Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
Add more filters

Publication year range
1.
Fish Physiol Biochem ; 50(1): 295-305, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38386263

ABSTRACT

Peroxisome proliferator-activated receptor ß (pparß) is a key gene-regulating lipid metabolism pathway, but its function in turbot remains unclear. In this study, the CDS of pparß was cloned from kidney for the first time. The CDS sequence length was 1533 bp encoding 510 amino acids. Structural analysis showed that the pparß protein contained a C4 zinc finger and HOLI domain, suggesting that the pparß gene of turbot has high homology with the PPAR gene of other species. The high expression patterns of pparß, acox, and cpt-1 at high temperatures, as shown through qPCR, indicated that high temperatures activated the transcriptional activity of pparß and increased the activity of the acox and cpt-1 genes. The expression of acox and cpt-1 was significantly inhibited when pparß was downregulated using RNAi technology and inhibitor treatments, suggesting that pparß positively regulated acox and cpt-1 expression at high temperatures and, thus, modulates lipid catabolism activity. These results demonstrate that pparß is involved in the regulation of lipid metabolism at high temperatures and expand a new perspective for studying the regulation of lipid metabolism in stress environments of teleost.


Subject(s)
Flatfishes , PPAR-beta , Animals , PPAR-beta/genetics , Flatfishes/genetics , Lipid Metabolism/genetics , Lipids , Heat-Shock Response
2.
Liver Int ; 43(12): 2808-2823, 2023 12.
Article in English | MEDLINE | ID: mdl-37833850

ABSTRACT

BACKGROUND AND AIMS: Hepatic ischaemia/reperfusion injury (HIRI) is a pathophysiological process that occurs during the liver resection and transplantation. Reportedly, peroxisome proliferator-activated receptor ß/δ (PPARß/δ) can ameliorate kidney and myocardial ischaemia/reperfusion injury. However, the effect of PPARß/δ in HIRI remains unclear. METHODS: Mouse hepatic ischaemia/reperfusion (I/R) models were constructed for in vivo study. Primary hepatocytes and Kupffer cells (KCs) isolated from mice and cell anoxia/reoxygenation (A/R) injury model were constructed for in vitro study. Liver injury and inflammation were investigated. Small molecular compounds (GW0742 and GSK0660) and adenoviruses were used to interfere with PPARß/δ. RESULTS: We found that PPARß/δ expression was increased in the I/R and A/R models. Overexpression of PPARß/δ in hepatocytes alleviated A/R-induced cell apoptosis, while knockdown of PPARß/δ in hepatocytes aggravated A/R injury. Activation of PPARß/δ by GW0742 protected against I/R-induced liver damage, inflammation and cell death, whereas inhibition of PPARß/δ by GSK0660 had the opposite effects. Consistent results were obtained in mouse I/R models through the tail vein injection of adenovirus-mediated PPARß/δ overexpression or knockdown vectors. Furthermore, knockdown and overexpression of PPARß/δ in KCs aggravated and ameliorated A/R-induced hepatocyte injury, respectively. Gene ontology and gene set enrichment analysis showed that PPARß/δ deletion was significantly enriched in the NF-κB pathway. PPARß/δ inhibited the expression of p-IKBα and p-P65 and decreased NF-κB activity. CONCLUSIONS: PPARß/δ exerts anti-inflammatory and anti-apoptotic effects on HIRI by inhibiting the NF-κB pathway, and hepatocytes and KCs may play a synergistic role in this phenomenon. Thus, PPARß/δ is a potential therapeutic target for HIRI.


Subject(s)
PPAR delta , PPAR-beta , Reperfusion Injury , Mice , Animals , PPAR-beta/genetics , PPAR-beta/metabolism , NF-kappa B/metabolism , PPAR delta/genetics , PPAR delta/metabolism , Liver/metabolism , Thiazoles/pharmacology , Inflammation , Disease Models, Animal , Reperfusion Injury/prevention & control , Ischemia
3.
Microvasc Res ; 139: 104272, 2022 01.
Article in English | MEDLINE | ID: mdl-34699845

ABSTRACT

Endothelial injury plays a vital role in vascular lesions from diabetes mellitus (DM). Therapeutic targets against endothelial damage may provide critical venues for the treatment of diabetic vascular diseases. Peroxisome proliferator-activated receptor ß (PPARß) is a crucial regulator in DM and its complications. However, the molecular signal mediating the roles of PPARß in DM-induced endothelial dysfunction is not fully understood. The impaired endothelium-dependent relaxation and destruction of the endothelium structures appeared in high glucose incubated rat aortic rings. A high glucose level significantly decreased the expression of PPARß and endothelial nitric oxide synthase (eNOS) at the mRNA and protein levels, and reduced the concentration of nitric oxide (NO), which occurred in parallel with an increase in the expression of inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine. The effect of high glucose was inhibited by GW0742, a PPARß agonist. Both GSK0660 (PPARß antagonist) and NG-nitro-l-arginine-methyl ester (NOS inhibitor) could reverse the protective effects of GW0742. These results suggest that the activation of nitrative stress may, at least in part, mediate the down-regulation of PPARß in high glucose-impaired endothelial function in rat aorta. PPARß-nitrative stress may hold potential in treating vascular complications from DM.


Subject(s)
Aorta, Thoracic/drug effects , Diabetic Angiopathies/metabolism , Endothelial Cells/drug effects , Glucose/toxicity , Hyperglycemia/metabolism , Nitrosative Stress/drug effects , PPAR-beta/metabolism , Animals , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , Aorta, Thoracic/physiopathology , Diabetic Angiopathies/genetics , Diabetic Angiopathies/pathology , Diabetic Angiopathies/physiopathology , Down-Regulation , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Hyperglycemia/genetics , Hyperglycemia/pathology , Hyperglycemia/physiopathology , Male , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , PPAR-beta/genetics , Rats, Sprague-Dawley , Signal Transduction , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Vasodilation/drug effects
4.
Exp Dermatol ; 31(6): 841-853, 2022 06.
Article in English | MEDLINE | ID: mdl-34932851

ABSTRACT

Thermal injury repair is a complex process during which the maintenance of the proliferation and migration of human skin fibroblasts (HSFs) exert a crucial role. MicroRNAs have been proven to exert an essential function in repairing skin burns. This study delves into the regulatory effects of miR-24-3p on the migration and proliferation of HSFs that have sustained a thermal injury, thereby, providing deeper insight into thermal injury repair pathogenesis. The PPAR-ß protein expression level progressively increased in a time-dependent manner on the 12th, 24th and 48th hour following the thermal injury of the HSFs. The knockdown of PPAR-ß markedly suppressed the proliferation of and migration of HSF. Following thermal injury, the knockdown also promoted the inflammatory cytokine IL-6, TNF-α, PTGS-2 and P65 expression. PPAR-ß contrastingly exhibited an opposite trend. A targeted relationship between PPAR-ß and miR-24-3p was predicted and verified. miR-24-3p inhibited thermal injured HSF proliferation and migration and facilitated inflammatory cytokine expression through the regulation of PPAR-ß. p65 directly targeted the transcriptional precursor of miR-24 and promoted miR-24 expression. A negative correlation between miR-24-3p expression level and PPAR-ß expression level in rats' burnt dermal tissues was observed. Our findings reveal that miR-24-3p is conducive to rehabilitating the denatured dermis, which may be beneficial in providing effective therapy of skin burns.


Subject(s)
Burns , MicroRNAs , PPAR-beta , Animals , Burns/genetics , Cell Proliferation , Cytokines/metabolism , Fibroblasts/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/metabolism , PPAR-beta/genetics , PPAR-beta/metabolism , Rats
5.
Arch Biochem Biophys ; 731: 109428, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36228705

ABSTRACT

Cannabidiolic acid (CBDA) can activate peroxisome proliferator-activated receptor-α (PPARα) and PPARγ. Whether CBDA can activate PPARß/δ has not been examined sufficiently to date. Since previous studies showed that triple-negative breast cancer cells respond to activation of PPARß/δ, the present study examined the effect of CBDA in MDA-MB-231 cells and compared the activities of CBDA with known PPARß/δ agonists/antagonists. Expression of the PPARß/δ target genes angiopoietin-like 4 (ANGPTL4) and adipocyte differentiation-related protein (ADRP) was increased by CBDA. Interestingly, ligand activation of PPARß/δ with GW501516 caused an increase in expression of both ANGPTL4 and ADRP, but the magnitude of this effect was markedly increased when co-treated with CBDA. Specificity of these effects were confirmed by showing that CBDA-induced expression of ANGPTL4 and ADRP is mitigated in the presence of either a PPARß/δ antagonist or an inverse agonist. Results from these studies suggest that CBDA can synergize with PPARß/δ and might interact with endogenous agonists that modulate PPARß/δ function.


Subject(s)
Cannabinoids , PPAR delta , PPAR-beta , PPAR-beta/genetics , PPAR-beta/metabolism , PPAR delta/genetics , PPAR delta/metabolism , PPAR alpha
6.
Pharmacol Res ; 179: 106235, 2022 05.
Article in English | MEDLINE | ID: mdl-35472635

ABSTRACT

Adult hippocampal neurogenesis (AHN) is heavily implicated in the pathogenesis of various neuropsychiatric disorders. The mangiferin (MGF), a bioactive compound of the mango, reportedly produces biological effects on a variety of neuropsychiatric disorders. However, the function and underlying mechanisms of MGF in regulating hippocampal neurogenesis remain unknown. Here we discovered that the transcriptome and methylome of MGF-induced neural stem cells (NSCs) are distinct from the control. RNA-seq analysis revealed that the diferentially expressed genes (DEGs) were signifcantly enriched in the PPARs. Furthermore, we found that MGF enhanced neuronal differentiation and proliferation of neural stem cells (NSCs) via PPARß but not PPARα and PPARγ. The combination of WGBS and RNA-seq analysis showed that the expression of some neurogenesis genes was negatively correlated with the DNA methylation level generally. We further found that PPARß increased demethylation of Mash1 promoter by modulating the expressions of active and passive DNA demethylation enzymes in MGF-treated NSCs. Importantly, genetic deficiency of PPARß decreased hippocampal neurogenesis in the adult mice, whereas the defective neurogenesis was notably rescued by Mash1 overexpression. Our findings uncover a model that PPARß-mediated DNA demethylation of Mash1 contributes to MGF-induced neuronal genesis, and advance the concept that targeting PPARß-TET1/DNMT3a-Mash1 axis regulation of neurogenesis might serve as a novel neurotherapeutic strategy.


Subject(s)
Neural Stem Cells , PPAR-beta , Animals , Mice , DNA Demethylation , Neurogenesis , PPAR-beta/genetics , PPAR-beta/metabolism , Xanthones
7.
Nucleic Acids Res ; 47(18): 9573-9591, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31428774

ABSTRACT

In the absence of ligands, the nuclear receptor PPARß/δ recruits the NCOR and SMRT corepressors, which form complexes with HDAC3, to canonical target genes. Agonistic ligands cause dissociation of corepressors and enable enhanced transcription. Vice versa, synthetic inverse agonists augment corepressor recruitment and repression. Both basal repression of the target gene ANGPTL4 and reinforced repression elicited by inverse agonists are partially insensitive to HDAC inhibition. This raises the question how PPARß/δ represses transcription mechanistically. We show that the PPARß/δ inverse agonist PT-S264 impairs transcription initiation by decreasing recruitment of activating Mediator subunits, RNA polymerase II, and TFIIB, but not of TFIIA, to the ANGPTL4 promoter. Mass spectrometry identifies NCOR as the main PT-S264-dependent interactor of PPARß/δ. Reconstitution of knockout cells with PPARß/δ mutants deficient in basal repression results in diminished recruitment of NCOR, SMRT, and HDAC3 to PPAR target genes, while occupancy by RNA polymerase II is increased. PT-S264 restores binding of NCOR, SMRT, and HDAC3 to the mutants, resulting in reduced polymerase II occupancy. Our findings corroborate deacetylase-dependent and -independent repressive functions of HDAC3-containing complexes, which act in parallel to downregulate transcription.


Subject(s)
Angiopoietin-Like Protein 4/genetics , Histone Deacetylases/genetics , Multiprotein Complexes/genetics , PPAR-beta/genetics , Transcription, Genetic , Cell Line , Humans , Ligands , Mass Spectrometry , Nuclear Receptor Co-Repressor 1/genetics , Nuclear Receptor Co-Repressor 2/genetics , Promoter Regions, Genetic/genetics , RNA Polymerase II/genetics , Transcription Factor TFIIB/genetics , Transcription Factors/genetics
8.
Int J Mol Sci ; 22(2)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477809

ABSTRACT

Proinflammatory response and mitochondrial dysfunction are related to the pathogenesis of neurodegenerative diseases (NDs). Nuclear factor κB (NFκB) activation has been shown to exaggerate proinflammation and mitochondrial dysfunction, which underlies NDs. CDGSH iron-sulfur domain 2 (CISD2) has been shown to be associated with peroxisome proliferator-activated receptor-ß (PPAR-ß) to compete for NFκB and antagonize the two aforementioned NFκB-provoked pathogeneses. Therefore, CISD2-based strategies hold promise in the treatment of NDs. CISD2 protein belongs to the human NEET protein family and is encoded by the CISD2 gene (located at 4q24 in humans). In CISD2, the [2Fe-2S] cluster, through coordinates of 3-cysteine-1-histidine on the CDGSH domain, acts as a homeostasis regulator under environmental stress through the transfer of electrons or iron-sulfur clusters. Here, we have summarized the features of CISD2 in genetics and clinics, briefly outlined the role of CISD2 as a key physiological regulator, and presented modalities to increase CISD2 activity, including biomedical engineering or pharmacological management. Strategies to increase CISD2 activity can be beneficial for the prevention of inflammation and mitochondrial dysfunction, and thus, they can be applied in the management of NDs.


Subject(s)
Membrane Proteins/genetics , NF-kappa B/genetics , Neurodegenerative Diseases/drug therapy , PPAR-beta/genetics , Cysteine/genetics , Histidine/genetics , Homeostasis/genetics , Humans , Iron/metabolism , Iron-Sulfur Proteins/genetics , Membrane Proteins/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Protein Domains/genetics
9.
Int J Mol Sci ; 22(16)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34445261

ABSTRACT

The current treatment options for type 2 diabetes mellitus do not adequately control the disease in many patients. Consequently, there is a need for new drugs to prevent and treat type 2 diabetes mellitus. Among the new potential pharmacological strategies, activators of peroxisome proliferator-activated receptor (PPAR)ß/δ show promise. Remarkably, most of the antidiabetic effects of PPARß/δ agonists involve AMP-activated protein kinase (AMPK) activation. This review summarizes the recent mechanistic insights into the antidiabetic effects of the PPARß/δ-AMPK pathway, including the upregulation of glucose uptake, muscle remodeling, enhanced fatty acid oxidation, and autophagy, as well as the inhibition of endoplasmic reticulum stress and inflammation. A better understanding of the mechanisms underlying the effects resulting from the PPARß/δ-AMPK pathway may provide the basis for the development of new therapies in the prevention and treatment of insulin resistance and type 2 diabetes mellitus.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/prevention & control , Insulin Resistance , PPAR delta/metabolism , PPAR-beta/metabolism , AMP-Activated Protein Kinases/genetics , Animals , Diabetes Mellitus, Type 2/genetics , Humans , PPAR delta/genetics , PPAR-beta/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
10.
Int J Mol Sci ; 22(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808880

ABSTRACT

Peroxisome proliferator activated receptor beta/delta (PPARß/δ) is a nuclear receptor ubiquitously expressed in cells, whose signaling controls inflammation. There are large discrepancies in understanding the complex role of PPARß/δ in disease, having both anti- and pro-effects on inflammation. After ligand activation, PPARß/δ regulates genes by two different mechanisms; induction and transrepression, the effects of which are difficult to differentiate directly. We studied the PPARß/δ-regulation of lipopolysaccharide (LPS) induced inflammation (indicated by release of nitrite and IL-6) of rat pulmonary artery, using different combinations of agonists (GW0742 or L-165402) and antagonists (GSK3787 or GSK0660). LPS induced release of NO and IL-6 is not significantly reduced by incubation with PPARß/δ ligands (either agonist or antagonist), however, co-incubation with an agonist and antagonist significantly reduces LPS-induced nitrite production and Nos2 mRNA expression. In contrast, incubation with LPS and PPARß/δ agonists leads to a significant increase in Pdk-4 and Angptl-4 mRNA expression, which is significantly decreased in the presence of PPARß/δ antagonists. Docking using computational chemistry methods indicates that PPARß/δ agonists form polar bonds with His287, His413 and Tyr437, while antagonists are more promiscuous about which amino acids they bind to, although they are very prone to bind Thr252 and Asn307. Dual binding in the PPARß/δ binding pocket indicates the ligands retain similar binding energies, which suggests that co-incubation with both agonist and antagonist does not prevent the specific binding of each other to the large PPARß/δ binding pocket. To our knowledge, this is the first time that the possibility of binding two ligands simultaneously into the PPARß/δ binding pocket has been explored. Agonist binding followed by antagonist simultaneously switches the PPARß/δ mode of action from induction to transrepression, which is linked with an increase in Nos2 mRNA expression and nitrite production.


Subject(s)
PPAR delta/chemistry , PPAR-beta/chemistry , Animals , Benzamides/chemistry , Benzamides/pharmacology , Binding Sites , Biomarkers , Gene Expression , Inflammation Mediators/metabolism , Ligands , Lipopolysaccharides/adverse effects , Lipopolysaccharides/immunology , Male , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Nitric Oxide/metabolism , PPAR delta/agonists , PPAR delta/antagonists & inhibitors , PPAR delta/genetics , PPAR-beta/agonists , PPAR-beta/antagonists & inhibitors , PPAR-beta/genetics , Protein Binding , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Rats , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology
11.
Acta Vet Hung ; 68(4): 374-379, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33459615

ABSTRACT

The Wilms' tumour gene (WT1) has previously been described as an oncogene in several neoplasms of humans, including melanoma, and its expression increases cancer cell proliferation. Recent reports associate the expression of the PPARß/δ gene (peroxisome proliferator-activated receptor beta/delta) with the downregulation of WT1 in human melanoma and murine melanoma cell lines. The aim of this work was to analyse the expression of WT1 and its association with PPARß/δ in samples of healthy and melanoma-affected skin of horses by immunohistochemistry. WT1 protein expression was detected in healthy skin, mainly in the epidermis, hair follicle, sebaceous gland and sweat gland, while no expression was observed in equine melanoma tissues. Moreover, it was observed that PPARß/δ has a basal expression in healthy skin and that it is overexpressed in melanoma. These results were confirmed by a densitometric analysis, where a significant increase of the WT1-positive area was observed in healthy skin (128.66 ± 19.84 pixels 106) compared with that observed in melanoma (1.94 ± 0.04 pixels 106). On the other hand, a positive area with an expression of PPARß/δ in healthy skin (214.94 ± 11.85 pixels 106) was significantly decreased compared to melanoma (624.86 ± 181.93 pixels 106). These data suggest that there could be a regulation between WT1 and PPARß/δ in this disease in horses.


Subject(s)
Horse Diseases , Melanoma , PPAR delta , PPAR-beta , Rodent Diseases , Animals , Genes, Wilms Tumor , Horses , Melanoma/genetics , Melanoma/veterinary , Mice , PPAR delta/genetics , PPAR-beta/genetics , Skin
12.
Exp Cell Res ; 382(1): 111455, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31163124

ABSTRACT

Diabetic nephropathy (DN) is one of the most severe complications of diabetes mellitus. The pathomolecular events behind DN remain uncertain. Peroxisome proliferator-activated receptors (PPARs) play essential functions in the development of DN. Meanwhile, 20-hydroxyeicosatetraenoic acid (20-HETE) also plays central roles in the regulation of renal function. However, the relationship between PPARs and 20-HETE is rarely studied in DN. It was revealed in our study that both PPARs expression and CYP4A-20-HETE level were decreased under DN conditions in vivo and in vitro. Supplementation with bezafibrate, a PPAR pan-agonist, improved the damage of kidney in DN mice and in high glucose-induced NRK-52E cells, following the up-regulation of PPARs and the increase of CYP4A-20-HETE. PPARα antagonist (MK886), PPARß antagonist (GSK0660), and PPARγ antagonist (GW9662) reversed the protection of bezafibrate in NRK-52E, and abrogated the up-regulation of CYP4A-20-HETE produced by bezafibrate. Noteworthily, 20-HETE synthetase inhibitor, HET0016, also blocked the bezafibrate-mediated improvement of NRK-52E, and abolished the up-regulation of PPARs expression. Collectively, our data suggest that the concurrent down-regulation and interaction of PPARs and 20-HETE play crucial roles in the pathogenesis process of DN, and we provide a novel evidence that PPARs/20-HETE signaling may be served as a therapeutic target for DN patients.


Subject(s)
Diabetic Nephropathies/metabolism , Hydroxyeicosatetraenoic Acids/physiology , PPAR alpha/physiology , PPAR gamma/physiology , PPAR-beta/physiology , Amidines/pharmacology , Anilides/pharmacology , Animals , Cell Line , Cytochrome P-450 CYP4A/metabolism , Diabetic Nephropathies/etiology , Diabetic Nephropathies/pathology , Down-Regulation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression Regulation/drug effects , Glucose/toxicity , Hydroxyeicosatetraenoic Acids/biosynthesis , Indoles/pharmacology , Kidney Tubules/cytology , Male , Mice , PPAR alpha/biosynthesis , PPAR alpha/genetics , PPAR gamma/biosynthesis , PPAR gamma/genetics , PPAR-beta/biosynthesis , PPAR-beta/genetics , Rats , Sulfones/pharmacology , Thiophenes/pharmacology
13.
Clin Exp Pharmacol Physiol ; 47(5): 798-808, 2020 05.
Article in English | MEDLINE | ID: mdl-31909493

ABSTRACT

The present investigation aimed to characterize the effect of a short-time treatment with a new thiazolidinedione (TZD) derivative, GQ-130, on metabolic alterations in rats fed a high-fat diet (HFD). We investigated whether metabolic alterations induced by GQ-130 were mediated though a mechanism that involves PPARß/δ transactivation. Potential binding and transactivation of PPARα, PPARß/δ or PPARγ by GQ-130 were examined through cell transactivation, 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence quenching assays and thermal shift assay. For in vivo experiments, male 8-week-old Wistar rats were divided into three groups fed for 6 weeks with: (a) a standard rat chow (14% fat) (control group), (b) a HFD (57.8% fat) alone (HFD group), or (c) a HFD associated with an oral treatment with GQ-130 (10 mg/kg/d) during the last week (HFD-GQ group). In 293T cells, unlike rosiglitazone, GQ-130 did not cause significant transactivation of PPARγ but was able to activate PPARß/δ by 153.9 folds in comparison with control values (DMSO). Surprisingly, ANS fluorescence quenching assay reveals that GQ-130 does not bind directly to PPARß/δ binding site, a finding that was further corroborated by thermal shift assay which evaluates the thermal stability of PPARß/δ in the presence of GQ-130. Compared to the control group, rats of the HFD group showed obesity, increased systolic blood pressure (SBP), insulin resistance, impaired glucose intolerance, hyperglycaemia, and dyslipidaemia. GQ-130 treatment abolished the increased SBP and improved all metabolic dysfunctions observed in the HFD group. Oral treatment with GQ-130 was effective in improving HFD-induced metabolic alterations probably through a mechanism that involves PPARß/δ activation.


Subject(s)
Energy Metabolism/drug effects , Metabolic Syndrome/drug therapy , Obesity/drug therapy , PPAR delta/agonists , PPAR-beta/agonists , Thiazolidinediones/pharmacology , Animals , Biomarkers/blood , Blood Pressure/drug effects , Disease Models, Animal , HEK293 Cells , Humans , Insulin Resistance , Male , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , Metabolic Syndrome/physiopathology , Obesity/complications , Obesity/metabolism , Obesity/physiopathology , PPAR delta/genetics , PPAR delta/metabolism , PPAR-beta/genetics , PPAR-beta/metabolism , Rats, Wistar , Signal Transduction , Time Factors
14.
Molecules ; 25(4)2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32102354

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors with three isoforms (PPARα, PPARß/δ, PPARγ) and can regulate pain, anxiety, and cognition. However, their role in conditioned fear and pain-fear interactions has not yet been investigated. Here, we investigated the effects of systemically administered PPAR antagonists on formalin-evoked nociceptive behaviour, fear-conditioned analgesia (FCA), and conditioned fear in the presence of nociceptive tone in rats. Twenty-three and a half hours following fear conditioning to context, male Sprague-Dawley rats received an intraplantar injection of formalin and intraperitoneal administration of vehicle, PPARα (GW6471), PPARß/δ (GSK0660) or PPARγ (GW9662) antagonists, and 30 min later were re-exposed to the conditioning arena for 15 min. The PPAR antagonists did not alter nociceptive behaviour or fear-conditioned analgesia. The PPARα and PPARß/δ antagonists prolonged context-induced freezing in the presence of nociceptive tone without affecting its initial expression. The PPARγ antagonist potentiated freezing over the entire trial. In conclusion, pharmacological blockade of PPARα and PPARß/δ in the presence of formalin-evoked nociceptive tone, impaired short-term, within-trial fear-extinction in rats without affecting pain response, while blockade of PPARγ potentiated conditioned fear responding. These results suggest that endogenous signalling through these three PPAR isoforms may reduce the expression of conditioned fear in the presence of nociceptive tone.


Subject(s)
Conditioning, Psychological/drug effects , Fear/drug effects , Nociceptive Pain/drug therapy , PPAR alpha/genetics , PPAR delta/genetics , PPAR gamma/genetics , PPAR-beta/genetics , Analgesia/methods , Anilides/pharmacology , Animals , Extinction, Psychological/drug effects , Formaldehyde/administration & dosage , Freezing Reaction, Cataleptic/drug effects , Gene Expression , Male , Nociceptive Pain/chemically induced , Nociceptive Pain/physiopathology , Nociceptive Pain/psychology , Oxazoles/pharmacology , PPAR alpha/antagonists & inhibitors , PPAR alpha/metabolism , PPAR delta/antagonists & inhibitors , PPAR delta/metabolism , PPAR gamma/antagonists & inhibitors , PPAR gamma/metabolism , PPAR-beta/antagonists & inhibitors , PPAR-beta/metabolism , Rats , Rats, Sprague-Dawley , Sulfones/pharmacology , Thiophenes/pharmacology , Tyrosine/analogs & derivatives , Tyrosine/pharmacology
15.
Arch Biochem Biophys ; 662: 219-225, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30553767

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) are a family of ligand-activated nuclear transcription factors, with three characterized subtypes: PPARα, PPARß/δ, and PPARγ. The biological correlation between the two PPAR subtypes PPARα and γ and carcinogenesis is well-characterized; however, substantially less is known about the biological functions of PPARß/δ. PPARß/δ has been reported to repress transcription when PPARß/δ and PPARα or PPARγ are simultaneously expressed in some cells, and MDA-MB-231 cells express functional levels of PPARß/δ. We have previously reported that Δ9-tetrahydrocannabinol (Δ9-THC), a major cannabinoid component of the drug-type cannabis plant, can stimulate the expression of fatty acid 2-hydroxylase (FA2H) via upregulation of PPARα expression in human breast cancer MDA-MB-231 cells. Although the possibility of an inhibitory interaction between PPARα and PPARß/δ has not been demonstrated in MDA-MB-231 cells, we reasoned if this interaction were to exist, Δ9-THC should make PPARα free to achieve FA2H induction. Here, we show that a PPARß/δ-mediated suppression of PPARα function, but not of PPARγ, exists in MDA-MB-231 cells and Δ9-THC causes FA2H induction via mechanisms underlying the cancellation of PPARß/δ-mediated inhibition of PPARα, in addition to the upregulation of PPARα.


Subject(s)
Dronabinol/pharmacology , Mixed Function Oxygenases/genetics , PPAR alpha/biosynthesis , PPAR delta/metabolism , PPAR-beta/metabolism , Up-Regulation/drug effects , Cell Line, Tumor , Humans , PPAR delta/genetics , PPAR-beta/genetics , Sulfones/pharmacology , Thiophenes/pharmacology , Transcription, Genetic/drug effects
16.
Br J Nutr ; 121(2): 137-145, 2019 01.
Article in English | MEDLINE | ID: mdl-30507367

ABSTRACT

Conversion of α-linolenic acid (ALA) into the longer chain n-3 PUFA has been suggested to be affected by the dietary intake of linoleic acid (LA), but the mechanism is not well known. Therefore, the purpose of this study was to evaluate the effect of a low-LA diet with and without oestrogen on the fatty acid conversion enzymes and transcription factors. Rats were fed a modified American Institute of Nutrition-93G diet with 0% n-3 PUFA or ALA, containing low or high amounts of LA for 12 weeks. At 8 weeks, the rats were injected with maize oil with or without 17ß-oestradiol-3-benzoate (E) at constant intervals for the remaining 3 weeks. Both the low-LA diet and E significantly increased the hepatic expressions of PPAR-α, fatty acid desaturase (FADS) 2, elongase of very long chain fatty acids 2 (ELOVL2) and ELOVL5 but decreased sterol regulatory element binding protein 1. The low-LA diet, but not E, increased the hepatic expression of FADS1, and E increased the hepatic expression of oestrogen receptor-α and ß. The low-LA diet and E had synergic effects on serum and liver levels of DHA and on the hepatic expression of PPAR-α. In conclusion, the low-LA diet and oestrogen increased the conversion of ALA into DHA by upregulating the elongases and desaturases of fatty acids through regulating the expression of transcription factors. The low-LA diet and E had a synergic effect on serum and liver levels of DHA through increasing the expression of PPAR-α.


Subject(s)
Docosahexaenoic Acids/biosynthesis , Estrogens/administration & dosage , Fatty Acid Desaturases/metabolism , Fatty Acid Elongases/metabolism , Linoleic Acid/administration & dosage , alpha-Linolenic Acid/metabolism , Animals , Diet , Drug Synergism , Eicosapentaenoic Acid/biosynthesis , Fatty Acids/analysis , Female , Gene Expression , Liver/chemistry , Liver/enzymology , Liver/metabolism , Ovariectomy , PPAR-beta/genetics , Phospholipids/blood , Phospholipids/chemistry , Rats , Rats, Wistar
17.
Int J Mol Sci ; 20(20)2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31618976

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) can progress from steatosis to non-alcoholic steatohepatitis (NASH) characterized by liver inflammation, possibly leading to cirrhosis and hepatocellular carcinoma (HCC). Mice with impaired macrophage activation, when fed a high-fat diet, develop severe NASH. Evidence is mounting that Kupffer cells are implicated. However, it is unknown whether the resident CD68+ or bone marrow-derived CD11b+ Kupffer cells are involved. Characterization of the FSP1cre-Pparb/d-/- mouse liver revealed that FSP1 is expressed in CD11b+ Kupffer cells. Although these cells only constitute a minute fraction of the liver cell population, Pparb/d deletion in these cells led to remarkable hepatic phenotypic changes. We report that a higher lipid content was present in postnatal day 2 (P2) FSP1cre-Pparb/d-/- livers, which diminished after weaning. Quantification of total lipids and triglycerides revealed that P2 and week 4 of age FSP1cre-Pparb/d-/- livers have higher levels of both. qPCR analysis also showed upregulation of genes involved in fatty acid ß-oxidation, and fatty acid and triglyceride synthesis pathways. This result is further supported by western blot analysis of proteins in these pathways. Hence, we propose that FSP1cre-Pparb/d-/- mice, which accumulate lipids in their liver in early life, may represent a useful animal model to study juvenile NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , PPAR-beta/genetics , S100 Calcium-Binding Protein A4/genetics , Animals , Biomarkers , Disease Models, Animal , Fatty Acids/metabolism , Hepatocytes/metabolism , Intracellular Space/metabolism , Kupffer Cells/metabolism , Lipid Metabolism , Mice , Mice, Transgenic , Models, Biological , Oxidation-Reduction , PPAR-beta/metabolism , S100 Calcium-Binding Protein A4/metabolism
18.
Int J Mol Sci ; 19(3)2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29558390

ABSTRACT

Research in recent years on peroxisome proliferator-activated receptor (PPAR)ß/δ indicates that it plays a key role in the maintenance of energy homeostasis, both at the cellular level and within the organism as a whole. PPARß/δ activation might help prevent the development of metabolic disorders, including obesity, dyslipidaemia, type 2 diabetes mellitus and non-alcoholic fatty liver disease. This review highlights research findings on the PPARß/δ regulation of energy metabolism and the development of diseases related to altered cellular and body metabolism. It also describes the potential of the pharmacological activation of PPARß/δ as a treatment for human metabolic disorders.


Subject(s)
Metabolic Diseases/genetics , PPAR delta/agonists , PPAR-beta/agonists , Animals , Humans , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Molecular Targeted Therapy/methods , PPAR delta/genetics , PPAR delta/metabolism , PPAR-beta/genetics , PPAR-beta/metabolism
19.
Int J Mol Sci ; 19(10)2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30241392

ABSTRACT

BACKGROUND: Peroxisome proliferator⁻activated receptor (PPAR) ß/δ, a ligand-activated transcription factor, is involved in diverse biological processes including cell proliferation, cell differentiation, inflammation and energy homeostasis. Besides its well-established roles in metabolic disorders, PPARß/δ has been linked to carcinogenesis and was reported to inhibit melanoma cell proliferation, anchorage-dependent clonogenicity and ectopic xenograft tumorigenicity. However, PPARß/δ's role in tumour progression and metastasis remains controversial. METHODS: In the present studies, the consequence of PPARß/δ inhibition either by global genetic deletion or by a specific PPARß/δ antagonist, 10h, on malignant transformation of melanoma cells and melanoma metastasis was examined using both in vitro and in vivo models. RESULTS: Our study showed that 10h promotes epithelial-mesenchymal transition (EMT), migration, adhesion, invasion and trans-endothelial migration of mouse melanoma B16/F10 cells. We further demonstrated an increased tumour cell extravasation in the lungs of wild-type mice subjected to 10h treatment and in Pparß/δ-/- mice in an experimental mouse model of blood-borne pulmonary metastasis by tail vein injection. This observation was further supported by an increased tumour burden in the lungs of Pparß/δ-/- mice as demonstrated in the same animal model. CONCLUSION: These results indicated a protective role of PPARß/δ in melanoma progression and metastasis.


Subject(s)
Melanoma/genetics , Neoplasm Metastasis/genetics , PPAR delta/physiology , PPAR-beta/physiology , Animals , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Melanoma/pathology , Mice , Neoplasm Invasiveness/genetics , Neoplasm Metastasis/pathology , PPAR delta/genetics , PPAR delta/metabolism , PPAR-beta/genetics , PPAR-beta/metabolism
20.
Int J Mol Sci ; 19(6)2018 06 12.
Article in English | MEDLINE | ID: mdl-29895749

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily and they are essential regulators of cell differentiation, tissue development, and energy metabolism. Given their central roles in sensing the cellular metabolic state and controlling metabolic homeostasis, PPARs became important targets of drug development for the management of metabolic disorders. The function of PPARs is mainly regulated through ligand binding, which induces structural changes, further affecting the interactions with co-activators or co-repressors to stimulate or inhibit their functions. In addition, PPAR functions are also regulated by various Post-translational modifications (PTMs). These PTMs include phosphorylation, SUMOylation, ubiquitination, acetylation, and O-GlcNAcylation, which are found at numerous modification sites. The addition of these PTMs has a wide spectrum of consequences on protein stability, transactivation function, and co-factor interaction. Moreover, certain PTMs in PPAR proteins have been associated with the status of metabolic diseases. In this review, we summarize the PTMs found on the three PPAR isoforms PPARα, PPARß/δ, and PPARγ, and their corresponding modifying enzymes. We also discuss the functional roles of these PTMs in regulating metabolic homeostasis and provide a perspective for future research in this intriguing field.


Subject(s)
Peroxisome Proliferator-Activated Receptors/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Humans , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR delta/genetics , PPAR delta/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , PPAR-beta/genetics , PPAR-beta/metabolism , Peroxisome Proliferator-Activated Receptors/genetics , Protein Processing, Post-Translational/genetics , Protein Processing, Post-Translational/physiology , Receptors, Cytoplasmic and Nuclear/genetics
SELECTION OF CITATIONS
SEARCH DETAIL