Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Biochemistry ; 63(15): 1980-1990, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39008055

ABSTRACT

Aromatic amino acid decarboxylases (AAADs) are pyridoxal-5'-phosphate (PLP)-dependent enzymes that catalyze the decarboxylation of aromatic amino acid l-amino acids. In plants, apart from canonical AAADs that catalyze the straightforward decarboxylation reaction, other members of the AAAD family function as aromatic acetaldehyde synthases (AASs) and catalyze more complex decarboxylation-dependent oxidative deamination. The interconversion between a canonical AAAD and an AAS can be achieved by a single tyrosine-phenylalanine mutation in the large catalytic loop of the enzymes. In this work, we report implicit ligand sampling (ILS) calculations of the canonical l-tyrosine decarboxylase from Papaver somniferum (PsTyDC) that catalyzes l-tyrosine decarboxylation and its Y350F mutant that instead catalyzes the decarboxylation-dependent oxidative deamination of the same substrate. Through comparative analysis of the resulting three-dimensional (3D) O2 free energy profiles, we evaluate the impact of the key tyrosine/phenylalanine mutation on oxygen accessibility to both the wild type and Y350F mutant of PsTyDC. Additionally, using molecular dynamics (MD) simulations of the l-tryptophan decarboxylase from Catharanthus roseus (CrTDC), we further investigate the dynamics of a large catalytic loop known to be indispensable to all AAADs. Results of our ILS and MD calculations shed new light on how key structural elements and loop conformational dynamics underlie the enzymatic functions of different members of the plant AAAD family.


Subject(s)
Aromatic-L-Amino-Acid Decarboxylases , Catalytic Domain , Molecular Dynamics Simulation , Oxygen , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Aromatic-L-Amino-Acid Decarboxylases/genetics , Aromatic-L-Amino-Acid Decarboxylases/chemistry , Oxygen/metabolism , Oxygen/chemistry , Papaver/enzymology , Papaver/genetics , Papaver/metabolism , Plant Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Tyrosine/metabolism , Tyrosine/chemistry , Tyrosine/genetics
2.
J Biol Chem ; 297(4): 101211, 2021 10.
Article in English | MEDLINE | ID: mdl-34547292

ABSTRACT

Benzylisoquinoline alkaloids (BIAs) are a class of specialized metabolites with a diverse range of chemical structures and physiological effects. Codeine and morphine are two closely related BIAs with particularly useful analgesic properties. The aldo-keto reductase (AKR) codeinone reductase (COR) catalyzes the final and penultimate steps in the biosynthesis of codeine and morphine, respectively, in opium poppy (Papaver somniferum). However, the structural determinants that mediate substrate recognition and catalysis are not well defined. Here, we describe the crystal structure of apo-COR determined to a resolution of 2.4 Å by molecular replacement using chalcone reductase as a search model. Structural comparisons of COR to closely related plant AKRs and more distantly related homologues reveal a novel conformation in the ß1α1 loop adjacent to the BIA-binding pocket. The proximity of this loop to several highly conserved active-site residues and the expected location of the nicotinamide ring of the NADP(H) cofactor suggest a model for BIA recognition that implies roles for several key residues. Using site-directed mutagenesis, we show that substitutions at Met-28 and His-120 of COR lead to changes in AKR activity for the major and minor substrates codeinone and neopinone, respectively. Our findings provide a framework for understanding the molecular basis of substrate recognition in COR and the closely related 1,2-dehydroreticuline reductase responsible for the second half of a stereochemical inversion that initiates the morphine biosynthesis pathway.


Subject(s)
Benzylisoquinolines/chemistry , Models, Molecular , NAD (+) and NADP (+) Dependent Alcohol Oxidoreductases/chemistry , Papaver/enzymology , Plant Proteins/chemistry , Benzylisoquinolines/metabolism , Crystallography, X-Ray , NAD (+) and NADP (+) Dependent Alcohol Oxidoreductases/metabolism , Plant Proteins/metabolism , Protein Domains , Structure-Activity Relationship
3.
Nat Chem Biol ; 15(4): 384-390, 2019 04.
Article in English | MEDLINE | ID: mdl-30886433

ABSTRACT

The isomerization of neopinone to codeinone is a critical step in the biosynthesis of opiate alkaloids in opium poppy. Previously assumed to be spontaneous, the process is in fact catalyzed enzymatically by neopinone isomerase (NISO). Without NISO the primary metabolic products in the plant, in engineered microbes and in vitro are neopine and neomorphine, which are structural isomers of codeine and morphine, respectively. Inclusion of NISO in yeast strains engineered to convert thebaine to natural or semisynthetic opiates dramatically enhances formation of the desired products at the expense of neopine and neomorphine accumulation. Along with thebaine synthase, NISO is the second member of the pathogenesis-related 10 (PR10) protein family recently implicated in the enzymatic catalysis of a presumed spontaneous conversion in morphine biosynthesis.


Subject(s)
Codeine/biosynthesis , Morphine/biosynthesis , Papaver/metabolism , Hydrocodone/analogs & derivatives , Hydrocodone/metabolism , Isomerases/physiology , Opium/metabolism , Papaver/enzymology , Thebaine/metabolism
4.
Biochem Biophys Res Commun ; 529(2): 156-161, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32703404

ABSTRACT

Thebaine synthase 2 (THS2) that can transform (7S)-salutaridinol 7-O-acetate to thebaine catalyzes the final step of thebaine biosynthesis in Papaver somniferum. Here, the crystal structures of THS2 and its complex with thebaine are reported, revealing the interaction network in the substrate-binding pocket. Subsequent docking and QM/MM studies was performed to further explore the catalytic mechanism of THS2. Our results suggest that T105 may abstract the proton of C4-OH from the substrate under the assistance of H89. The resulting C4-O- phenolate anion then attacks the nearby C5, and triggers intramolecular SN2' syn displacement with the elimination of O-acetyl group. Moreover, the latter SN2' reaction is the rate-determining step of the whole enzymatic reaction with an overall energy barrier of 18.8 kcal/mol. These findings are of pivotal importance to understand the mechanism of action of thebaine biosynthesis, and would guide enzyme engineering to enhance the production of opiate alkaloids via metabolic engineering.


Subject(s)
Ligases/metabolism , Papaver/enzymology , Plant Proteins/metabolism , Thebaine/metabolism , Crystallography, X-Ray , Ligases/chemistry , Models, Molecular , Papaver/chemistry , Papaver/metabolism , Plant Proteins/chemistry , Protein Conformation , Quantum Theory
5.
Biochem Biophys Res Commun ; 523(2): 500-505, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31898973

ABSTRACT

Plant tyrosine decarboxylase (TyrDC) is a group II pyridoxal 5'-phosphate (PLP)-dependent decarboxylase that mainly catalyzes the decarboxylation of tyrosine to tyramine. This is biologically important for diverting essential primary metabolites into secondary metabolic pathways. Intensive studies have characterized the effective of PLP-binding and the substrate specificity of mammalian 3,4-dihydroxyphenyl-l-alanine (Dopa) decarboxylases, a member of group II PLP-dependent decarboxylase. However, the characteristics of PLP binding and substrate specificity of plant TyrDCs remain unknown. In this study, we focus on the PLP binding manner, and determined the crystal structures of the apo and PLP binding form of type II TyrDC from Papaver somniferum (PsTyrDCII and PsTyrDCII-PLP). The structures showed that, unlike mammalian Dopa decarboxylase, the binding of PLP does not induce distinct conformational changes of PsTyrDCII regarding the overall structure, but the PLP binding pocket displays conformational changes at Phe124, His203 and Thr262. Combining structural comparation and the obtained biochemical findings, it is demonstrated that PsTyrDCII does not binds PLP tightly. Such characteristics of PLP binding may be required by its catalytic reaction and substrate binding. The activity of TyrDC probably regulated by the concentration of PLP in cells.


Subject(s)
Plant Proteins/chemistry , Plant Proteins/metabolism , Pyridoxal Phosphate/metabolism , Tyrosine Decarboxylase/chemistry , Tyrosine Decarboxylase/metabolism , Binding Sites , Crystallography, X-Ray , Models, Molecular , Papaver/enzymology , Plant Proteins/genetics , Protein Conformation , Pyridoxal Phosphate/chemistry , Tyrosine Decarboxylase/genetics
6.
Plant J ; 95(2): 252-267, 2018 07.
Article in English | MEDLINE | ID: mdl-29723437

ABSTRACT

Noscapine biosynthesis in opium poppy involves three characterized O-methyltransferases (OMTs) and a fourth responsible for the 4'-methoxyl on the phthalide isoquinoline scaffold. The first three enzymes are homodimers, whereas the latter is a heterodimer encoded by two linked genes (OMT2 and OMT3). Neither OMT2 nor OMT3 form stable homodimers, but yield a substrate-specific heterodimer when their genes are co-expressed in Escherichia coli. The only substrate, 4'-O-desmethyl-3-O-acetylpapaveroxine, is a seco-berbine pathway intermediate that undergoes ester hydrolysis subsequent to 4'-O-methylation leading to the formation of narcotine hemiacetal. In the absence of 4'-O-methylation, a parallel pathway yields narcotoline hemiacetal. Dehydrogenation produces noscapine and narcotoline from the corresponding hemiacetals. Phthalide isoquinoline intermediates with a 4'-hydroxyl (i.e. narcotoline and narcotoline hemiacetal), or the corresponding 1-hydroxyl on protoberberine intermediates, were not accepted. Norcoclaurine 6OMT, which shares 81% amino acid sequence identity with OMT3, also formed a functionally similar heterodimer with OMT2. Suppression of OMT2 transcript levels in opium poppy increased narcotoline accumulation, whereas reduced OMT3 transcript abundance caused no detectable change in the alkaloid phenotype. Opium poppy chemotype Marianne accumulates high levels of narcotoline and showed no detectable OMT2:OMT3 activity. Compared with the active subunit from the Bea's Choice chemotype, Marianne OMT2 exhibited a single S122Y mutation in the dimerization domain that precluded heterodimer formation based on homology models. Both subunits contributed to the formation of the substrate-binding domain, although site-directed mutagenesis revealed OMT2 as the active subunit. The occurrence of physiologically relevant OMT heterodimers increases the catalytic diversity of enzymes derived from a smaller number of gene products.


Subject(s)
Methyltransferases/metabolism , Noscapine/metabolism , Papaver/metabolism , Plant Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Plant/genetics , Metabolic Networks and Pathways , Methylation , Methyltransferases/genetics , Microorganisms, Genetically-Modified , Papaver/enzymology , Papaver/genetics , Plant Proteins/genetics
7.
Molecules ; 24(23)2019 Nov 23.
Article in English | MEDLINE | ID: mdl-31771143

ABSTRACT

Opium poppy (Papaver somniferum L.) is an ancient medicinal plant producing pharmaceutically important benzylisoquinoline alkaloids. In the present work we focused on the study of enzyme lipoxygenase (LOX, EC 1.13.11.12) from opium poppy cultures. LOX is involved in lipid peroxidation and lipoxygenase oxidation products of polyunsaturated fatty acids have a significant role in regulation of growth, development and plant defense responses to biotic or abiotic stress. The purpose of this study was to isolate and characterize LOX enzyme from opium poppy callus cultures. LOX was purified by ammonium sulfate precipitation and then followed by hydrophobic chromatography using Phenyl-Sepharose CL-4B and hydroxyapatite chromatography using HA Ultrogel sorbent. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and immunoblotting revealed that LOX from opium poppy cultures was a single monomeric protein showing the relative molecular weight of 83 kDa. To investigate the positional specificity of the LOX reaction, purified LOX was incubated with linoleic acid and the products were analyzed by high-performance liquid chromatography in two steps, firstly with reverse phase (120-5 Nucleosil C18 column) and secondly with normal phase (Zorbax Rx-SIL column). LOX converted linoleic acid primarily to 13-hydroperoxy-(9Z,11E)-octadecadienoic acids (78%) and to a lesser extent 9-hydroperoxy-(10E,12Z)-octadecadienoic acids (22%). Characterization of LOX from opium poppy cultures provided valuable information in understanding LOX involvement in regulation of signaling pathways leading to biosynthesis of secondary metabolites with significant biological activity.


Subject(s)
Linoleic Acid/metabolism , Lipoxygenase/isolation & purification , Lipoxygenase/metabolism , Papaver/growth & development , Chemical Precipitation , Chromatography, High Pressure Liquid , Durapatite/chemistry , Lipid Peroxidation , Molecular Weight , Papaver/enzymology , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Secondary Metabolism , Sepharose/analogs & derivatives , Sepharose/chemistry
8.
J Struct Biol ; 202(3): 229-235, 2018 06.
Article in English | MEDLINE | ID: mdl-29408320

ABSTRACT

Thebaine 6-O-demethylase (T6ODM) from Papaver somniferum (opium poppy), which belongs to the non-heme 2-oxoglutarate/Fe(II)-dependent dioxygenases (ODD) family, is a key enzyme in the morphine biosynthesis pathway. Initially, T6ODM was characterized as an enzyme catalyzing O-demethylation of thebaine to neopinone and oripavine to morphinone. However, the substrate range of T6ODM was recently expanded to a number of various benzylisoquinoline alkaloids. Here, we present crystal structures of T6ODM in complexes with 2-oxoglutarate (T6ODM:2OG, PDB: 5O9W) and succinate (T6ODM:SIN, PDB: 5O7Y). Both metal and 2OG binding sites display similarity to other proteins from the ODD family, but T6ODM is characterized by an exceptionally large substrate binding cavity, whose volume can partially explain the promiscuity of this enzyme. Moreover, the size of the cavity allows for binding of multiple molecules at once, posing a question about the substrate-driven specificity of the enzyme.


Subject(s)
Oxidoreductases, O-Demethylating/ultrastructure , Papaver/enzymology , Thebaine/chemistry , Crystallography, X-Ray , Ketoglutaric Acids/chemistry , Methylation , Morphine/biosynthesis , Morphine/chemistry , Oxidoreductases, O-Demethylating/chemistry , Papaver/chemistry , Succinic Acid/chemistry
9.
Plant Physiol ; 173(3): 1606-1616, 2017 03.
Article in English | MEDLINE | ID: mdl-28126844

ABSTRACT

Protein phosphorylation regulates numerous cellular processes. Identifying the substrates and protein kinases involved is vital to understand how these important posttranslational modifications modulate biological function in eukaryotic cells. Pyrophosphatases catalyze the hydrolysis of inorganic phosphate (PPi) to inorganic phosphate Pi, driving biosynthetic reactions; they are essential for low cytosolic inorganic phosphate. It was suggested recently that posttranslational regulation of Family I soluble inorganic pyrophosphatases (sPPases) may affect their activity. We previously demonstrated that two pollen-expressed sPPases, Pr-p26.1a and Pr-p26.1b, from the flowering plant Papaver rhoeas were inhibited by phosphorylation. Despite the potential significance, there is a paucity of data on sPPase phosphorylation and regulation. Here, we used liquid chromatographic tandem mass spectrometry to map phosphorylation sites to the otherwise divergent amino-terminal extensions on these pollen sPPases. Despite the absence of reports in the literature on mapping phosphorylation sites on sPPases, a database survey of various proteomes identified a number of examples, suggesting that phosphorylation may be a more widely used mechanism to regulate these enzymes. Phosphomimetic mutants of Pr-p26.1a/b significantly and differentially reduced PPase activities by up to 2.5-fold at pH 6.8 and 52% in the presence of Ca2+ and hydrogen peroxide over unmodified proteins. This indicates that phosphoregulation of key sites can inhibit the catalytic responsiveness of these proteins in concert with key intracellular events. As sPPases are essential for many metabolic pathways in eukaryotic cells, our findings identify the phosphorylation of sPPases as a potential master regulatory mechanism that could be used to attenuate metabolism.


Subject(s)
Inorganic Pyrophosphatase/metabolism , Papaver/enzymology , Plant Proteins/metabolism , Pollen/enzymology , Amino Acid Sequence , Base Sequence , Binding Sites/genetics , Calcium/metabolism , Calcium/pharmacology , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Hydrogen Peroxide/pharmacology , Hydrogen-Ion Concentration , Inorganic Pyrophosphatase/genetics , Isoenzymes/genetics , Isoenzymes/metabolism , Mutation , Oxidants/pharmacology , Papaver/genetics , Phosphorylation , Phylogeny , Plant Proteins/genetics , Pollen/genetics , Protein Kinases/classification , Protein Kinases/genetics , Protein Kinases/metabolism , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Solubility , Substrate Specificity , Tandem Mass Spectrometry
10.
Plant Physiol ; 174(2): 1226-1237, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28385731

ABSTRACT

Mitogen-activated protein kinases (MAPKs) form important signaling modules for a variety of cellular responses in eukaryotic cells. In plants, MAPKs play key roles in growth and development as well as in immunity/stress responses. Pollen-pistil interactions are critical early events regulating pollination and fertilization and involve many signaling events. Self-incompatibility (SI) is an important mechanism to prevent self-fertilization and inbreeding in higher plants and also is known to utilize signaling to achieve incompatible pollen rejection. Although several pollen-expressed MAPKs exist, very little is known about their function. We previously identified a pollen-expressed MAPK (p56) from Papaver rhoeas that was rapidly activated during SI; several studies implicated its role in signaling to SI-induced programmed cell death involving a DEVDase. However, to date, the identity of the MAPK involved has been unknown. Here, we have identified and cloned a pollen-expressed P. rhoeas threonine-aspartate-tyrosine (TDY) MAPK, PrMPK9-1 Rather few data relating to the function of TDY MAPKs in plants currently exist. We provide evidence that PrMPK9-1 has a cell type-specific function, with a distinct role from AtMPK9 To our knowledge, this is the first study implicating a function for a TDY MAPK in pollen. We show that PrMPK9-1 corresponds to p56 and demonstrate that it is functionally involved in mediating SI in P. rhoeas pollen: PrMPK9-1 is a key regulator for SI in pollen and acts upstream of programmed cell death involving actin and activation of a DEVDase. Our study provides an important advance in elucidating functional roles for this class of MAPKs.


Subject(s)
Mitogen-Activated Protein Kinases/metabolism , Papaver/enzymology , Papaver/physiology , Plant Proteins/metabolism , Self-Incompatibility in Flowering Plants/physiology , Apoptosis/drug effects , Arabidopsis/enzymology , Caspase 3/metabolism , Cytosol/metabolism , Gene Expression Regulation, Plant/drug effects , Oligonucleotides, Antisense/pharmacology , Peptide Hydrolases/metabolism , Phosphoproteins/metabolism , Pollen Tube/drug effects , Pollen Tube/growth & development , Protein Transport/drug effects , Self-Incompatibility in Flowering Plants/drug effects
11.
J Biol Chem ; 291(45): 23416-23427, 2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27634038

ABSTRACT

Benzylisoquinoline alkaloids are a large group of plant-specialized metabolites displaying an array of biological and pharmacological properties associated with numerous structural scaffolds and diverse functional group modification. N-Methylation is one of the most common tailoring reactions, yielding tertiary and quaternary pathway intermediates and products. Two N-methyltransferases accepting (i) early 1-benzylisoquinoline intermediates possessing a secondary amine and leading to the key branch-point intermediate (S)-reticuline and (ii) downstream protoberberines containing a tertiary amine and forming quaternary intermediates destined for phthalideisoquinolines and antimicrobial benzo[c]phenanthridines were previously characterized. We report the isolation and characterization of a phylogenetically related yet functionally distinct N-methyltransferase (NMT) from opium poppy (Papaver somniferum) that primarily accepts 1-benzylisoquinoline and aporphine substrates possessing a tertiary amine. The preferred substrates were the R and S conformers of reticuline and the aporphine (S)-corytuberine, which are proposed intermediates in the biosynthesis of magnoflorine, a quaternary aporphine alkaloid common in plants. Suppression of the gene encoding reticuline N-methyltransferase (RNMT) using virus-induced gene silencing in opium poppy resulted in a significant decrease in magnoflorine accumulation and a concomitant increase in corytuberine levels in roots. RNMT transcript levels were also most abundant in roots, in contrast to the distribution of transcripts encoding other NMTs, which occur predominantly in aerial plant organs. The characterization of a third functionally unique NMT involved in benzylisoquinoline alkaloid metabolism will facilitate the establishment of structure-function relationships among a large group of related enzymes.


Subject(s)
Aporphines/metabolism , Benzylisoquinolines/metabolism , Methyltransferases/metabolism , Papaver/enzymology , Amino Acid Sequence , Biosynthetic Pathways , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/isolation & purification , Papaver/chemistry , Papaver/genetics , Papaver/metabolism , Phylogeny , Sequence Alignment
12.
Nat Chem Biol ; 11(2): 104-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25485687

ABSTRACT

We have characterized four sequential enzymes that transform 1-hydroxy-N-methylcanadine to narcotoline hemiacetal, completing our elucidation of noscapine biosynthesis in opium poppy. Two cytochromes P450 catalyze hydroxylations at C13 and C8 on the protoberberine scaffold, the latter step inducing ring opening and the formation of an aldehyde moiety. Acetylation at C13 before C8 hydroxylation introduces a protective group subsequently hydrolyzed by a carboxylesterase, which triggers rearrangement to a cyclic hemiacetal.


Subject(s)
Noscapine/metabolism , Papaver/enzymology , Plant Proteins/metabolism , Acetylation , Berberine/analogs & derivatives , Berberine/chemistry , Berberine/metabolism , Biosynthetic Pathways , Cyclization , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Gene Silencing , Hydroxylation , Noscapine/chemistry , Papaver/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
13.
Pestic Biochem Physiol ; 138: 57-65, 2017 May.
Article in English | MEDLINE | ID: mdl-28456305

ABSTRACT

Target-site and non-target-site resistance mechanisms to ALS inhibitors were investigated in multiple resistant (tribenuron-methyl and 2,4-D) and only 2,4-D resistant, Spanish corn poppy populations. Six amino-acid replacements at the Pro197 position (Ala197, Arg197, His197, Leu197, Thr197 and Ser197) were found in three multiple resistant populations. These replacements were responsible for the high tribenuron-methyl resistance response, and some of them, especially Thr197 and Ser197, elucidated the cross-resistant pattern for imazamox and florasulam, respectively. Mutations outside of the conserved regions of the ALS gene (Gly427 and Leu648) were identified, but not related to resistance response. Higher mobility of labeled tribenuron-methyl in plants with multiple resistance was, however, similar to plants with only 2,4-D resistance, indicating the presence of non-target-site resistance mechanisms (NTSR). Metabolism studies confirmed the presence of a hydroxy imazamox metabolite in one of the populations. Lack of correlation between phenotype and genotype in plants treated with florasulam or imazamox, non-mutated plants surviving imazamox, tribenuron-methyl translocation patterns and the presence of enhanced metabolism revealed signs of the presence of NTSR mechanisms to ALS inhibitors in this species. On this basis, selection pressure with ALS non-SU inhibitors bears the risk of promoting the evolution of NTSR mechanisms in corn poppy.


Subject(s)
Acetolactate Synthase/antagonists & inhibitors , Herbicide Resistance , Herbicides/pharmacology , Papaver/drug effects , Dose-Response Relationship, Drug , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Herbicides/administration & dosage , Papaver/enzymology
14.
J Biol Chem ; 289(4): 2013-26, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24324259

ABSTRACT

Noscapine is a phthalideisoquinoline alkaloid investigated for its potent pharmacological properties. Although structurally elucidated more than a century ago, the biosynthesis of noscapine has not been established. Radiotracer studies have shown that noscapine is derived from the protoberberine alkaloid (S)-scoulerine and has been proposed to proceed through (S)-N-methylcanadine. However, pathway intermediates involved in the conversion of N-methylcanadine to noscapine have not been identified. We report the isolation and characterization of the cytochrome P-450 CYP82Y1, which catalyzes the 1-hydroxylation of N-methylcanadine to 1-hydroxy-N-methylcanadine. Comparison of transcript and metabolite profiles of eight opium poppy chemotypes revealed four cytochrome P-450s, three from the CYP82 and one from the CYP719 families, that were tightly correlated with noscapine accumulation. Recombinant CYP82Y1 was the only enzyme that accepted (R,S)-N-methylcanadine as a substrate with strict specificity and high affinity. As expected, CYP82Y1 was abundantly expressed in opium poppy stems where noscapine accumulation is highest among plant organs. Suppression of CYP82Y1 using virus-induced gene silencing caused a significant reduction in the levels of noscapine, narcotoline, and a putative downstream secoberbine intermediate and also resulted in increased accumulation of the upstream pathway intermediates scoulerine, tetrahydrocolum-bamine, canadine, and N-methylcanadine. The combined biochemical and physiological data support the 1-hydroxylation of (S)-N-methylcanadine catalyzed by CYP82Y1 as the first committed step in the formation of noscapine in opium poppy.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Noscapine/metabolism , Papaver/enzymology , Plant Proteins/metabolism , Cytochrome P-450 Enzyme System/genetics , Papaver/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
15.
Plant J ; 77(2): 173-84, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24708518

ABSTRACT

The final step in the biosynthesis of the phthalideisoquinoline alkaloid noscapine involves a purported dehydrogenation of the narcotinehemiacetal keto moiety. A short-chain dehydrogenase/reductase (SDR), designated noscapine synthase (NOS), that catalyzes dehydrogenation of narcotinehemiacetal to noscapine was identified in opium poppy and functionally characterized. The NOS gene was isolated using an integrated transcript and metabolite profiling strategy and subsequently expressed in Escherichia coli. Noscapine synthase is highly divergent from other characterized members of the NADPH-dependent SDR superfamily involved in benzylisoquinoline alkaloid metabolism, and it exhibits exclusive substrate specificity for narcotinehemiacetal. Kinetic analyses showed that NOS exhibits higher catalytic efficiency with NAD+ as the cofactor compared with NADP+. Suppression of NOS transcript levels in opium poppy plants subjected to virus-induced gene silencing resulted in a corresponding reduction in the accumulation of noscapine and an increase in narcotinehemiacetal levels in the latex. Noscapine and NOS transcripts were detected in all opium poppy organs, but both were most abundant in stems. Unlike other putative biosynthetic genes clustered in the opium poppy genome, and their corresponding proteins, NOS transcripts and the cognate enzyme were abundant in latex, indicating that noscapine metabolism is completed in a distinct cell type compared with the rest of the pathway.


Subject(s)
Noscapine/metabolism , Opium/metabolism , Oxidoreductases/metabolism , Papaver/enzymology , Base Sequence , Biocatalysis , Chromatography, High Pressure Liquid , DNA Primers , Genes, Plant , Kinetics , Ligases/genetics , Ligases/metabolism , Molecular Sequence Data , Papaver/genetics , Papaver/metabolism , Tandem Mass Spectrometry
16.
J Biol Chem ; 288(40): 28997-9012, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-23928311

ABSTRACT

In opium poppy, the antepenultimate and final steps in morphine biosynthesis are catalyzed by the 2-oxoglutarate/Fe(II)-dependent dioxygenases, thebaine 6-O-demethylase (T6ODM) and codeine O-demethylase (CODM). Further investigation into the biochemical functions of CODM and T6ODM revealed extensive and unexpected roles for such enzymes in the metabolism of protopine, benzo[c]phenanthridine, and rhoeadine alkaloids. When assayed with a wide range of benzylisoquinoline alkaloids, CODM, T6ODM, and the functionally unassigned paralog DIOX2, renamed protopine O-dealkylase, showed novel and efficient dealkylation activities, including regio- and substrate-specific O-demethylation and O,O-demethylenation. Enzymes catalyzing O,O-demethylenation, which cleave a methylenedioxy bridge leaving two hydroxyl groups, have previously not been reported in plants. Similar cleavage of methylenedioxy bridges on substituted amphetamines is catalyzed by heme-dependent cytochromes P450 in mammals. Preferred substrates for O,O-demethylenation by CODM and protopine O-dealkylase were protopine alkaloids that serve as intermediates in the biosynthesis of benzo[c]phenanthridine and rhoeadine derivatives. Virus-induced gene silencing used to suppress the abundance of CODM and/or T6ODM transcripts indicated a direct physiological role for these enzymes in the metabolism of protopine alkaloids, and they revealed their indirect involvement in the formation of the antimicrobial benzo[c]phenanthridine sanguinarine and certain rhoeadine alkaloids in opium poppy.


Subject(s)
Benzylisoquinolines/metabolism , Biocatalysis , Dioxygenases/metabolism , Opium/metabolism , Papaver/enzymology , Benzylisoquinolines/chemistry , Berberine Alkaloids/chemistry , Berberine Alkaloids/metabolism , Chromatography, Liquid , Formaldehyde/metabolism , Gene Silencing , Kinetics , Mass Spectrometry , Methylation , Phylogeny , Substrate Specificity , Viruses
17.
Commun Biol ; 7(1): 1410, 2024 Oct 29.
Article in English | MEDLINE | ID: mdl-39472466

ABSTRACT

The evolution of morphinan alkaloid biosynthesis in plants of the genus Papaver includes permutation of several processes including gene duplication, fusion, neofunctionalization, and deletion resulting in the present chemotaxonomy. A critical gene fusion event resulting in the key bifunctional enzyme reticuline epimerase (REPI), which catalyzes the stereochemical inversion of (S)-reticuline, was suggested to precede neofunctionalization of downstream enzymes leading to morphine biosynthesis in opium poppy (Papaver somniferum). The ancestrally related aldo-keto reductases 1,2-dehydroreticuline reductase (DRR), which occurs in some species as a component of REPI, and codeinone reductase (COR) catalyze the second and penultimate steps, respectively, in the pathway converting (S)-reticuline to morphine. Orthologs for each enzyme isolated from the transcriptomes of 12 Papaver species were shown to catalyze their respective reactions in species that capture states of the metabolic pathway prior to key evolutionary events, including the gene fusion event leading to REPI, thus suggesting a patchwork model for pathway evolution. Analysis of the structure and substrate preferences of DRR orthologs in comparison with COR orthologs revealed structure-function relationships underpinning the functional latency of DRR and COR orthologs in the genus Papaver, thus providing insights into the molecular events leading to the evolution of the pathway.


Subject(s)
Aldo-Keto Reductases , Evolution, Molecular , Morphine , Papaver , Papaver/genetics , Papaver/enzymology , Papaver/metabolism , Morphine/metabolism , Aldo-Keto Reductases/metabolism , Aldo-Keto Reductases/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Benzylisoquinolines
18.
J Biol Chem ; 287(51): 42972-83, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23118227

ABSTRACT

Benzylisoquinoline alkaloids are a diverse class of plant specialized metabolites that includes the analgesic morphine, the antimicrobials sanguinarine and berberine, and the vasodilator papaverine. The two-electron oxidation of dihydrosanguinarine catalyzed by dihydrobenzophenanthridine oxidase (DBOX) is the final step in sanguinarine biosynthesis. The formation of the fully conjugated ring system in sanguinarine is similar to the four-electron oxidations of (S)-canadine to berberine and (S)-tetrahydropapaverine to papaverine. We report the isolation and functional characterization of an opium poppy (Papaver somniferum) cDNA encoding DBOX, a flavoprotein oxidase with homology to (S)-tetrahydroprotoberberine oxidase and the berberine bridge enzyme. A query of translated opium poppy stem transcriptome databases using berberine bridge enzyme yielded several candidate genes, including an (S)-tetrahydroprotoberberine oxidase-like sequence selected for heterologous expression in Pichia pastoris. The recombinant enzyme preferentially catalyzed the oxidation of dihydrosanguinarine to sanguinarine but also converted (RS)-tetrahydropapaverine to papaverine and several protoberberine alkaloids to oxidized forms, including (RS)-canadine to berberine. The K(m) values of 201 and 146 µm for dihydrosanguinarine and the protoberberine alkaloid (S)-scoulerine, respectively, suggested high concentrations of these substrates in the plant. Virus-induced gene silencing to reduce DBOX transcript levels resulted in a corresponding reduction in sanguinarine, dihydrosanguinarine, and papaverine accumulation in opium poppy roots in support of DBOX as a multifunctional oxidative enzyme in BIA metabolism.


Subject(s)
Benzophenanthridines/biosynthesis , Biocatalysis , Flavoproteins/metabolism , Opium/metabolism , Oxidoreductases/metabolism , Papaver/enzymology , Papaverine/biosynthesis , Benzophenanthridines/chemistry , Enzyme Assays , Gene Expression Regulation, Plant , Gene Silencing , Genes, Plant/genetics , Genetic Association Studies , Isoquinolines/chemistry , Oxidoreductases/genetics , Papaver/genetics , Papaverine/chemistry , Phylogeny , Plant Viruses/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Substrate Specificity
19.
Plant J ; 72(2): 331-44, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22725256

ABSTRACT

Papaverine, a major benzylisoquinoline alkaloid in opium poppy (Papaver somniferum), is used as a vasodilator and antispasmodic. Conversion of the initial intermediate (S)-norcoclaurine to papaverine involves 3'-hydroxylation, four O-methylations and dehydrogenation. However, our understanding of papaverine biosynthesis remains controversial more than a century after an initial scheme was proposed. In vitro assays and in vivo labeling studies have been insufficient to establish the sequence of conversions, the potential role of the intermediate (S)-reticuline, and the enzymes involved. We used virus-induced gene silencing in opium poppy to individually suppress the expression of six genes with putative roles in papaverine biosynthesis. Suppression of the gene encoding coclaurine N-methyltransferase dramatically increased papaverine levels at the expense of N-methylated alkaloids, indicating that the main biosynthetic route to papaverine proceeds via N-desmethylated compounds rather than through (S)-reticuline. Suppression of genes encoding (S)-3'-hydroxy-N-methylcoclaurine 4-O-methyltransferase and norreticuline 7-O-methyltransferase, which accept certain N-desmethylated alkaloids, reduced papaverine content. In contrast, suppression of genes encoding N-methylcoclaurine 3'-hydroxylase or reticuline 7-O-methyltransferase, which are specific for N-methylated alkaloids, did not affect papaverine levels. Suppression of norcoclaurine 6-O-methyltransferase transcript levels significantly suppressed total alkaloid accumulation, implicating (S)-coclaurine as a key branch-point intermediate. The differential detection of N-desmethylated compounds in response to suppression of specific genes highlights the primary route to papaverine.


Subject(s)
Alkaloids/metabolism , Latex/chemistry , Papaver/enzymology , Plant Proteins/genetics , Benzylisoquinolines/metabolism , Biosynthetic Pathways , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant , Gene Silencing , Latex/isolation & purification , Methyltransferases/genetics , Methyltransferases/metabolism , Papaver/chemistry , Papaver/genetics , Papaver/metabolism , Papaverine/metabolism , Plant Proteins/metabolism , Plant Stems/chemistry , Plant Stems/enzymology , Plant Stems/genetics , Plant Stems/metabolism , RNA, Messenger/genetics , RNA, Plant/genetics , Real-Time Polymerase Chain Reaction , Vasodilator Agents/metabolism
20.
Plant J ; 69(6): 1052-63, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22098111

ABSTRACT

Opium poppy (Papaver somniferum) remains the sole commercial source for several pharmaceutical alkaloids including the narcotic analgesics codeine and morphine, and the semi-synthetic drugs oxycodone, buprenorphine and naltrexone. Although most of the biosynthetic genes have been identified, the post-transcriptional regulation of the morphinan alkaloid pathway has not been determined. We have used virus-induced gene silencing (VIGS) as a functional genomics tool to investigate the regulation of morphine biosynthesis via a systematic reduction in enzyme levels responsible for the final six steps in the pathway. Specific gene silencing was confirmed at the transcript level by real-time quantitative PCR (polymerase chain reaction), and at the protein level by immunoblot analysis using antibodies raised against salutaridine synthase (SalSyn), salutaridine reductase (SalR), salutaridine 7-O-acetyltransferase (SalAT), thebaine 6-O-demethylase (T6ODM), codeinone reductase (COR), and codeine O-demethylase (CODM). In some cases, silencing a specific biosynthetic gene resulted in a predictable accumulation of the substrate for the corresponding enzyme. Reduced SalSyn, SalR, T6ODM and CODM protein levels correlated with lower morphine levels and a substantial increase in the accumulation of reticuline, salutaridine, thebaine and codeine, respectively. In contrast, the silencing of genes encoding SalAT and COR resulted in the accumulation of salutaridine and reticuline, respectively, which are not the corresponding enzymatic substrates. The silencing of alkaloid biosynthetic genes using VIGS confirms the physiological function of enzymes previously characterized in vitro, provides insight into the biochemical regulation of morphine biosynthesis, and demonstrates the immense potential for metabolic engineering in opium poppy.


Subject(s)
Benzylisoquinolines/metabolism , Gene Expression Regulation, Plant , Gene Knockdown Techniques/methods , Gene Silencing , Morphine/biosynthesis , Papaver/genetics , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Chromatography, High Pressure Liquid , Gene Expression Regulation, Enzymologic , Genes, Plant , Genetic Vectors/genetics , Genetic Vectors/metabolism , Immunoblotting , Metabolic Engineering/methods , Morphinans/metabolism , Morphine/metabolism , NAD (+) and NADP (+) Dependent Alcohol Oxidoreductases , Oxidoreductases/genetics , Oxidoreductases/metabolism , Papaver/enzymology , Papaver/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Viruses/genetics , Plant Viruses/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL