Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
J Exp Bot ; 75(18): 5717-5733, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39011888

ABSTRACT

In 'Hass' avocado (Persea americana), fruit presence reduces next season flowering. Recent fruit tree studies proposed that heavy fruit load (HFL) generates an auxin (indole-3-acetic acid, IAA) signal in the buds that represses flowering. However, the nature of this signal remains unknown. Here, we investigated the effect of avocado HFL on bud IAA accumulation and flowering transition. We found that IAA-aspartate and IAA-glutamate conjugate levels were significantly higher in buds from fully loaded ('on') than low-loaded ('off') trees, hinting that free IAA levels were higher in the former. Expression analysis showed that coinciding with flowering reduction, HFL induced the floral repressor PaTFL1, and suggested that accumulation of IAA in buds as imposed by HFL was associated with its conjugation to aspartate and glutamate and resulted both from de novo IAA synthesis and from reduced IAA export. Accordingly, experiments involving radiolabelled [14C]IAA demonstrated that HFL reduced shoot basipetal IAA transport. Finally, we confirmed the negative effects of IAA on flowering, showing that IAA and polar auxin transport blocker (2,3,5-triiodobenzoic acid) treatments delayed 'off' trees' inflorescence development, reducing their inflorescence axis and inducing PaTFL1 expression. Together, our data indicate that avocado HFL generates IAA signalling in buds that induces PaTFL1, leading to repression of inflorescence development.


Subject(s)
Flowers , Fruit , Homeostasis , Indoleacetic Acids , Persea , Persea/physiology , Persea/metabolism , Persea/growth & development , Persea/genetics , Indoleacetic Acids/metabolism , Flowers/growth & development , Flowers/metabolism , Flowers/physiology , Fruit/growth & development , Fruit/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics
2.
Ann Bot ; 133(7): 969-982, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38366557

ABSTRACT

BACKGROUND AND AIMS: Plant water status is important for fruit development, because many fleshy fruits contain large amounts of water. However, there is no information on vascular flows of Persea americana 'Hass' avocado. The aims of this research were to explore the impact of drought stress on the water relationships of the 'Hass' avocado plant and its fruit growth. METHODS: Well-watered and water-stressed 'Hass' avocado plants were compared. Over 4 weeks, water flows through the shoot and fruit pedicel were monitored using external sap flow gauges. Fruit diameter was monitored using linear transducers, and stomatal conductance (gs), photosynthesis (A) and leaf and stem water potentials (Ñ°leaf and Ñ°stem) were measured to assess the response of the plants to water supply. KEY RESULTS: In well-watered conditions, the average water inflow to the shoot was 72 g day-1. Fruit water inflow was 2.72 g day-1, but there was water loss of 0.37 g day-1 caused by the outflow (loss back into the tree) through the vascular tissues and 1.06 g day-1 from the fruit skin. Overall, fruit volume increased by 1.4 cm3 day-1. In contrast, water flow into fruit of water-stressed plants decreased to 1.88 g day-1, with the outflow increasing to 0.61 g day-1. As a result, increases in fruit volume were reduced to 0.4 cm3 day-1. The values of A, gs and sap flow to shoots were also reduced during drought conditions. Changes in the hourly time-courses of pedicel sap flow, fruit volume and stem water potential during drought suggest that the stomatal response prevented larger increases in outflow from the fruit. Following re-watering, a substantial recovery in growth rate was observed. CONCLUSIONS: In summary, a reduction in growth of avocado fruit was observed with induced water deficit, but the isohydric stomatal behaviour of the leaves helped to minimize negative changes in water balance. Also, there was substantial recovery after re-watering, hence the short-term water stress did not decrease avocado fruit size. Negative impacts might appear if the drought treatment were prolonged.


Subject(s)
Droughts , Fruit , Persea , Photosynthesis , Plant Stomata , Water , Persea/physiology , Persea/growth & development , Plant Stomata/physiology , Fruit/physiology , Fruit/growth & development , Water/physiology , Water/metabolism , Photosynthesis/physiology , Plant Leaves/physiology , Plant Leaves/growth & development , Plant Transpiration/physiology , Plant Stems/physiology , Plant Stems/growth & development , Plant Stems/anatomy & histology , Plant Shoots/physiology , Plant Shoots/growth & development , Stress, Physiological/physiology , Dehydration
3.
Plant Physiol ; 182(1): 547-554, 2020 01.
Article in English | MEDLINE | ID: mdl-31624082

ABSTRACT

The driver of leaf mortality during drought stress is a critical unknown. We used the commercially important tree Persea americana, in which there is a large variation in the degree of drought-induced leaf death across the canopy, to test whether embolism formation in the xylem during drought drives this leaf mortality. A large range in the number of embolized vessels in the petioles of leaves was observed across the canopy of plants that had experienced drought. Despite considerable variation between leaves, the amount of embolized vessels in the xylem of the petiole strongly correlated with area of drought-induced tissue death in individual leaves. Consistent with this finding was a large interleaf variability in xylem resistance to embolism, with a 1.45 MPa variation in the water potential at which 50% of the xylem in the leaf midrib embolized across leaves. Our results implicate xylem embolism as a driver of leaf mortality during drought. Moreover, we propose that heterogeneity in drought-induced leaf mortality across a canopy is caused by high interleaf variability in xylem resistance to embolism, which may act as a buffer against complete canopy death during prolonged drought in P. americana.


Subject(s)
Persea/metabolism , Persea/physiology , Plant Leaves/metabolism , Plant Leaves/physiology , Xylem/metabolism , Xylem/physiology , Droughts , Plant Transpiration/physiology
4.
Molecules ; 26(22)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34833910

ABSTRACT

The greatest challenge for the avocado (Persea americana Miller) industry is to maintain the quality of the fruit to meet consumer requirements. Anthracnose is considered the most important disease in this industry, and it is caused by different species of the genus Colletotrichum, although other pathogens can be equally important. The defense mechanisms that fruit naturally uses can be triggered in response to the attack of pathogenic microorganisms and also by the application of exogenous elicitors in the form of GRAS compounds. The elicitors are recognized by receptors called PRRs, which are proteins located on the avocado fruit cell surface that have high affinity and specificity for PAMPs, MAMPs, and DAMPs. The activation of defense-signaling pathways depends on ethylene, salicylic, and jasmonic acids, and it occurs hours or days after PTI activation. These defense mechanisms aim to drive the pathogen to death. The application of essential oils, antagonists, volatile compounds, chitosan and silicon has been documented in vitro and on avocado fruit, showing some of them to have elicitor and fungicidal effects that are reflected in the postharvest quality of the fruit and a lower incidence of diseases. The main focus of these studies has been on anthracnose diseases. This review presents the most relevant advances in the use of natural compounds with antifungal and elicitor effects in plant tissues.


Subject(s)
Colletotrichum/pathogenicity , Persea/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Antifungal Agents/pharmacology , Biological Control Agents/pharmacology , Chitosan/pharmacology , Colletotrichum/drug effects , Disease Resistance/physiology , Fruit/drug effects , Fruit/microbiology , Fruit/physiology , Oils, Volatile/pharmacology , Persea/drug effects , Persea/physiology , Volatile Organic Compounds/pharmacology
5.
Physiol Plant ; 168(2): 394-405, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31490553

ABSTRACT

Radiation frost events, which have become more common in the Mediterranean Basin in recent years, inflict extensive damage to tropical/subtropical fruit crops. During radiation frost, sub-zero temperatures are encountered in the dark, followed by high light during the subsequent clear-sky day. One of the key processes affected by these conditions is photosynthesis, which, when significantly inhibited, leads to the enhanced accumulation of reactive oxygen species (ROS) and damage. The use of 'chemical priming' treatments that induce plants' endogenous stress responses is a possible strategy to improve their coping with stress conditions. Herein, we studied the effects of priming with sodium hydrosulfide (NaHS), a donor of hydrogen sulfide (H2 S), on the response of photosynthesis to overnight frost and day high-light conditions in 'Hass' avocado (Persea americana Mill). We found that priming with a single foliar application of NaHS had positive effects on the response of grafted 'Hass' plants. Primed plants exhibited significantly reduced inhibition of CO2 assimilation, a lower accumulation of hydrogen peroxide as well as lower photoinhibition, as compared to untreated plants. The ability to maintain a high CO2 assimilation capacity after the frost was attained on the background of considerable inhibition in stomatal conductance. Thus, it was likely related to the lower accumulation of ROS and photodamage observed in primed 'Hass' plants. This work contributes toward the understanding of the response of photosynthesis in a subtropical crop species to frost conditions and provides a prospect for chemical priming as a potential practice in orchards during cold winters.


Subject(s)
Cold Temperature , Persea/physiology , Photosynthesis , Sulfides/pharmacology , Fruit , Light , Persea/drug effects
6.
Int J Mol Sci ; 21(16)2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32784357

ABSTRACT

Somatic embryogenesis (SE) is a valuable model for understanding the mechanism of plant embryogenesis and a tool for the mass production of plants. However, establishing SE in avocado has been complicated due to the very low efficiency of embryo induction and plant regeneration. To understand the molecular foundation of the SE induction and development in avocado, we compared embryogenic (EC) and non-embryogenic (NEC) cultures of two avocado varieties using proteomic and metabolomic approaches. Although Criollo and Hass EC exhibited similarities in the proteome and metabolome profile, in general, we observed a more active phenylpropanoid pathway in EC than NEC. This pathway is associated with the tolerance of stress responses, probably through the reinforcement of the cell wall and flavonoid production. We could corroborate that particular polyphenolics compounds, including p-coumaric acid and t-ferulic acid, stimulated the production of somatic embryos in avocado. Exogen phenolic compounds were associated with the modification of the content of endogenous polyphenolic and the induction of the production of the putative auxin-a, adenosine, cellulose and 1,26-hexacosanediol-diferulate. We suggest that in EC of avocado, there is an enhanced phenylpropanoid metabolism for the production of the building blocks of lignin and flavonoid compounds having a role in cell wall reinforcement for tolerating stress response. Data are available at ProteomeXchange with the identifier PXD019705.


Subject(s)
Adaptation, Physiological , Cell Wall/metabolism , Persea/embryology , Persea/physiology , Plant Somatic Embryogenesis Techniques , Propanols/metabolism , Stress, Physiological , Cell Wall/ultrastructure , Metabolomics , Models, Biological , Persea/ultrastructure , Phenotype , Plant Proteins/metabolism , Polyphenols/metabolism , Principal Component Analysis , Proteomics
7.
BMC Plant Biol ; 19(1): 382, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31481026

ABSTRACT

BACKGROUND: Grafting is the common propagation method for avocado and primarily benefits orchard production by reducing the time to tree productivity. It also allows use of scions and rootstocks specifically selected for improved productivity and commercial acceptance. Rootstocks in avocado may be propagated from mature tree cuttings ('mature'), or from seed ('juvenile'). While the use of mature scion material hastens early bearing/maturity and economic return, the molecular factors involved in the role of the scion and/or rootstock in early bearing/reduced juvenility of the grafted tree are still unknown. RESULTS: Here, we utilized juvenility and flowering associated miRNAs; miR156 and miR172 and their putative target genes to screen pre-graft and post-graft material in different combinations from avocado. The abundance of mature miR156, miR172 and the miR156 target gene SPL4, showed a strong correlation to the maturity of the scion and rootstock material in avocado. Graft transmissibility of miR156 and miR172 has been explored in annual plants. Here, we show that the scion may be responsible for grafted tree maturity involving these factors, while the rootstock maturity does not significantly influence miRNA abundance in the scion. We also demonstrate that the presence of leaves on cutting rootstocks supports graft success and contributes towards intergraft signalling involving the carbohydrate-marker TPS1. CONCLUSION: Here, we suggest that the scion largely controls the molecular 'maturity' of grafted avocado trees, however, leaves on the rootstock not only promote graft success, but can influence miRNA and mRNA abundance in the scion. This constitutes the first study on scion and rootstock contribution towards grafted tree maturity using the miR156-SPL4-miR172 regulatory module as a marker for juvenility and reproductive competence.


Subject(s)
MicroRNAs/genetics , Persea/physiology , RNA, Plant/genetics , Persea/genetics
8.
BMC Plant Biol ; 19(1): 458, 2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31664901

ABSTRACT

BACKGROUND: White root rot (WRR) disease caused by Rosellinia necatrix is one of the most important threats affecting avocado orchards in temperate regions. The eradication of WRR is a difficult task and environmentally friendly control methods are needed to lessen its impact. Priming plants with a stressor (biotic or abiotic) can be a strategy to enhance plant defense/tolerance against future stress episodes but, despite the known underlying common mechanisms, few studies use abiotic-priming for improving tolerance to forthcoming biotic-stress and vice versa ('cross-factor priming'). To assess whether cross-factor priming can be a potential method for enhancing avocado tolerance to WRR disease, 'Dusa' avocado rootstocks, susceptible to R. necatrix, were subjected to two levels of water stress (mild-WS and severe-WS) and, after drought-recovery, inoculated with R. necatrix. Physiological response and expression of plant defense related genes after drought-priming as well as the disease progression were evaluated. RESULTS: Water-stressed avocado plants showed lower water potential and stomatal limitations of photosynthesis compared to control plants. In addition, NPQ and qN values increased, indicating the activation of energy dissipating mechanisms closely related to the relief of oxidative stress. This response was proportional to the severity of the water stress and was accompanied by the deregulation of pathogen defense-related genes in the roots. After re-watering, leaf photosynthesis and plant water status recovered rapidly in both treatments, but roots of mild-WS primed plants showed a higher number of overexpressed genes related with plant defense than severe-WS primed plants. Disease progression after inoculating primed plants with R. necatrix was significantly delayed in mild-WS primed plants. CONCLUSIONS: These findings demonstrate that mild-WS can induce a primed state in the WRR susceptible avocado rootstock 'Dusa' and reveal that 'cross-factor priming' with water stress (abiotic stressor) is effective for increasing avocado tolerance against R. necatrix (biotic stressor), underpinning that plant responses against biotic and abiotic stress rely on common mechanisms. Potential applications of these results may involve an enhancement of WRR tolerance of current avocado groves and optimization of water use via low frequency deficit irrigation strategies.


Subject(s)
Ascomycota/physiology , Droughts , Gene Expression , Genes, Plant , Persea/physiology , Plant Diseases/microbiology , Disease Resistance/physiology , Persea/microbiology , Plant Roots/microbiology , Plant Roots/physiology , Stress, Physiological/genetics
9.
Ann Bot ; 121(5): 941-959, 2018 04 18.
Article in English | MEDLINE | ID: mdl-29425285

ABSTRACT

Background and Aims: Functional-structural plant (FSP) models have been widely used to understand the complex interactions between plant architecture and underlying developmental mechanisms. However, to obtain evidence that a model captures these mechanisms correctly, a clear distinction must be made between model outputs used for calibration and thus verification, and outputs used for validation. In pattern-oriented modelling (POM), multiple verification patterns are used as filters for rejecting unrealistic model structures and parameter combinations, while a second, independent set of patterns is used for validation. Methods: To test the potential of POM for FSP modelling, a model of avocado (Persea americana 'Hass') was developed. The model of shoot growth is based on a conceptual model, the annual growth module (AGM), and simulates photosynthesis and adaptive carbon allocation at the organ level. The model was first calibrated using a set of observed patterns from a published article. Then, for validation, model predictions were compared with a different set of empirical patterns from various field studies that were not used for calibration. Key Results: After calibration, our model simultaneously reproduced multiple observed architectural patterns. The model then successfully predicted, without further calibration, the validation patterns. The model supports the hypothesis that carbon allocation can be modelled as being dependent on current organ biomass and sink strength of each organ type, and also predicted the observed developmental timing of the leaf sink-source transition stage. Conclusions: These findings suggest that POM can help to improve the 'structural realism' of FSP models, i.e. the likelihood that a model reproduces observed patterns for the right reasons. Structural realism increases predictive power so that the response of an AGM to changing environmental conditions can be predicted. Accordingly, our FSP model provides a better but still parsimonious understanding of the mechanisms underlying known patterns of AGM growth.


Subject(s)
Carbon/metabolism , Models, Theoretical , Persea/growth & development , Biomass , Calibration , Models, Biological , Persea/anatomy & histology , Persea/physiology , Photosynthesis , Plant Leaves/anatomy & histology , Plant Leaves/growth & development
10.
BMC Plant Biol ; 17(1): 159, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-28969589

ABSTRACT

BACKGROUND: Avocado fruit contains aliphatic acetogenins (oft-acetylated, odd-chain fatty alcohols) with promising bioactivities for both medical and food industries. However, we have scarce knowledge about their metabolism. The present work aimed to study changes in acetogenin profiles from mesocarp, lipid-containing idioblasts, and seeds from 'Hass' cultivar during fruit development, germination, and three harvesting years. An untargeted LC-MS based lipidomic analysis was also conducted to profile the lipidome of avocado fruit in each tissue. RESULTS: The targeted analysis showed that acetogenin profiles and contents remained unchanged in avocado mesocarp during maturation and postharvest ripening, germination, and different harvesting years. However, a shift in the acetogenin profile distribution, accompanied with a sharp increase in concentration, was observed in seed during early maturation. Untargeted lipidomics showed that this shift was accompanied with remodeling of glycerolipids: TAGs and DAGs decreased during fruit growing in seed. Remarkably, the majority of the lipidome in mature seed was composed by acetogenins; we suggest that this tissue is able to synthesize them independently from mesocarp. On the other hand, lipid-containing idioblasts accumulated almost the entire acetogenin pool measured in the whole mesocarp, while only having 4% of the total fatty acids. The lipidome of this cell type changed the most when the fruit was ripening after harvesting, TAGs decreased while odd-chain DAGs increased. Notably, idioblast lipidome was more diverse than that from mesocarp. CONCLUSIONS: Evidence shown here suggests that idioblasts are the main site of acetogenin biosynthesis in avocado mesocarp. This work unveiled the prevalence of aliphatic acetogenins in the avocado fruit lipidome and evidenced TAGs as initial donors of the acetogenin backbones in its biosynthesis. It also sets evidence for acetogenins being included in future works aimed at characterizing the avocado seed, as they are a main component of their lipidome.


Subject(s)
Acetogenins/metabolism , Fruit/metabolism , Persea/physiology , Fruit/growth & development , Germination , Lipid Metabolism , Persea/cytology , Plant Cells/metabolism , Seeds
11.
New Phytol ; 215(2): 582-594, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28556977

ABSTRACT

We tested for isotope exchange between bound (immobile) and mobile soil water, and whether there is isotope fractionation during plant water uptake. These are critical assumptions to the formulation of the 'two water worlds' hypothesis based on isotope profiles of soil water. In two different soil types, soil-bound water in two sets of 19-l pots, each with a 2-yr-old avocado plant (Persea americana), were identically labeled with tap water. After which, one set received isotopically enriched water whereas the other set received tap water as the mobile phase water. After a dry down period, we analyzed plant stem water as a proxy for soil-bound water as well as total soil water by cryogenic distillation. Seventy-five to 95% of the bound water isotopically exchanged with the mobile water phase. In addition, plants discriminated against 18 O and 2 H during water uptake, and this discrimination is a function of the soil water loss and soil type. The present experiment shows that the assumptions for the 'two water worlds' hypothesis are not supported. We propose a novel explanation for the discrepancy between isotope ratios of the soil water profile and other water compartments in the hydrological cycle.


Subject(s)
Persea/physiology , Soil/chemistry , Water/metabolism , Deuterium , Oxygen Isotopes , Plant Stems/chemistry , Plant Stems/physiology , Plant Transpiration , Rain
12.
Anal Bioanal Chem ; 407(2): 547-55, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25381615

ABSTRACT

In order to investigate avocado fruit ripening, nontargeted GC-APCI-TOF MS metabolic profiling analyses were carried out. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to explore the metabolic profiles from fruit samples of 13 varieties at two different ripening degrees. Mannoheptulose; pentadecylfuran; aspartic, malic, stearic, citric and pantothenic acids; mannitol; and ß-sitosterol were some of the metabolites found as more influential for the PLS-DA model. The similarities among genetically related samples (putative mutants of "Hass") and their metabolic differences from the rest of the varieties under study have also been evaluated. The achieved results reveal new insights into avocado fruit composition and metabolite changes, demonstrating therefore the value of metabolomics as a functional genomics tool in characterizing the mechanism of fruit ripening development, a key developmental stage in most economically important fruit crops.


Subject(s)
Fruit/growth & development , Fruit/metabolism , Gas Chromatography-Mass Spectrometry/methods , Metabolomics/methods , Persea/growth & development , Discriminant Analysis , Fruit/chemistry , Gas Chromatography-Mass Spectrometry/instrumentation , Least-Squares Analysis , Persea/genetics , Persea/physiology , Principal Component Analysis
13.
Phytopathology ; 105(4): 433-40, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25496301

ABSTRACT

Laurel wilt, caused by Raffaelea lauricola, is a destructive disease of avocado (Persea americana). The susceptibility of different cultivars and races was examined previously but more information is needed on how this host responds to the disease. In the present study, net CO2 assimilation (A), stomatal conductance of H2O (gs), transpiration (E), water use efficiency (WUE), and xylem sap flow rates were assessed in cultivars that differed in susceptibility. After artificial inoculation with R. lauricola, there was a close relationship between symptom development and reductions in A, gs, E, WUE, and mean daily sap flow in the most susceptible cultivar, 'Russell', and significantly greater disease and lower A, gs, E, WUE, and sap flow rates were usually detected after 15 days compared with the more tolerant 'Brogdon' and 'Marcus Pumpkin'. Significant differences in preinoculation A, gs, E, and WUE were generally not detected among the cultivars but preinoculation sap flow rates were greater in Russell than in Brogdon and Marcus Pumpkin. Preinoculation sap flow rates and symptom severity for individual trees were correlated at the end of an experiment (r=0.46), indicating that a plant's susceptibility to laurel wilt was related to its ability to conduct water. The potential management of this disease with clonal rootstocks that reduce sap flow rates is discussed.


Subject(s)
Ophiostomatales/physiology , Persea/physiology , Plant Diseases/microbiology , Plant Transpiration/physiology , Carbon Dioxide/metabolism , Light , Persea/microbiology , Persea/radiation effects , Plant Leaves/microbiology , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Stomata/microbiology , Plant Stomata/physiology , Plant Stomata/radiation effects , Seasons , Species Specificity , Water/metabolism , Xylem/microbiology , Xylem/physiology , Xylem/radiation effects
14.
J Chem Ecol ; 40(5): 476-83, 2014 May.
Article in English | MEDLINE | ID: mdl-24888745

ABSTRACT

Various nectar components have a repellent effect on flower visitors, and their adaptive advantages for the plant are not well understood. Persea americana (avocado) is an example of a plant that secretes nectar with repellent components. It was demonstrated that the mineral constituents of this nectar, mainly potassium and phosphate, are concentrated enough to repel honey bees, Apis mellifera, a pollinator often used for commercial avocado pollination. Honey bees, however, are not the natural pollinator of P. americana, a plant native to Central America. In order to understand the role of nectar minerals in plant-pollinator relationships, it is important to focus on the plant's interactions with its natural pollinators. Two species of stingless bees and one species of social wasp, all native to the Yucatan Peninsula, Mexico, part of the natural range of P. americana, were tested for their sensitivity to sugar solutions enriched with potassium and phosphate, and compared with the sensitivity of honey bees. In choice tests between control and mineral-enriched solutions, all three native species were indifferent for mineral concentrations lower than those naturally occurring in P. americana nectar. Repellence was expressed at concentrations near or exceeding natural concentrations. The threshold point at which native pollinators showed repellence to increasing levels of minerals was higher than that detected for honey bees. The results do not support the hypothesis that high mineral content is attractive for native Hymenopteran pollinators; nevertheless, nectar mineral composition may still have a role in regulating flower visitors through different levels of repellency.


Subject(s)
Bees/physiology , Flowers/physiology , Herbivory , Minerals/metabolism , Persea/physiology , Plant Nectar/metabolism , Wasps/physiology , Animals , Female , Flowers/chemistry , Male , Minerals/analysis , Persea/chemistry , Phosphates/analysis , Phosphates/metabolism , Plant Nectar/chemistry , Pollination , Potassium/analysis , Potassium/metabolism
15.
Funct Plant Biol ; 512024 Sep.
Article in English | MEDLINE | ID: mdl-39222466

ABSTRACT

The water relation strategy is a key issue in climate change. Given the difficulty of determining water relations strategy, there is a need for simple traits with a solid theoretical basis to estimate it. Traits associated with resource allocation patterns along a 'fast-slow' plant economics spectrum are particularly compelling, reflecting trade-offs between growth rate and carbon allocation. Avocado (Persea americana ), fig tree (Ficus carica ), mandarin (Citrus reticulata ), olive (Olea europaea ), pomegranate (Punica granatum ), and grapevine (Vitis vinifera ) were characterised in terms of iso-anisohydric strategy through stomatal behaviour, water potential at the turgor loss point (TLP), and hydroscape area. Additionally, the association of these metrics with leaf mass per area (LMA) and wood density (WDen) was explored. We observed high coordination between LMA and WDen, and both traits were related to metrics of water relation strategy. More anisohydric species tended to invest more carbon per unit leaf area or unit stem volume, which has implications for hydraulic efficiency and water stress tolerance. WDen and TLP were the most powerful traits in estimating the water relation strategy for six fruit species. These traits are easy to measure, time-cost efficient, and appear central to coordinating multiple traits and behaviours along the water relations strategies.


Subject(s)
Carbon , Plant Leaves , Plant Stems , Trees , Water , Plant Leaves/physiology , Plant Leaves/growth & development , Plant Leaves/anatomy & histology , Plant Leaves/metabolism , Water/metabolism , Carbon/metabolism , Plant Stems/growth & development , Plant Stems/physiology , Plant Stems/anatomy & histology , Trees/growth & development , Trees/physiology , Persea/physiology , Persea/growth & development , Citrus/growth & development , Citrus/physiology , Citrus/anatomy & histology , Fruit/growth & development , Vitis/growth & development , Vitis/physiology , Olea/physiology , Olea/growth & development , Ficus/physiology , Ficus/growth & development , Pomegranate
16.
Plant Cell Physiol ; 54(11): 1852-66, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24078766

ABSTRACT

Long-lived shade leaves of avocado had extremely low rates of photosynthesis. Gas exchange measurements of photosynthesis were of limited use, so we resorted to Chl fluorescence imaging (CFI) and spot measurements to evaluate photosynthetic electron transport rates (ETRs) and non-photochemical quenching (NPQ). Imaging revealed a remarkable transient heterogeneity of NPQ during photosynthetic induction in these hypostomatous, heterobaric leaves, but was adequately integrated by spot measurements, despite long-lasting artifacts from repeated saturating flashes during assays. Major veins (mid-vein, first- and second-order veins) defined areas of more static large-scale heterogeneous NPQ, with more dynamic small-scale heterogeneity most strongly expressed in mesophyll cells between third- and fourth-order veins. Both responded to external CO2 concentration ([CO2]), occlusion of stomata with Vaseline™, leaf dehydration and relative humidity (RH). We interpreted these responses in terms of independent behavior of stomata in adjacent areoles that was largely expressed through CO2-limited photosynthesis. Heterogeneity was most pronounced and prolonged in the absence of net CO2 fixation in 100 p.p.m. [CO2] when respiratory and photorespiratory CO2 cycling constrained the inferred ETR to ~75% of values in 400 or 700 p.p.m. [CO2]. Likewise, sustained higher NPQ under Vaseline™, after dehydration or at low RH, also restricted ETR to ~75% of control values. Low NPQ in chloroplast-containing cells adjacent to major veins but remote from stomata suggested internal sources of high [CO2] in these tissues.


Subject(s)
Carbon Dioxide/pharmacology , Persea/physiology , Photosynthesis/physiology , Plant Stomata/physiology , Plant Transpiration/physiology , Chlorophyll/metabolism , Dehydration , Electron Transport , Humidity , Light , Persea/anatomy & histology , Persea/drug effects , Petrolatum/metabolism , Plant Leaves/anatomy & histology , Plant Leaves/drug effects , Plant Leaves/physiology , Plant Stomata/anatomy & histology , Plant Stomata/drug effects , Water/physiology , Xanthophylls/metabolism
17.
J Food Sci ; 86(9): 4134-4147, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34383297

ABSTRACT

In this work, descriptive analysis (DA) and consumer panels were conducted on "Hass" and "3-29-5" (GEM® ) avocados, grown in southern California. Both panels encompassed at least five time points across the 2019 harvest season. The DA panel identified and evaluated overall richness, creamy, smooth, watery, oily, sweet, bitter, umami, salty, astringent, buttery, nutty, and green. The texture attributes received the highest scores in both "Hass" and "3-29-5." Both varieties increased in richness, creaminess, and oiliness at harvests 5 and 6. The consumer panel found that "3-29-5" showed more changes in its eating experience over the season than "Hass," which agreed with dry weight data collected in a simultaneous analytical study. Correspondence analysis indicated that "Hass" samples had a consistent sensory profile over the harvest season, whereas "3-29-5" changed substantially, becoming more closely associated with a positive eating experience late in the harvest season. This is the first work to characterize avocado flavor over the harvest season using both trained and consumer sensory panels. PRACTICAL APPLICATION: Many aspects of avocado were found to have some impact on flavor, but textural properties were by far the most important in determining how well the fruit was liked. This information will be useful in future taste evaluations of avocado and the ongoing development of new avocado varieties.


Subject(s)
Fruit , Persea , Seasons , Consumer Behavior , Fruit/physiology , Fruit/standards , Humans , Persea/physiology , Taste
18.
Sci Rep ; 11(1): 20043, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34625603

ABSTRACT

Cross-pollination can improve fruit yield, fruit size and nutritional quality of many food crops. However, we rarely understand what proportions of the crop result from self- or cross-pollination, how cross-pollination affects crop quality, and how far pollen is transported by pollinators. Management strategies to improve pollination services are consequently not optimal for many crops. We utilised a series of SNP markers, unique for each cultivar of avocado, to quantify proportions of self- and cross-paternity in fruit of Hass avocado at increasing distances from cross-pollen sources. We assessed whether distance from a cross-pollen source determined the proportions of self-pollinated and cross-pollinated fruit, and evaluated how self- and cross-paternity affected fruit size and nutritional quality. Avocado fruit production resulted from both self- and cross-pollination in cultivar Hass in Queensland, Australia. Cross-pollination levels decreased with increasing distance from a cross-pollen source, from 63% in the row adjacent to another cultivar to 25% in the middle of a single-cultivar block, suggesting that pollen transport was limited across orchard rows. Limited pollen transport did not affect fruit size or quality in Hass avocados as xenia effects of a Shepard polliniser on size and nutritional quality were minor.


Subject(s)
Fruit/chemistry , Genetic Markers , Persea/physiology , Pollen/physiology , Pollination , Polymorphism, Single Nucleotide , Australia , Persea/genetics , Persea/growth & development , Reproduction , Seeds/genetics , Seeds/growth & development , Seeds/physiology
19.
Ann Bot ; 105(6): 939-55, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20400758

ABSTRACT

BACKGROUND AND AIMS: The phenomenon of self-assembly, widespread in both the living and the non-living world, is a key mechanism in sporoderm pattern formation. Observations in developmental palynology appear in a new light if they are regarded as aspects of a sequence of micellar colloidal mesophases at genomically controlled initial parameters. The exine of Persea is reduced to ornamentation (spines and gemmae with underlying skin-like ectexine); there is no endexine. Development of Persea exine was analysed based on the idea that ornamentation of pollen occurs largely by self-assembly. METHODS: Flower buds were collected from trees grown in greenhouses over 11 years in order to examine all the main developmental stages, including the very short tetrad period. After fixing, sections were examined using transmission electron microscopy. KEY RESULTS AND CONCLUSIONS: The locations of future spines are determined by lipid droplets in invaginations of the microspore plasma membrane. The addition of new sporopollenin monomers into these invaginations leads to the appearance of chimeric polymersomes, which, after splitting into two individual assemblies, give rise to both liquid-crystal conical 'skeletons' of spines and spherical micelles. After autopolymerization of sporopollenin, spines emerge around their skeletons, nested into clusters of globules. These clusters and single globules between spines appear on a base of spherical micelles. The intine also develops on the base of micellar mesophases. Colloidal chemistry helps to provide a more general understanding of the processes and explains recurrent features of pollen walls from remote taxa.


Subject(s)
Flowers/growth & development , Persea/growth & development , Pollen/physiology , Flowers/physiology , Persea/physiology
20.
Microb Ecol ; 60(4): 903-14, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20953951

ABSTRACT

An endophytic fungus of Persea indica was identified, on the basis of its anamorphic stage, as Nodulosporium sp. by SEM. Partial sequence analysis of ITS rDNA revealed the identity of the teleomorphic stage of the fungus as Hypoxylon sp. It produces an impressive spectrum of volatile organic compounds (VOCs), most notably 1,8-cineole, 1-methyl-1,4-cyclohexadiene, and tentatively identified (+)-.alpha.-methylene-.alpha.-fenchocamphorone, among many others, most of which are unidentified. Six-day-old cultures of Hypoxylon sp. displayed maximal VOC-antimicrobial activity against Botrytis cinerea, Phytophthora cinnamomi, Cercospora beticola, and Sclerotinia sclerotiorum suggesting that the VOCs may play some role in the biology of the fungus and its survival in its host plant. Media containing starch- or sugar-related substrates best supported VOC production by the fungus. Direct on-line quantification of VOCs was measured by proton transfer mass spectrometry covering a continuous range with optimum VOC production occurred at 6 days at 145 ppmv with a rate of production of 7.65 ppmv/h. This report unequivocally demonstrates that 1,8-cineole (a monoterpene) is produced by a microorganism, which represents a novel and important source of this compound. This monoterpene is an octane derivative and has potential use as a fuel additive as do the other VOCs of this organism. Thus, fungal sourcing of this compound and other VOCs as produced by Hypoxylon sp. greatly expands their potential applications in medicine, industry, and energy production.


Subject(s)
Cyclohexanols/metabolism , Industrial Microbiology , Monoterpenes/metabolism , Persea/microbiology , Volatile Organic Compounds/metabolism , Xylariales/isolation & purification , Xylariales/physiology , Biofuels/analysis , Cyclohexanols/analysis , Eucalyptol , Molecular Sequence Data , Monoterpenes/analysis , Persea/physiology , Phylogeny , Symbiosis , Volatile Organic Compounds/analysis , Xylariales/classification , Xylariales/genetics
SELECTION OF CITATIONS
SEARCH DETAIL