Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 768
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Chembiochem ; 25(13): e202400060, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38715149

ABSTRACT

While plaques comprised of fibrillar Aß aggregates are hallmarks of Alzheimer's disease, soluble Aß oligomers present higher neurotoxicity. Thus, one therapeutic approach is to prevent the formation of Aß oligomers and reduce their associated harmful effects. We have proposed a peptoid mimic of the Aß hydrophobic KLVFF core as an ideal candidate aggregation inhibitor due to its ability to evade proteolytic degradation via repositioning of the side chain from the α-carbon to the amide nitrogen. This peptoid, JPT1, utilizes chiral sidechains to achieve a helical structure, while C-terminal addition of two phenylalanine residues places aromatic groups on two sides of the helix with spacing designed to facilitate interaction with amyloid ß-sheet structure. We have previously shown that JPT1 modulates Aß fibril formation. Here, we demonstrate that JPT1 also modulates Aß oligomerization, and we explore the role of the charge on the linker between the KLVFF mimic and the extended aromatic residues. Additionally, we demonstrate that peptoid-induced changes in Aß oligomerization correlate with attenuation of oligomer-induced nuclear factor-κB activation in SH-SY5Y human neuroblastoma cells. These findings support the therapeutic potential of peptoids to target early stages of Aß aggregation and impact the associated Aß-induced cellular response.


Subject(s)
Amyloid beta-Peptides , Peptoids , Peptoids/chemistry , Peptoids/pharmacology , Peptoids/chemical synthesis , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Humans , Cell Line, Tumor , Drug Design
2.
Chemistry ; 30(6): e202303330, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-37948294

ABSTRACT

Controlling amide bond geometries and the secondary structures of ß-peptoids is a challenging task as they contain several rotatable single bonds in their backbone. Herein, we describe the synthesis and conformational properties of novel "ß-azapeptoids" with confined dihedrals. We discuss how the acylhydrazide sidechains in these molecules enforce trans amide geometries (ω ~180°) via steric and stereoelectronic effects. We also show that the Θ(Cα -Cß ) and Ψ(OC-Cα ) backbone torsions of ß-azapeptoids occupy a narrow range (170-180°) that can be rationalized by the staggered conformational preference of the backbone methylene carbons and a novel backbone nO →σ*Cß-N interaction discovered in this study. However, the ϕ (Cß -N) torsion remains freely rotatable and, depending on ϕ, the sidechains can be parallel, perpendicular, and anti-parallel relative to each other. In fact, we observed parallel and perpendicular relative orientations of sidechains in the crystal geometries of ß-azapeptoid dimers. We show that ϕ of ß-azapeptoids can be controlled by incorporating a bulky substituent at the backbone ß-carbon, which could provide complete control over all the backbone dihedrals. Finally, we show that the ϕ and Ψ dihedrals of ß-azapeptoids resemble that of a PPII helix and they retain PPII structure when incorporated in Host-guest proline peptides.


Subject(s)
Peptidomimetics , Peptoids , Peptides/chemistry , Peptoids/chemistry , Amides/chemistry , Protein Structure, Secondary
3.
Chemistry ; 30(2): e202302937, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37939246

ABSTRACT

This study presents an efficient method for on-resin dimer generation through self-condensation of 3,3-dimethoxypropionic acid-modified molecules, resulting in 2-pyridones. The approach demonstrated remarkable versatility by producing homodimers of peptides, peptoids, and non-peptidic ligands. Its ease of application, broad utility, and mild reaction conditions not only hold significance for peptide and peptoid research but also offer potential for the on-resin development of a wide range of bivalent ligands.


Subject(s)
Peptoids , Solid-Phase Synthesis Techniques , Solid-Phase Synthesis Techniques/methods , Peptides/chemistry , Peptoids/chemistry , Pyridones , Ligands
4.
Biomacromolecules ; 25(3): 1391-1407, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38422548

ABSTRACT

The design, synthesis, and fabrication of functional nanomaterials with specific properties remain a long-standing goal for many scientific fields. The self-assembly of sequence-defined biomimetic synthetic polymers presents a fundamental strategy to explore the chemical space beyond biological systems to create advanced nanomaterials. Moreover, subsequent chemical modification of existing nanostructures is a unique approach for accessing increasingly complex nanostructures and introducing functionalities. Of these modifications, covalent conjugation chemistries, such as the click reactions, have been the cornerstone for chemists and materials scientists. Herein, we highlight some recent advances that have successfully employed click chemistries for the postmodification of assembled one-dimensional (1D) and two-dimensional (2D) nanostructures to achieve applications in molecular recognition, mineralization, and optoelectronics. Specifically, biomimetic nanomaterials assembled from sequence-defined macromolecules such as peptides and peptoids are described.


Subject(s)
Biomimetic Materials , Nanostructures , Peptoids , Click Chemistry , Biomimetics , Nanostructures/chemistry , Peptides , Peptoids/chemistry
5.
Biomacromolecules ; 25(2): 1274-1281, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38240722

ABSTRACT

We have studied the complexation between cationic antimicrobials and polyanionic microgels to create self-defensive surfaces that responsively resist bacterial colonization. An essential property is the stable sequestration of the loaded (complexed) antimicrobial within the microgel under a physiological ionic strength. Here, we assess the complexation strength between poly(acrylic acid) [PAA] microgels and a series of cationic peptoids that display supramolecular structures ranging from an oligomeric monomer to a tetramer. We follow changes in loaded microgel diameter with increasing [Na+] as a measure of the counterion doping level. Consistent with prior findings on colistin/PAA complexation, we find that a monomeric peptoid is fully released at ionic strengths well below physiological conditions, despite its +5 charge. In contrast, progressively higher degrees of peptoid supramolecular structure display progressively greater resistance to salting out, which we attribute to the greater entropic stability associated with the complexation of multimeric peptoid bundles.


Subject(s)
Anti-Infective Agents , Microgels , Peptoids , Peptoids/chemistry , Acrylic Resins/chemistry , Anti-Infective Agents/chemistry , Cations
6.
Bioorg Med Chem ; 97: 117560, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38103535

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) endows epithelia-derived cancer cells with properties of stem cells that govern cancer invasion and metastasis. Vimentin is one of the best studied EMT markers and recent reports indicate that vimentin interestingly translocated onto cell surface under various tumor conditions. We recently reported a cell surface vimentin (CSV) specific peptoid antagonist named JM3A. We now investigated the selective antagonist activity of the optimized homo-dimeric version of JM3A, JM3A-L2D on stem-like cancer cells or cancer stem cells (CSCs) over normal cells in non-small cell lung cancer (NSCLC). Homo-dimerization of JM3A provided the avidity effect and improved the biological activity compared to the monomeric version. We first optimized the central linker length of the dimer by designing seven JM3A derivatives with varying linker lengths/types and evaluated the anti-cancer activity using the standard MTS cell viability assay. The most optimized derivative contains a central lysine linker and two glycines, named JM3A-L2D, which displayed 100 nM vimentin binding affinity (Kd) with an anti-cancer activity (IC50) of 6.7 µM on H1299 NSCLC cells. This is a 190-fold improvement in binding over the original JM3A. JM3A-L2D exhibited better potency on high vimentin-expressing NSCLC cells (H1299 and H460) compared to low vimentin-expressing NSCLC cells (H2122). No activity was observed on normal bronchial HBEC3-KT cells. The anti-CSC activity of JM3A-L2D was evaluated using the standard colony formation assay and JM3A-L2D disrupted the colony formation with IC50 âˆ¼ 400 nM. In addition, JM3A-L2D inhibited cell migration activity at IC50 âˆ¼ 2 µM, assessed via wound healing assay. The underlying mechanism of action seems to be the induction of apoptosis by JM3A-L2D on high-vimentin expressing H1229 and H460 NSCLC cells. Our optimized highly CSV selective peptoid has the potential to be developed as an anti-cancer drug candidate, especially considering the high serum stability and economical synthesis of peptoids.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Peptoids , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Lung/metabolism , Lung Neoplasms/pathology , Neoplastic Stem Cells , Peptoids/pharmacology , Peptoids/metabolism , Vimentin/metabolism
7.
Bioorg Chem ; 147: 107334, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583251

ABSTRACT

Building upon our previous study on peptoid-based antibacterials which showed good activity against Gram-positive bacteria only, herein we report the synthesis of 34 dimeric peptoid compounds and the investigation of their activity against Gram-positive and Gram-negative pathogens. The newly designed peptoids feature a di-hydrophobic moiety incorporating phenyl, bromo-phenyl, and naphthyl groups, combined with variable lengths of cationic units such as amino and guanidine groups. The study also underscores the pivotal interplay between hydrophobicity and cationicity in optimizing efficacy against specific bacteria. The bromophenyl dimeric guanidinium peptoid compound 10j showed excellent activity against S. aureus 38 and E. coli K12 with MIC of 0.8 µg mL-1 and 6.2 µg mL-1, respectively. Further investigation into the mechanism of action revealed that the antibacterial effect might be attributed to the disruption of bacterial cell membranes, as suggested by tethered bilayer lipid membranes (tBLMs) and cytoplasmic membrane permeability studies. Notably, these promising antibacterial agents exhibited negligible toxicity against mammalian red blood cells. Additionally, the study explored the potential of 12 active compounds to disrupt established biofilms of S. aureus 38. The most effective biofilm disruptors were ethyl and octyl-naphthyl guanidinium peptoids (10c and 10 k). These compounds 10c and 10 k disrupted the established biofilms of S. aureus 38 with 51 % at 4x MIC (MIC = 17.6 µg mL-1 and 11.2 µg mL-1) and 56 %-58 % at 8x MIC (MIC = 35.2 µg mL-1 and 22.4 µg mL-1) respectively. Overall, this research contributes insights into the design principles of cationic dimeric peptoids and their antibacterial activity, with implications for the development of new antibacterial compounds.


Subject(s)
Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Peptoids , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Peptoids/chemistry , Peptoids/pharmacology , Peptoids/chemical synthesis , Biofilms/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Dimerization , Escherichia coli/drug effects , Humans , Erythrocytes/drug effects
8.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674048

ABSTRACT

Inflammation processes of the central nervous system (CNS) play a vital role in the pathogenesis of several neurological and psychiatric disorders like depression. These processes are characterized by the activation of glia cells, such as microglia. Clinical studies showed a decrease in symptoms associated with the mentioned diseases after the treatment with anti-inflammatory drugs. Therefore, the investigation of novel anti-inflammatory drugs could hold substantial potential in the treatment of disorders with a neuroinflammatory background. In this in vitro study, we report the anti-inflammatory effects of a novel hexacyclic peptide-peptoid hybrid in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. The macrocyclic compound X15856 significantly suppressed Interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), c-c motif chemokine ligand 2 (CCL2), CCL3, C-X-C motif chemokine ligand 2 (CXCL2), and CXCL10 expression and release in LPS-treated BV2 microglial cells. The anti-inflammatory effects of the compound are partially explained by the modulation of the phosphorylation of p38 mitogen-activated protein kinases (MAPK), p42/44 MAPK (ERK 1/2), protein kinase C (PKC), and the nuclear factor (NF)-κB, respectively. Due to its remarkable anti-inflammatory properties, this compound emerges as an encouraging option for additional research and potential utilization in disorders influenced by inflammation, such as depression.


Subject(s)
Anti-Inflammatory Agents , Lipopolysaccharides , Microglia , Microglia/drug effects , Microglia/metabolism , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Cell Line , Peptoids/pharmacology , Peptoids/chemistry , Interleukin-6/metabolism , NF-kappa B/metabolism , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Peptides/pharmacology , Peptides/chemistry , Tumor Necrosis Factor-alpha/metabolism , Chemokine CXCL2/metabolism , Cytokines/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Chemokine CCL3/metabolism , Chemokine CCL3/genetics , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemistry
9.
Angew Chem Int Ed Engl ; 63(24): e202403263, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38657031

ABSTRACT

Hierarchical self-assembly represents a powerful strategy for the fabrication of functional materials across various length scales. However, achieving precise formation of functional hierarchical assemblies remains a significant challenge and requires a profound understanding of molecular assembly interactions. In this study, we present a molecular-level understanding of the hierarchical assembly of sequence-defined peptoids into multidimensional functional materials, including twisted nanotube bundles serving as a highly efficient artificial light harvesting system. By employing synchrotron-based powder X-ray diffraction and analyzing single crystal structures of model compounds, we elucidated the molecular packing and mechanisms underlying the assembly of peptoids into multidimensional nanostructures. Our findings demonstrate that incorporating aromatic functional groups, such as tetraphenyl ethylene (TPE), at the termini of assembling peptoid sequences promotes the formation of twisted bundles of nanotubes and nanosheets, thus enabling the creation of a highly efficient artificial light harvesting system. This research exemplifies the potential of leveraging sequence-defined synthetic polymers to translate microscopic molecular structures into macroscopic assemblies. It holds promise for the development of functional materials with precisely controlled hierarchical structures and designed functions.


Subject(s)
Peptoids , Peptoids/chemistry , Peptoids/chemical synthesis , Nanostructures/chemistry , Nanotubes/chemistry , Models, Molecular , Particle Size
10.
Angew Chem Int Ed Engl ; 63(7): e202318011, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38131886

ABSTRACT

Antimicrobial peptides (AMPs) exhibit mighty antibacterial properties without inducing drug resistance. Achieving much higher selectivity of AMPs towards bacteria and normal cells has always been a continuous goal to be pursued. Herein, a series of sulfonium-based polypeptides with different degrees of branching and polymerization were synthesized by mimicking the structure of vitamin U. The polypeptide, G2 -PM-1H+ , shows both potent antibacterial activity and the highest selectivity index of 16000 among the reported AMPs or peptoids (e.g., the known index of 9600 for recorded peptoid in "Angew. Chem. Int. Ed., 2020, 59, 6412."), which can be attributed to the high positive charge density of sulfonium and the regulation of hydrophobic chains in the structure. The antibacterial mechanisms of G2 -PM-1H+ are primarily ascribed to the interaction with the membrane, production of reactive oxygen species (ROS), and disfunction of ribosomes. Meanwhile, altering the degree of alkylation leads to selective antibacteria against either gram-positive or gram-negative bacteria in a mixed-bacteria model. Additionally, both in vitro and in vivo experiments demonstrated that G2 -PM-1H+ exhibited superior efficacy against methicillin-resistant Staphylococcus aureus (MRSA) compared to vancomycin. Together, these results show that G2 -PM-1H+ possesses high biocompatibility and is a potential pharmaceutical candidate in combating bacteria significantly threatening human health.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Peptoids , Vitamin U , Humans , Vitamin U/pharmacology , Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Vancomycin/pharmacology , Peptoids/chemistry , Bacteria , Antimicrobial Peptides , Microbial Sensitivity Tests
11.
J Biol Chem ; 298(8): 102205, 2022 08.
Article in English | MEDLINE | ID: mdl-35764172

ABSTRACT

Protein arginine methyltransferases (PRMTs) are S-adenosylmethionine-dependent enzymes that transfer a methyl group to arginine residues within proteins, most notably histones. The nine characterized PRMT family members are divided into three types depending on the resulting methylated product: asymmetric dimethylarginine (Type I PRMT), symmetric dimethylarginine (Type II PRMT), or monomethylated arginine (Type III PRMT). In some cancers, the resulting product can lead to either increased or decreased transcription of cancer-related genes, suggesting PRMT family members may be valid therapeutic targets. Traditionally, peptide-based compounds have been employed to target this family of enzymes, which has resulted in multiple tool and lead compounds being developed. However, peptide-based therapeutics suffer from poor stability and short half-lives, as proteases can render them useless by hydrolytic degradation. Conversely, peptoids, which are peptide-mimetics composed of N-substituted glycine monomers, are less susceptible to hydrolysis, resulting in improved stability and longer half-lives. Herein, we report the development of a bioavailable, peptoid-based PRMT1 inhibitor that induces cell death in MDA468 and HCT116 cancer cell lines while not exhibiting any significant impact on nontumorigenic HepaRG or normal human mammary epithelial cells. Furthermore, the inhibitor described herein appears to induce both apoptosis and autophagy, suggesting it may be a less toxic cytostatic agent. In conclusion, we propose this peptoid-based inhibitor has significant anticancer and therapeutic potential by reducing cell viability, growth, and size in breast and colon cancer. Further experimentation will help determine the mechanism of action and downstream effects of this compound.


Subject(s)
Neoplasms , Peptoids , Apoptosis , Arginine/metabolism , Autophagy , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism
12.
Small ; 19(21): e2206810, 2023 05.
Article in English | MEDLINE | ID: mdl-36811318

ABSTRACT

Robust and cost-effective membrane-based separations are essential to solving many global crises, such as the lack of clean water. Even though the current polymer-based membranes are widely used for separations, their performance and precision can be enhanced by using a biomimetic membrane architecture that consists of highly permeable and selective channels embedded in a universal membrane matrix. Researchers have shown that artificial water and ion channels, such as carbon nanotube porins (CNTPs), embedded in lipid membranes can deliver strong separation performance. However, their applications are limited by the relative fragility and low stability of the lipid matrix. In this work, we demonstrate that CNTPs can co-assemble into two dimension (2D) peptoid membrane nanosheets, opening up a way to produce highly programmable synthetic membranes with superior crystallinity and robustness. A combination of molecular dynamics (MD) simulations, Raman spectroscopy, X-ray diffraction (XRD), and atomic force microscopy (AFM) measurements to verify the co-assembly of CNTP and peptoids are used and show that it does not disrupt peptoid monomer packing within the membrane. These results provide a new option for designing affordable artificial membranes and highly robust nanoporous solids.


Subject(s)
Nanotubes, Carbon , Peptoids , Nanotubes, Carbon/chemistry , Porins/chemistry , Peptoids/chemistry , Biomimetics , Lipids , Water/chemistry
13.
Chembiochem ; 24(3): e202200368, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36226554

ABSTRACT

Peptide mimics, possessing excellent biocompatibility and protease stability, have attracted broad attention and research in the biomedical field. ß-Peptides and ß-peptoids, as two types of vital peptide mimics, have demonstrated great potential in the field of foldamers, antimicrobials and protein binding, etc. Currently, the main synthetic strategies for ß-peptides and ß-peptoids include solid-phase synthesis and polymerization. Among them, polymerization in one-pot can minimize the repeated separation and purification used in solid-phase synthesis, and has the advantages of high efficiency and low cost, and can synthesize ß-peptides and ß-peptoids with high molecular weight. This review summarizes the polymerization methods for ß-peptides and ß-peptoids. Moreover, future developments of the polymerization method for the synthesis of ß-peptides and ß-peptoids will be discussed.


Subject(s)
Anti-Infective Agents , Peptoids , Peptoids/chemistry , Polymerization , Peptides , Peptide Hydrolases
14.
Chembiochem ; 24(1): e202200527, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36376247

ABSTRACT

As multidrug-resistant bacteria become a more pressing risk to human health, alternate approaches to treating bacterial infections are being increasingly investigated. Enterococcus faecalis is an opportunistic pathogen responsible for a large percentage of secondary enterococci infections. Its pathogenicity has been shown to be largely dependent on a cell-density communication mechanism, termed quorum sensing. In this study, we conducted a systematic investigation of the lactone-containing macrocyclic signaling peptide used by E. faecalis for Fsr-mediated communication, termed gelatinase biosynthesis activating pheromone (GBAP). Specifically, through a combination of the on-resin sub-monomer and solution phase peptoid building block synthesis approaches, we successfully synthesized a library of peptoid-peptide hybrid analogs of GBAP and determined the biological effects associated with the introduction of the peptoid (N-alkyl glycine derivative) modifications. Within the macrocycle region of the peptide, as have been seen with other modifications, the F7 site was unusually tolerant toward peptoid modification, compared with other macrocyclic sites. Interestingly, within the exocyclic tail, peptoid modification at the N2 site completely abolished activity, a first for a single tail modification.


Subject(s)
Enterococcus faecalis , Peptoids , Humans , Peptoids/pharmacology , Bacterial Proteins/pharmacology , Peptides/pharmacology , Structure-Activity Relationship
15.
Chembiochem ; 24(22): e202300503, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37679300

ABSTRACT

While the primary pathology of Alzheimer's disease (AD) is defined by brain deposition of amyloid-ß (Aß) plaques and tau neurofibrillary tangles, chronic inflammation has emerged as an important factor in AD etiology. Upregulated cell surface expression of the receptor for advanced glycation end-products (RAGE), a key receptor of innate immune response, is reported in AD. In parallel, RAGE ligands, including Aß aggregates, HMGB1, and S100B, are elevated in AD brain. Activation of RAGE by these ligands triggers release of inflammatory cytokines and upregulates cell surface RAGE. Despite such observation, there are currently no therapeutics that target RAGE for treatment of AD-associated neuroinflammation. Peptoids, a novel class of potential AD therapeutics, display low toxicity, facile blood-brain barrier permeability, and resistance to proteolytic degradation. In the current study, peptoids were designed to mimic Aß, a ligand that binds the V-domain of RAGE, and curtail RAGE inflammatory activation. We reveal the nanomolar binding capability of peptoids JPT1 and JPT1a to RAGE and demonstrate their ability to attenuate lipopolysaccharide-induced pro-inflammatory cytokine production as well as upregulation of RAGE cell surface expression. These results support RAGE antagonist peptoid-based mimics as a prospective therapeutic strategy to counter neuroinflammation in AD and other neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Peptoids , Humans , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/therapeutic use , Peptoids/pharmacology , Neuroinflammatory Diseases , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism
16.
Chemistry ; 29(32): e202300178, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37016739

ABSTRACT

Cis-trans isomerization of amide bonds impedes de novo design of folded peptoids (poly-N-substituted glycines) with precise secondary structures and affects peptoid-biomolecule binding affinity. Herein, from X-ray, NMR and DFT studies of azapeptoids, we have discovered a tetrel bonding interaction that stabilizes trans-peptoids. We show that peptoids having α-heteroatoms and N-aryl groups in the sidechain adopt trans-amide geometries due to the presence of a nX /πAr →σ*Cα-N tetrel bonding interaction between the sidechain α-heteroatom lone pair (nX ) or π-electrons (πAr ) and the σ* orbital of the backbone Cα -N bond. Further, CD spectroscopic studies of oligo-proline host-guest model peptides showed that azapeptoid residues stabilize polyproline II helical conformation. These data indicate that the sidechain-backbone tetrel bonding could be leveraged to design peptoids with precise secondary structures for a wide range of biological and material applications.


Subject(s)
Peptoids , Peptoids/chemistry , Amides/chemistry , Protein Structure, Secondary , Magnetic Resonance Spectroscopy , Glycine
17.
Mol Pharm ; 20(3): 1577-1590, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36781165

ABSTRACT

To investigate the structure-cellular penetration relationship of guanidinium-rich transporters (GRTs), we previously designed PGua4, a five-amino acid peptoid containing a conformationally restricted pattern of eight guanidines, which showed high cell-penetrating abilities and low cell toxicity. Herein, we characterized the cellular uptake selectivity, internalization pathway, and intracellular distribution of PGua4, as well as its capacity to deliver cargo. PGua4 exhibits higher penetration efficiency in HeLa cells than in six other cell lines (A549, Caco-2, fibroblast, HEK293, Mia-PaCa2, and MCF7) and is mainly internalized by clathrin-mediated endocytosis and macropinocytosis. Confocal microscopy showed that it remained trapped in endosomes at low concentrations but induced pH-dependent endosomal membrane destabilization at concentrations ≥10 µM, allowing its diffusion into the cytoplasm. Importantly, PGua4 significantly enhanced macropinocytosis and the cellular uptake and cytosolic delivery of large IgGs following noncovalent complexation. Therefore, in addition to its peptoid nature conferring high resistance to proteolysis, PGua4 presents characteristics of a promising tool for IgG delivery and therapeutic applications.


Subject(s)
Peptoids , Humans , Cytosol/metabolism , Guanidine , HeLa Cells , Peptoids/metabolism , Caco-2 Cells , HEK293 Cells , Endocytosis , Endosomes/metabolism
18.
Biomacromolecules ; 24(6): 2618-2632, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37141445

ABSTRACT

Peptoids (N-substituted glycines) are a group of highly controllable peptidomimetic polymers. Amphiphilic diblock peptoids have been engineered to assemble crystalline nanospheres, nanofibrils, nanosheets, and nanotubes with biochemical, biomedical, and bioengineering applications. The mechanical properties of peptoid nanoaggregates and their relationship to the emergent self-assembled morphologies have been relatively unexplored and are critical for the rational design of peptoid nanomaterials. In this work, we consider a family of amphiphilic diblock peptoids consisting of a prototypical tube-former (Nbrpm6Nc6, a NH2-capped hydrophobic block of six N-((4-bromophenyl)methyl)glycine residues conjugated to a polar NH3(CH2)5CO tail), a prototypical sheet-former (Nbrpe6Nc6, where the hydrophobic block comprises six N-((4-bromophenyl)ethyl)glycine residues), and an intermediate sequence that forms mixed structures ((NbrpeNbrpm)3Nc6). We combine all-atom molecular dynamics simulations and atomic force microscopy to determine the mechanical properties of the self-assembled 2D crystalline nanosheets and relate these properties to the observed self-assembled morphologies. We find good agreement between our computational predictions and experimental measurements of Young's modulus of crystalline nanosheets. A computational analysis of the bending modulus along the two axes of the planar crystalline nanosheets reveals bending to be more favorable along the axis in which the peptoids stack by interdigitation of the side chains compared to that in which they form columnar crystals with π-stacked side chains. We construct molecular models of nanotubes of the Nbrpm6Nc6 tube-forming peptoid and predict a stability optimum in good agreement with experimental measurements. A theoretical model of nanotube stability suggests that this optimum is a free energy minimum corresponding to a "Goldilocks" tube radius at which capillary wave fluctuations in the tube wall are minimized.


Subject(s)
Nanotubes , Peptoids , Peptoids/chemistry , Nanotubes/chemistry , N-substituted Glycines , Molecular Dynamics Simulation , Glycine
19.
Photochem Photobiol Sci ; 22(3): 655-667, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36481980

ABSTRACT

Cationic amphipathic structures are often utilized in natural membrane-active host-defense peptides. Negatively charged surface membranes of rapidly proliferating bacterial and cancer cells have been targeted by various synthetic peptides and peptidomimetics adopting the structural motif. Herein, we synthesized a set of conjugates composed of cationic amphipathic peptoids (i.e., oligo-N-substituted glycines) and a chlorin photosensitizer, named chlorin e6 (Ce6)-peptoid conjugates (CPCs). Among the nine CPCs, CPC 7, composed of Ce6, a PEG linker, and guanidine-rich helical amphipathic peptoids, exhibited a distinct photoresponsive inactivation of Gram-positive and Gram-negative bacteria. Subsequent studies showed that CPC 7 effectively killed various cancer cells after irradiation with red light (655 nm), suggesting the potential of CPC 7 as a dual antimicrobial and anticancer agent. Confocal laser scanning microscopy and flow cytometry data suggested that CPC 7 could induce apoptotic cell death. Our results show the potential of peptoid-based photosensitizer conjugates as a versatile platform for antimicrobial and anticancer photodynamic therapy agents and peptoid therapeutics.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Chlorophyllides , Peptoids , Photochemotherapy , Porphyrins , Peptoids/pharmacology , Peptoids/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Anti-Bacterial Agents , Gram-Negative Bacteria , Gram-Positive Bacteria , Photochemotherapy/methods , Peptides/chemistry , Anti-Infective Agents/chemistry , Antineoplastic Agents/pharmacology , Porphyrins/pharmacology , Porphyrins/chemistry
20.
Chem Rev ; 121(22): 14031-14087, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34342989

ABSTRACT

In nature, the self-assembly of sequence-specific biopolymers into hierarchical structures plays an essential role in the construction of functional biomaterials. To develop synthetic materials that can mimic and surpass the function of these natural counterparts, various sequence-defined bio- and biomimetic polymers have been developed and exploited as building blocks for hierarchical self-assembly. This review summarizes the recent advances in the molecular self-assembly of hierarchical nanomaterials based on peptoids (or poly-N-substituted glycines) and other sequence-defined synthetic polymers. Modern techniques to monitor the assembly mechanisms and characterize the physicochemical properties of these self-assembly systems are highlighted. In addition, discussions about their potential applications in biomedical sciences and renewable energy are also included. This review aims to highlight essential features of sequence-defined synthetic polymers (e.g., high stability and protein-like high-information content) and how these unique features enable the construction of robust biomimetic functional materials with high programmability and predictability, with an emphasis on peptoids and their self-assembled nanomaterials.


Subject(s)
Biomimetic Materials , Nanostructures , Peptoids , Biomimetic Materials/chemistry , Nanostructures/chemistry , Peptoids/chemistry , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL