasmobranch reproduction is less well-documented largely due to their reproductive characteristics, such as a long reproductive cycle, and/or repeated internal fertilization using stored sperm in oviparous species. In the present study, for the first time, we succeeded in non-invasive monitoring of the continuing egg-laying cycle of the cloudy catshark Scyliorhinus torazame using portable ultrasound devices. Furthermore, long-term simultaneous monitoring of the egg-laying cycle and measurement of plasma sex steroids revealed cycling patterns of estradiol-17ß (E2), testosterone (T) and progesterone (P4). In particular, a decline in T followed by a reciprocal surge in plasma P4 were consistently observed prior to the appearance of the capsulated eggs, implying that P4 is likely associated with the ovulation and/or egg-case formation. While the cycling pattern of E2 was not as apparent as those of T and P4, threshold levels of E2 (>5 ng/mL) and T (>1 ng/mL) appeared to be crucial in the continuation of egg-laying cycle. The possibility to trace the dynamics of plasma sex steroids in a single individual throughout the reproductive cycles makes the catshark a useful model for regulatory and mechanistic studies of elasmobranch reproduction.


Subject(s)
Oviparity , Sharks , Animals , Estradiol , Female , Gonadal Steroid Hormones , Male , Progesterone , Reproduction , Semen , Ultrasonography
17.
Bioessays ; 42(8): e2000010, 2020 08.
Article in English | MEDLINE | ID: mdl-32608113

ABSTRACT

In this essay, the hypothesis that biliverdin pigment plays an antioxidant role in the avian eggshell is proposed. Due to its ability to scavenge free radical species and to reduce mutation, biliverdin potentially counteracts the oxidative action of pathogens that penetrate the eggshell and/or protects the shell membrane from oxidation, thus promoting the proven antioxidant and antimicrobial capacities of the shell membrane itself. Additionally, biliverdin may be able to inhibit viral replication in the eggshell due to its ascribed antiviral properties. Moreover, previous results in other taxa leave open the question of whether biliverdin can be absorbed by the embryo from the eggshell and play a role in embryogenesis. These mechanisms of antioxidant action of eggshell biliverdin remain totally unexplored in birds and in other oviparous animals. The main assumptions and predictions of the antioxidant hypothesis are developed, and directions for future research are proposed.


Subject(s)
Biliverdine , Egg Shell , Animals , Antioxidants , Maternal Inheritance , Oviparity
18.
Proc Natl Acad Sci U S A ; 116(9): 3646-3655, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808754

ABSTRACT

Viviparous (live-bearing) vertebrates have evolved repeatedly within otherwise oviparous (egg-laying) clades. Over two-thirds of these changes in vertebrate reproductive parity mode happened in squamate reptiles, where the transition has happened between 98 and 129 times. The transition from oviparity to viviparity requires numerous physiological, morphological, and immunological changes to the female reproductive tract, including eggshell reduction, delayed oviposition, placental development for supply of water and nutrition to the embryo by the mother, enhanced gas exchange, and suppression of maternal immune rejection of the embryo. We performed genomic and transcriptomic analyses of a closely related oviparous-viviparous pair of lizards (Phrynocephalus przewalskii and Phrynocephalus vlangalii) to examine these transitions. Expression patterns of maternal oviduct through reproductive development of the egg and embryo differ markedly between the two species. We found changes in expression patterns of appropriate genes that account for each of the major aspects of the oviparity to viviparity transition. In addition, we compared the gene sequences in transcriptomes of four oviparous-viviparous pairs of lizards in different genera (Phrynocephalus, Eremias, Scincella, and Sphenomorphus) to look for possible gene convergence at the sequence level. We discovered low levels of convergence in both amino acid replacement and evolutionary rate shift. This suggests that most of the changes that produce the oviparity-viviparity transition are changes in gene expression, so occasional reversals to oviparity from viviparity may not be as difficult to achieve as has been previously suggested.


Subject(s)
Evolution, Molecular , Oviparity/genetics , Transcriptome/genetics , Viviparity, Nonmammalian/genetics , Animals , Female , Gene Expression Regulation, Developmental , Genomics , Lizards/genetics , Lizards/growth & development , Phylogeny , Placentation/genetics , Pregnancy , Reproduction/genetics , Snakes/genetics , Snakes/growth & development
19.
Mol Phylogenet Evol ; 158: 107060, 2021 05.
Article in English | MEDLINE | ID: mdl-33383174

ABSTRACT

Most of the present knowledge on animal reproductive mode evolution, and possible factors driving transitions between oviparity and viviparity is based on studies on vertebrates. The species rich door snail (Clausiliidae) subfamily Phaedusinae represents a suitable and unique model for further examining parity evolution, as three different strategies, oviparity, viviparity, and the intermediate mode of embryo-retention, occur in this group. The present study reconstructs the evolution of reproductive strategies in Phaedusinae based on time-calibrated molecular phylogenetics, reproductive mode examinations and ancestral state reconstruction. Our phylogenetic analysis employing multiple mitochondrial and nuclear markers identified a well-supported clade (including the tribes Phaedusini and Serrulinini) that contains species exhibiting various reproductive strategies. This clade evolved from an oviparous most recent common ancestor according to our reconstruction. All non-oviparous taxa are confined to a highly supported subclade, coinciding with the tribe Phaedusini. Both oviparity and viviparity occur frequently in different lineages of this subclade that are not closely related. During Phaedusini diversification, multiple transitions in reproductive strategy must have taken place, which could have been promoted by a high fitness of embryo-retaining species. The evolutionary success of this group might result from the maintenance of various strategies.


Subject(s)
Biological Evolution , Reproduction/genetics , Snails/physiology , Viviparity, Nonmammalian , Animals , Female , Mitochondria/genetics , Oviparity/genetics , Phylogeny , Snails/classification , Viviparity, Nonmammalian/genetics
20.
Adv Anat Embryol Cell Biol ; 234: 7-19, 2021.
Article in English | MEDLINE | ID: mdl-34694475

ABSTRACT

In the vertebrate tree of life, viviparity or live birth has independently evolved many times, resulting in a rich diversity of reproductive strategies. Viviparity is believed to be a mode of reproduction that evolved from the ancestral condition of oviparity or egg laying, where most of the fetal development occurs outside the body. Today, there is not a simple model of parity transition to explain this species-specific divergence in modes of reproduction. Most evidence points to a gradual series of evolutionary adaptations that account for this phenomenon of reproduction, elegantly displayed by various viviparous squamates that exhibit placentae formed by the appositions of maternal and embryonic tissues, which share significant homology with the tissues that form the placenta in therian mammals. In an era where the genomes of many vertebrate species are becoming available, studies are now exploring the molecular basis of this transition from oviparity to viviparity, and in some rare instances its possible reversibility, such as the Australian three-toed skink (Saiphos equalis). In contrast to the parity diversity in squamates, mammals are viviparous with the notable exception of the egg-laying monotremes. Advancing computational tools coupled with increasing genome availability across species that utilize different reproductive strategies promise to reveal the molecular underpinnings of the ancestral transition of oviparity to viviparity. As a result, the dramatic changes in reproductive physiology and anatomy that accompany these parity changes can be reinterpreted. This chapter will briefly explore the vertebrate modes of reproduction using a phylogenetic framework and where possible highlight the role of potential candidate genes that may help explain the polygenic origins of live birth.


Subject(s)
Lizards , Viviparity, Nonmammalian , Animals , Australia , Female , Lizards/genetics , Oviparity/genetics , Phylogeny , Pregnancy , Viviparity, Nonmammalian/genetics
SELECTION OF CITATIONS
SEARCH DETAIL