Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.069
Filter
Add more filters

Publication year range
1.
Nature ; 599(7884): 273-277, 2021 11.
Article in English | MEDLINE | ID: mdl-34707283

ABSTRACT

Growth regulation tailors development in plants to their environment. A prominent example of this is the response to gravity, in which shoots bend up and roots bend down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phosphoproteomics in Arabidopsis thaliana, we advance understanding of how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on rapid regulation of apoplastic pH, a causative determinant of growth. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+ influx, causing apoplast alkalinization. Simultaneous activation of these two counteracting mechanisms poises roots for rapid, fine-tuned growth modulation in navigating complex soil environments.


Subject(s)
Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Proton-Translocating ATPases/metabolism , Protons , Signal Transduction , Alkalies , Arabidopsis/enzymology , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Enzyme Activation , F-Box Proteins/metabolism , Hydrogen-Ion Concentration , Plant Growth Regulators/metabolism , Plant Roots/enzymology , Protein Serine-Threonine Kinases/metabolism , Receptors, Cell Surface/metabolism
2.
Plant J ; 119(3): 1272-1288, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815125

ABSTRACT

Pyrrolizidine alkaloids (PAs) are toxic specialized metabolites produced in several plant species and frequently contaminate herbal teas or livestock feed. In comfrey (Symphytum officinale, Boraginaceae), they are produced in two different organs of the plant, the root and young leaves. In this study, we demonstrate that homospermidine oxidase (HSO), a copper-containing amine oxidase (CuAO) responsible for catalyzing the formation of the distinctive pyrrolizidine ring in PAs, is encoded by two individual genes. Specifically, SoCuAO1 is expressed in young leaves, while SoCuAO5 is expressed in roots. CRISPR/Cas9-mediated knockout of socuao5 resulted in hairy roots (HRs) unable to produce PAs, supporting its function as HSO in roots. Plants regenerated from socuao5 knockout HRs remained completely PA-free until the plants began to develop inflorescences, indicating the presence of another HSO that is expressed only during flower development. Stable expression of SoCuAO1 in socuao5 knockout HRs rescued the ability to produce PAs. In vitro assays of both enzymes transiently expressed in Nicotiana benthamiana confirmed their HSO activity and revealed the ability of HSO to control the stereospecific cyclization of the pyrrolizidine backbone. The observation that the first specific step of PA biosynthesis catalyzed by homospermidine synthase requires only one gene copy, while two independent paralogs are recruited for the subsequent homospermidine oxidation in different tissues of the plant, suggests a complex regulation of the pathway. This adds a new level of complexity to PA biosynthesis, a system already characterized by species-specific, tight spatio-temporal regulation, and independent evolutionary origins in multiple plant lineages.


Subject(s)
Comfrey , Plant Proteins , Pyrrolizidine Alkaloids , Pyrrolizidine Alkaloids/metabolism , Comfrey/metabolism , Comfrey/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/enzymology , Plant Leaves/metabolism , Plant Leaves/genetics , Amine Oxidase (Copper-Containing)/metabolism , Amine Oxidase (Copper-Containing)/genetics , Gene Expression Regulation, Plant
3.
Plant J ; 119(5): 2464-2483, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39010784

ABSTRACT

The metabolism of tetrahydrofolate (H4PteGlun)-bound one-carbon (C1) units (C1 metabolism) is multifaceted and required for plant growth, but it is unclear what of many possible synthesis pathways provide C1 units in specific organelles and tissues. One possible source of C1 units is via formate-tetrahydrofolate ligase, which catalyzes the reversible ATP-driven production of 10-formyltetrahydrofolate (10-formyl-H4PteGlun) from formate and tetrahydrofolate (H4PteGlun). Here, we report biochemical and functional characterization of the enzyme from Arabidopsis thaliana (AtFTHFL). We show that the recombinant AtFTHFL has lower Km and kcat values with pentaglutamyl tetrahydrofolate (H4PteGlu5) as compared to monoglutamyl tetrahydrofolate (H4PteGlu1), resulting in virtually identical catalytic efficiencies for the two substrates. Stable transformation of Arabidopsis plants with the EGFP-tagged AtFTHFL, followed with fluorescence microscopy, demonstrated cytosolic signal. Two independent T-DNA insertion lines with impaired AtFTHFL function had shorter roots compared to the wild type plants, demonstrating the importance of this enzyme for root growth. Overexpressing AtFTHFL led to the accumulation of H4PteGlun + 5,10-methylene-H4PteGlun and serine, accompanied with the depletion of formate and glycolate, in roots of the transgenic Arabidopsis plants. This metabolic adjustment supports the hypothesis that AtFTHFL feeds the cytosolic C1 network in roots with C1 units originating from glycolate, and that these units are then used mainly for biosynthesis of serine, and not as much for the biosynthesis of 5-methyl-H4PteGlun, methionine, and S-adenosylmethionine. This finding has implications for any future attempts to engineer one-carbon unit-requiring products through manipulation of the one-carbon metabolic network in non-photosynthetic organs.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Carbon , Formate-Tetrahydrofolate Ligase , Glycolates , Plant Roots , Tetrahydrofolates , Arabidopsis/genetics , Arabidopsis/enzymology , Arabidopsis/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/enzymology , Plant Roots/growth & development , Glycolates/metabolism , Formate-Tetrahydrofolate Ligase/genetics , Formate-Tetrahydrofolate Ligase/metabolism , Carbon/metabolism , Tetrahydrofolates/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Cytosol/metabolism , Cytosol/enzymology , Formates/metabolism , Plants, Genetically Modified
4.
Plant J ; 118(5): 1439-1454, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38379355

ABSTRACT

Aporphine alkaloids are a large group of natural compounds with extensive pharmaceutical application prospects. The biosynthesis of aporphine alkaloids has been paid attentions in the past decades. Here, we determined the contents of four 1-benzylisoquinoline alkaloids and five aporphine alkaloids in root, stem, leaf, and flower of Aristolochia contorta Bunge, which belongs to magnoliids. Two CYP80 enzymes were identified and characterized from A. contorta. Both of them catalyze the unusual C-C phenol coupling reactions and directly form the aporphine alkaloid skeleton. AcCYP80G7 catalyzed the formation of hexacyclic aporphine corytuberine. AcCYP80Q8 catalyzed the formation of pentacyclic proaporphine glaziovine. Kingdom-wide phylogenetic analysis of the CYP80 family suggested that CYP80 first appeared in Nymphaeales. The functional divergence of hydroxylation and C-C (or C-O) phenol coupling preceded the divergence of magnoliids and eudicots. Probable crucial residues of AcCYP80Q8 were selected through sequence alignment and molecular docking. Site-directed mutagenesis revealed two crucial residues E284 and Y106 for the catalytic reaction. Identification and characterization of two aporphine skeleton-forming enzymes provide insights into the biosynthesis of aporphine alkaloids.


Subject(s)
Alkaloids , Aporphines , Aristolochia , Cytochrome P-450 Enzyme System , Phylogeny , Plant Proteins , Aporphines/metabolism , Aristolochia/enzymology , Aristolochia/metabolism , Aristolochia/genetics , Aristolochia/chemistry , Plant Proteins/metabolism , Plant Proteins/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Alkaloids/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/enzymology , Plant Roots/metabolism , Plant Roots/enzymology , Plant Roots/genetics , Flowers/enzymology , Flowers/genetics , Flowers/metabolism , Plant Stems/metabolism , Plant Stems/enzymology , Plant Stems/genetics
5.
Planta ; 260(4): 88, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39251530

ABSTRACT

MAIN CONCLUSION: Nine TkOSC genes have been identified by genome-wide screening. Among them, TkOSC4-6 might be more crucial for natural rubber biosynthesis in Taraxacum kok-saghyz roots. Taraxacum kok-saghyz Rodin (TKS) roots contain large amounts of natural rubber, inulin, and valuable metabolites. Oxidosqualene cyclase (OSC) is a key member for regulating natural rubber biosynthesis (NRB) via the triterpenoid biosynthesis pathway. To explore the functions of OSC on natural rubber producing in TKS, its gene family members were identified in TKS genome via genome-wide screening. Nine TkOSCs were identified, which were mainly distributed in the cytoplasm. Their family genes experienced a neutral selection during the evolution process. Overall sequence homology analysis OSC proteins revealed 80.23% similarity, indicating a highly degree of conservation. Pairwise comparisons showed a multiple sequence similarity ranging from 57% to 100%. Protein interaction prediction revealed that TkOSCs may interact with baruol synthase, sterol 1,4-demethylase, lupeol synthase and squalene epoxidase. Phylogenetic analysis showed that OSC family proteins belong to two branches. TkOSC promoter regions contain cis-acting elements related to plant growth, stress response, hormones response and light response. Protein accumulation analysis demonstrated that TkOSC4, TkOSC5 and TkOSC6 proteins had strong expression levels in the root, latex and plumular axis. Comparison of gene expression patterns showed TkOSC1, TkOSC4, TkOSC5, TkOSC6, TkOSC7, TkOSC8 and TkOSC9 might be important in regulating NRB. Combination of gene and protein results revealed TkOSC4-6 might be more crucial, and the data might contribute to a more profound understanding of the roles of OSCs for NRB in TKS roots.


Subject(s)
Gene Expression Regulation, Plant , Intramolecular Transferases , Phylogeny , Rubber , Taraxacum , Taraxacum/genetics , Taraxacum/metabolism , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Rubber/metabolism , Plant Roots/genetics , Plant Roots/enzymology , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant/genetics
6.
Physiol Plant ; 176(4): e14420, 2024.
Article in English | MEDLINE | ID: mdl-38956780

ABSTRACT

This study explores the impact of juglone on cucumber (Cucumis sativus cv. Beith Alpha), scrutinizing its effects on seed germination, growth, and the polyphenol oxidase (PPO) enzyme's activity and gene expression. Employing concentrations ranging from 0.01 to 0.5 mM, we found juglone's effects to be concentration-dependent. At lower concentrations (0.01 and 0.1 mM), juglone promoted root and shoot growth along with germination, whereas higher concentrations (0.25 and 0.5 mM) exerted inhibitory effects, delineating a threshold for its allelopathic influence. Notably, PPO activity surged, especially at 0.5 mM in roots, hinting at oxidative stress involvement. Real-time PCR unveiled that juglone modulates PPO gene expression in cotyledons, peaking at 0.1 mM and diminishing at elevated levels. Correlation analyses elucidated a positive link between juglone-induced root growth and cotyledon PPO gene expression but a negative correlation with heightened root enzyme activity. Additionally, germination percentage inversely correlated with root PPO activity, while PPO activities positively associated with dopa and catechol substrates in both roots and cotyledons. Molecular docking studies revealed juglone's selective interactions with PPO's B chain, suggesting regulatory impacts. Protein interaction assessments highlighted juglone's influence on amino acid metabolism, and molecular dynamics indicated juglone's stronger, more stable binding to PPO, inferring potential alterations in enzyme function and stability. Conclusively, our findings elucidate juglone's dose-dependent physiological and biochemical shifts in cucumber plants, offering insights into its role in plant growth, stress response, and metabolic modulation.


Subject(s)
Catechol Oxidase , Cucumis sativus , Germination , Molecular Docking Simulation , Naphthoquinones , Plant Roots , Catechol Oxidase/metabolism , Catechol Oxidase/genetics , Cucumis sativus/genetics , Cucumis sativus/enzymology , Cucumis sativus/drug effects , Naphthoquinones/pharmacology , Naphthoquinones/metabolism , Germination/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/enzymology , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Cotyledon/genetics , Cotyledon/drug effects , Cotyledon/enzymology
7.
Int J Mol Sci ; 25(18)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39337569

ABSTRACT

Polyphenol oxidase (PPO) plays a key role in the enzymatic browning process, and this study employed Gaussian-accelerated molecular dynamics (GaMD) simulations to investigate the catalytic efficiency mechanisms of lotus root PPO with different substrates, including catechin, epicatechin, and chlorogenic acid, as well as the inhibitor oxalic acid. Key findings reveal significant conformational changes in PPO that correlate with its enzymatic activity. Upon substrate binding, the alpha-helix in the Q53-D63 region near the copper ion extends, likely stabilizing the active site and enhancing catalysis. In contrast, this helix is disrupted in the presence of the inhibitor, resulting in a decrease in enzymatic efficiency. Additionally, the F350-V378 region, which covers the substrate-binding site, forms an alpha-helix upon substrate binding, further stabilizing the substrate and promoting catalytic function. However, this alpha-helix does not form when the inhibitor is bound, destabilizing the binding site and contributing to inhibition. These findings offer new insights into the substrate-specific and inhibitor-induced structural dynamics of lotus root PPO, providing valuable information for enhancing food processing and preservation techniques.


Subject(s)
Catechol Oxidase , Lotus , Molecular Dynamics Simulation , Plant Roots , Lotus/enzymology , Catechol Oxidase/metabolism , Catechol Oxidase/chemistry , Plant Roots/enzymology , Substrate Specificity , Markov Chains , Catalytic Domain , Plant Proteins/metabolism , Plant Proteins/chemistry , Catechin/chemistry , Catechin/metabolism , Binding Sites , Normal Distribution
8.
Plant Cell ; 32(12): 3774-3791, 2020 12.
Article in English | MEDLINE | ID: mdl-33023954

ABSTRACT

In legumes, rhizobia attach to root hair tips and secrete nodulation factor to activate rhizobial infection and nodule organogenesis. Endosymbiotic rhizobia enter nodule primordia via a specialized transcellular compartment known as the infection thread (IT). The IT elongates by polar tip growth, following the path of the migrating nucleus along and within the root hair cell. Rho-family ROP GTPases are known to regulate the polarized growth of cells, but their role in regulating polarized IT growth is poorly understood. Here, we show that LjSPK1, a DOCK family guanine nucleotide exchange factor (GEF), interacts with three type I ROP GTPases. Genetic analyses showed that these three ROP GTPases are involved in root hair development, but only LjROP6 is required for IT formation after rhizobia inoculation. Misdirected ITs formed in the root hairs of Ljspk1 and Ljrop6 mutants. We show that LjSPK1 functions as a GEF that activates LjROP6. LjROP6 enhanced the plasma membrane localization LjSPK1 in Nicotiana benthamiana leaf cells and Lotus japonicus root hairs, and LjSPK1 and LjROP6 interact at the plasma membrane. Taken together, these results shed light on how the LjROP6-LjSPK1 module mediates the polarized growth of ITs in L. japonicus.


Subject(s)
GTP Phosphohydrolases/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Lotus/genetics , Rhizobium/physiology , Cell Membrane/metabolism , GTP Phosphohydrolases/genetics , Genes, Reporter , Guanine Nucleotide Exchange Factors/genetics , Lotus/enzymology , Lotus/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Root Nodulation , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/growth & development , Symbiosis , Nicotiana/enzymology , Nicotiana/genetics , Nicotiana/growth & development
9.
Plant J ; 108(4): 1116-1130, 2021 11.
Article in English | MEDLINE | ID: mdl-34547154

ABSTRACT

Carotenoids are important natural pigments that give bright colors to plants. The difference in the accumulation of carotenoids is one of the key factors in the formation of various colors in carrot taproots. Carotenoid cleavage dioxygenases (CCDs), including CCD and 9-cis epoxycarotenoid dioxygenase, are the main enzymes involved in the cleavage of carotenoids in plants. Seven CCD genes have been annotated from the carrot genome. In this study, through expression analysis, we found that the expression level of DcCCD4 was significantly higher in the taproot of white carrot (low carotenoid content) than orange carrot (high carotenoid content). The overexpression of DcCCD4 in orange carrots caused the taproot color to be pale yellow, and the contents of α- and ß-carotene decreased sharply. Mutant carrot with loss of DcCCD4 function exhibited yellow color (the taproot of the control carrot was white). The accumulation of ß-carotene was also detected in taproot. Functional analysis of the DcCCD4 enzyme in vitro showed that it was able to cleave α- and ß-carotene at the 9, 10 (9', 10') double bonds. In addition, the number of colored chromoplasts in the taproot cells of transgenic carrots overexpressing DcCCD4 was significantly reduced compared with that in normal orange carrots. Results showed that DcCCD4 affects the accumulation of carotenoids through cleavage of α- and ß-carotene in carrot taproot.


Subject(s)
Carotenoids/metabolism , Daucus carota/enzymology , Dioxygenases/metabolism , Plant Proteins/metabolism , Daucus carota/genetics , Dioxygenases/genetics , Gene Expression , Plant Proteins/genetics , Plant Roots/enzymology , Plant Roots/genetics , Plastids/metabolism , beta Carotene/metabolism
10.
Plant J ; 106(3): 706-719, 2021 05.
Article in English | MEDLINE | ID: mdl-33570751

ABSTRACT

Phosphorus is a crucial macronutrient for plant growth and development. The mechanisms for maintaining inorganic phosphate (Pi) homeostasis in rice are not well understood. The ubiquitin-conjugating enzyme variant protein OsUEV1B was previously found to interact with OsUbc13 and mediate lysine63-linked polyubiquitination. In the present study, we found OsUEV1B was specifically inhibited by Pi deficiency, and was localized in the nucleus and cytoplasm. Both osuev1b mutant and OsUEV1B-RNA interference (RNAi) lines displayed serious symptoms of toxicity due to Pi overaccumulation. Some Pi starvation inducible and phosphate transporter genes were upregulated in osuev1b mutant and OsUEV1B-RNAi plants in association with enhanced Pi acquisition, and representative Pi starvation responses, including stimulation of acid phosphatase activity and root hair growth, were also activated in the presence of sufficient Pi. A yeast two-hybrid screen revealed an interaction between OsUEV1B and OsVDAC1, which was confirmed by bimolecular fluorescence complementation and firefly split-luciferase complementation assays. OsVDAC1 encoded a voltage-dependent anion channel protein localized in the mitochondria, and OsUbc13 was shown to interact with OsVDAC1 via yeast two-hybrid and bimolecular fluorescence complementation assays. Under sufficient Pi conditions, similar to osuev1b, a mutation in OsVDAC1 resulted in significantly greater Pi concentrations in the roots and second leaves, improved acid phosphatase activity, and enhanced expression of the Pi starvation inducible and phosphate transporter genes compared with wild-type DongJin, whereas overexpression of OsVDAC1 had the opposite effects. OsUEV1B or OsVDAC1 knockout reduced the mitochondrial membrane potential and adenosine triphosphate levels. Moreover, overexpression of OsVDAC1 in osuev1b partially restored its high Pi concentration to a level between those of osuev1b and DongJin. Our results indicate that OsUEV1B is required for rice phosphate homeostasis.


Subject(s)
Homeostasis , Oryza/metabolism , Phosphates/metabolism , Plant Proteins/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Cell Nucleus/enzymology , Cell Nucleus/metabolism , Cytoplasm/enzymology , Cytoplasm/metabolism , Oryza/enzymology , Plant Proteins/physiology , Plant Roots/enzymology , Plant Roots/metabolism , Plant Shoots/enzymology , Plant Shoots/metabolism , Ubiquitin-Conjugating Enzymes/physiology
11.
Plant J ; 106(5): 1468-1483, 2021 06.
Article in English | MEDLINE | ID: mdl-33768632

ABSTRACT

Suberin is a complex hydrophobic polymer of aliphatic and phenolic compounds which controls the movement of gases, water, and solutes and protects plants from environmental stresses and pathogenic infection. The synthesis and regulatory pathways of suberin remain unknown in Brachypodium distachyon. Here we describe the identification of a B. distachyon gene, BdFAR4, encoding a fatty acyl-coenzyme A reductase (FAR) by a reverse genetic approach, and investigate the molecular relevance of BdFAR4 in the root suberin synthesis of B. distachyon. BdFAR4 is specifically expressed throughout root development. Heterologous expression of BdFAR4 in yeast (Saccharomyces cerevisiae) afforded the production of C20:0 and C22:0 fatty alcohols. The loss-of-function knockout of BdFAR4 by CRISPR/Cas9-mediated gene editing significantly reduced the content of C20:0 and C22:0 fatty alcohols associated with root suberin. In contrast, overexpression of BdFAR4 in B. distachyon and tomato (Solanum lycopersicum) resulted in the accumulation of root suberin-associated C20:0 and C22:0 fatty alcohols, suggesting that BdFAR4 preferentially accepts C20:0 and C22:0 fatty acyl-CoAs as substrates. The BdFAR4 protein was localized to the endoplasmic reticulum in Arabidopsis thaliana protoplasts and Nicotiana benthamiana leaf epidermal cells. BdFAR4 transcript levels can be increased by abiotic stresses and abscisic acid treatment. Furthermore, yeast one-hybrid, dual-luciferase activity, and electrophoretic mobility shift assays indicated that the R2R3-MYB transcription factor BdMYB41 directly binds to the promoter of BdFAR4. Taken together, these results imply that BdFAR4 is essential for the production of root suberin-associated fatty alcohols, especially under stress conditions, and that its activity is transcriptionally regulated by the BdMYB41 transcription factor.


Subject(s)
Aldehyde Oxidoreductases/metabolism , Brachypodium/genetics , Fatty Alcohols/metabolism , Gene Expression Regulation, Plant , Lipids/biosynthesis , Aldehyde Oxidoreductases/genetics , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/physiology , Brachypodium/enzymology , Brachypodium/physiology , Gene Editing , Gene Knockout Techniques , Loss of Function Mutation , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/physiology , Polyesters/metabolism , Stress, Physiological , Nicotiana/enzymology , Nicotiana/genetics , Nicotiana/physiology
12.
Plant J ; 106(5): 1278-1297, 2021 06.
Article in English | MEDLINE | ID: mdl-33733535

ABSTRACT

Calcineurin B-like (CBL)-interacting protein kinases (CIPKs) play a central role in Ca2+ signalling and promote drought tolerance in plants. The CIPK gene family in pigeon pea (Cajanus cajan L.), a major food crop affected by drought, has not previously been characterised. Here, we identified 28 CIPK genes in the pigeon pea genome. Five CcCIPK genes were strongly upregulated in roots upon drought treatment and were selected for further characterisation. Overexpression of CcCIPK13 and CcCIPK14 increased survival rates by two- to three-fold relative to controls after 14 days of drought. Furthermore, the three major flavonoids, genistin, genistein and apigenin, were significantly upregulated in the same transgenic plants. Using CcCIPK14 as bait, we performed a yeast two-hybrid screen and identified six interactors, including CcCBL1. CcCIPK14 exhibited autophosphorylation and phosphorylation of CcCBL1 in vitro. CcCBL1-overexpressed plants displayed higher survival rates upon drought stress as well as higher expression of flavonoid biosynthetic genes and flavonoid content. CcCIPK14-overexpressed plants in which CcCBL1 transcript levels were reduced by RNA interference had lower survival rates, which indicated CcCBL1 in the same pathway as CcCIPK14. Together, our results demonstrate a role for the CcCIPK14-CcCBL1 complex in drought stress tolerance through the regulation of flavonoid biosynthesis in pigeon pea.


Subject(s)
Cajanus/genetics , Calcium Signaling , Calcium-Binding Proteins/metabolism , Flavonoids/metabolism , Gene Expression Regulation, Plant , Protein Serine-Threonine Kinases/metabolism , Apigenin/metabolism , Cajanus/enzymology , Cajanus/physiology , Calcium-Binding Proteins/genetics , Droughts , Gene Expression , Genistein/metabolism , Isoflavones/metabolism , Phosphorylation , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/physiology , Plants, Genetically Modified , Protein Serine-Threonine Kinases/genetics , RNA Interference , Stress, Physiological , Two-Hybrid System Techniques
13.
Plant J ; 108(4): 1053-1068, 2021 11.
Article in English | MEDLINE | ID: mdl-34514645

ABSTRACT

Specialized diterpenoid metabolites are important mediators of plant-environment interactions in monocot crops. To understand metabolite functions in plant environmental adaptation that ultimately can enable crop improvement strategies, a deeper knowledge of the underlying species-specific biosynthetic pathways is required. Here, we report the genomics-enabled discovery of five cytochrome P450 monooxygenases (CYP71Z25-CYP71Z29) that form previously unknown furanoditerpenoids in the monocot bioenergy crop Panicum virgatum (switchgrass). Combinatorial pathway reconstruction showed that CYP71Z25-CYP71Z29 catalyze furan ring addition directly to primary diterpene alcohol intermediates derived from distinct class II diterpene synthase products. Transcriptional co-expression patterns and the presence of select diterpenoids in switchgrass roots support the occurrence of P450-derived furanoditerpenoids in planta. Integrating molecular dynamics, structural analysis and targeted mutagenesis identified active site determinants that contribute to the distinct catalytic specificities underlying the broad substrate promiscuity of CYP71Z25-CYP71Z29 for native and non-native diterpenoids.


Subject(s)
Biosynthetic Pathways , Cytochrome P-450 Enzyme System/metabolism , Diterpenes/metabolism , Genome, Plant/genetics , Panicum/enzymology , Biocatalysis , Biological Products/chemistry , Biological Products/metabolism , Catalytic Domain , Cytochrome P-450 Enzyme System/genetics , Diterpenes/chemistry , Panicum/chemistry , Panicum/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/chemistry , Plant Roots/enzymology , Plant Roots/genetics
14.
Biochem Biophys Res Commun ; 589: 16-22, 2022 01 22.
Article in English | MEDLINE | ID: mdl-34883285

ABSTRACT

Gretchen Hagen 3 (GH3) amido synthetases conjugate amino acids to a carboxyl group of small molecules including hormones auxin, jasmonate, and salicylic acid. The Arabidopsis genome harbors 19 GH3 genes, whose exact roles in plant development have been difficult to define because of genetic redundancy among the GH3 genes. Here we use CRISPR/Cas9 gene editing technology to delete the Arabidopsis group II GH3 genes, which are able to conjugate indole-3-acetic acid (IAA) to amino acids. We show that plants lacking the eight group II GH3 genes (gh3 octuple mutants) accumulate free IAA and fail to produce IAA-Asp and IAA-Glu conjugates. Consequently, gh3 octuple mutants have extremely short roots, long and dense root hairs, and long hypocotyls. Our characterization of gh3 septuple mutants, which provide sensitized backgrounds, reveals that GH3.17 and GH3.9 play prominent roles in root elongation and seed production, respectively. We show that GH3 functions correlate with their expression patterns, suggesting that local deactivation of auxin also contributes to maintaining auxin homeostasis. Moreover, this work provides a method for elucidating functions of individual members of a gene family, whose members have overlapping functions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Flowers , Indoleacetic Acids , Ligases , Plant Roots , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Flowers/enzymology , Flowers/growth & development , Gene Expression Regulation, Plant , Genes, Plant , Homeostasis , Indoleacetic Acids/metabolism , Ligases/genetics , Ligases/metabolism , Multigene Family , Mutation/genetics , Phenotype , Plant Development/genetics , Plant Roots/enzymology , Plant Roots/growth & development
15.
Dokl Biochem Biophys ; 506(1): 191-194, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36303050

ABSTRACT

The effect of silicon nanoparticles (1 µg/mL) on the activity of lipid peroxidation, peroxidase, superoxide dismutase, and catalase in tomato roots invaded by root-knot nematode Meloidogyne incognita was studied. It was shown that, at the early stages of parasitization in the plants treated with Si-NPs, a low activity of PO and SOD, as well as an increased level of lipid peroxidation, are observed, which indicates the formation of free radicals (reactive oxygen species, ROS) that can inhibit nematodes and limit the formation of giant cells. During the sedentary stage, at the stages of nutrition, development, and egg production, the roots of the treated plants showed an increased activity of PO, CAT, and SOD, as well as a low activity of LPO as compared to the infested untreated plants. This makes it possible to maintain a balance between the formation and neutralization of ROS and is important not only in the protection of plant tissues from oxidative processes but also in the preservation of giant cells that feed the parasite. The presented data for the first time show the mechanism of action of Si-NPs in the development of resistance and adaptation of plants to biogenic stress, associated with the effect on various components of the antioxidant system and their functional interaction.


Subject(s)
Antioxidants , Nanoparticles , Plant Roots , Silicon , Solanum lycopersicum , Tylenchoidea , Animals , Antioxidants/metabolism , Solanum lycopersicum/enzymology , Solanum lycopersicum/parasitology , Plant Roots/enzymology , Plant Roots/parasitology , Reactive Oxygen Species , Silicon/pharmacology , Superoxide Dismutase
16.
Proteomics ; 21(7-8): e2000129, 2021 04.
Article in English | MEDLINE | ID: mdl-33570822

ABSTRACT

The use of plant growth-promoting bacteria as agricultural inoculants of plants should be encouraged because of their prominent role in biological nitrogen fixation, the increase of nutrient uptake by roots, abiotic stress mitigation, and disease control. The complex mechanisms underlying the association between plant and beneficial bacteria have been increasingly studied, and proteomic tools can expand our perception regarding the fundamental molecular processes modulated by the interaction. In this study, we investigated the changes in protein expression in maize roots in response to treatment with the endophytic diazotrophic Herbaspirillum seropedicae and the activities of enzymes related to nitrogen metabolism. To identify maize proteins whose expression levels were altered in the presence of bacteria, a label-free quantitative proteomic approach was employed. Using this approach, we identified 123 differentially expressed proteins, of which 34 were upregulated enzymes, in maize roots cultivated with H. seropedicae. The maize root colonization of H. seropedicae modulated the differential expression of enzymes involved in the stress response, such as peroxidases, phenylalanine ammonia-lyase, and glutathione transferase. The differential protein profile obtained in the inoculated roots reflects the effect of colonization on plant growth and development compared with control plants.


Subject(s)
Herbaspirillum/physiology , Plant Proteins/metabolism , Zea mays/enzymology , Zea mays/microbiology , Plant Roots/enzymology , Plant Roots/growth & development , Plant Roots/microbiology , Proteomics , Zea mays/growth & development , Zea mays/metabolism
17.
Plant J ; 101(3): 653-665, 2020 02.
Article in English | MEDLINE | ID: mdl-31626366

ABSTRACT

In acidic soils, aluminum (Al) toxicity is a significant limitation to crop production worldwide. Given its Al-binding capacity, malate allows internal as well as external detoxification strategies to cope with Al stress, but little is known about the metabolic processes involved in this response. Here, we analyzed the relevance of NADP-dependent malic enzyme (NADP-ME), which catalyzes the oxidative decarboxylation of malate, in Al tolerance. Plants lacking NADP-ME1 (nadp-me1) display reduced inhibition of root elongation along Al treatment compared with the wild type (wt). Moreover, wt roots exposed to Al show a drastic decrease in NADP-ME1 transcript levels. Although malate levels in seedlings and root exudates are similar in nadp-me1 and wt, a significant increase in intracellular malate is observed in roots of nadp-me1 after long exposure to Al. The nadp-me1 plants also show a lower H2 O2 content in root apices treated with Al and no inhibition of root elongation when exposed to glutamate, an amino acid implicated in Al signaling. Proteomic studies showed several differentially expressed proteins involved in signal transduction, primary metabolism and protection against biotic and other abiotic stimuli and redox processes in nadp-me1, which may participate directly or indirectly in Al tolerance. The results indicate that NADP-ME1 is involved in adjusting the malate levels in the root apex, and its loss results in an increased content of this organic acid. Furthermore, the results suggest that NADP-ME1 affects signaling processes, such as the generation of reactive oxygen species and those that involve glutamate, which could lead to inhibition of root growth.


Subject(s)
Aluminum/toxicity , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Malate Dehydrogenase (NADP+)/metabolism , Malates/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Loss of Function Mutation , Malate Dehydrogenase (NADP+)/genetics , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/physiology , Proteomics , Stress, Physiological
18.
Plant J ; 104(1): 59-75, 2020 09.
Article in English | MEDLINE | ID: mdl-32656780

ABSTRACT

Lateral roots (LRs) are the main component of the root system architecture in Arabidopsis. The plasticity of LR development has an important role in improving plant survival in response to the external environment. Previous studies have revealed a number of genetic pathways that control plant growth in response to environmental stimuli. Here, we find that the xyloglucan endotransglucosylase 19 (XTH19) and XTH23 genes are involved in LR development under salt stress. The density of LRs was decreased in the xth23 single mutant, which was also more sensitive to salt than the wild type, and the xth19xth23 double mutant exhibited additive downregulated LR initiation and salt sensitivity compared with the single mutant. On the contrary, constitutive overexpression of XTH19 or XTH23 caused increased LR densities. Furthermore, XTH19 and XTH23 were induced by salt via the key brassinosteroid signaling pathway transcription factor BES1. In addition, we found that 35S::BES1 increased salt tolerance and the phenotype of xth19xth23 & 35S::BES1 was partially complementary to the wild-type level. In vivo and in vitro assays demonstrated that BES1 acts directly upstream of XTH19 and XTH23 to control their expression. Overall, our results revealed that XTH19 and XTH23 are involved in LR development via the BES1-dependent pathway, and contribute to LR adaptation to salt.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/growth & development , Brassinosteroids/metabolism , Glycosyltransferases/physiology , Plant Roots/growth & development , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Glycosyltransferases/genetics , Plant Roots/enzymology , Plant Roots/genetics , Salt Stress
19.
Plant J ; 104(2): 474-492, 2020 10.
Article in English | MEDLINE | ID: mdl-33164265

ABSTRACT

Multigene families in plants expanded from ancestral genes via gene duplication mechanisms constitute a significant fraction of the coding genome. Although most duplicated genes are lost over time, many are retained in the genome. Clusters of tandemly arrayed genes are commonly found in the plant genome where they can promote expansion of gene families. In the present study, promoter fusion to the GUS reporter gene was used to examine the promoter architecture of duplicated E3 ligase genes that are part of group C in the Arabidopsis thaliana ATL family. Acquisition of gene expression by AtATL78, possibly generated from defective AtATL81 expression, is described. AtATL78 expression was purportedly enhanced by insertion of a TATA box within the core promoter region after a short tandem duplication that occurred during evolution of Brassicaceae lineages. This gene is associated with an adaptation to drought tolerance of A. thaliana. These findings also suggest duplicated genes could serve as a reservoir of tacit genetic information, and expression of these duplicated genes is activated upon acquisition of core promoter sequences. Remarkably, drought transcriptome profiling in response to rehydration suggests that ATL78-dependent gene expression predominantly affects genes with root-specific activities.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/enzymology , Genome, Plant/genetics , Ubiquitin-Protein Ligases/genetics , Adaptation, Physiological , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Droughts , Gene Duplication , Gene Expression Profiling , Gene Expression Regulation, Plant , Multigene Family , Organ Specificity , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/physiology , Promoter Regions, Genetic/genetics , Stress, Physiological , Ubiquitin-Protein Ligases/metabolism
20.
Development ; 145(10)2018 05 22.
Article in English | MEDLINE | ID: mdl-29789310

ABSTRACT

CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptides are secreted endogenous plant ligands that are sensed by receptor kinases (RKs) to convey environmental and developmental inputs. Typically, this involves an RK with narrow ligand specificity that signals together with a more promiscuous co-receptor. For most CLEs, biologically relevant (co-)receptors are unknown. The dimer of the receptor-like protein CLAVATA 2 (CLV2) and the pseudokinase CORYNE (CRN) conditions perception of so-called root-active CLE peptides, the exogenous application of which suppresses root growth by preventing protophloem formation in the meristem. clv2 as well as crn null mutants are resistant to root-active CLE peptides, possibly because CLV2-CRN promotes expression of their cognate receptors. Here, we have identified the CLE-RESISTANT RECEPTOR KINASE (CLERK) gene, which is required for full sensing of root-active CLE peptides in early developing protophloem. CLERK protein can be replaced by its close homologs, SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (SARK) and NSP-INTERACTING KINASE 1 (NIK1). Yet neither CLERK nor NIK1 ectodomains interact biochemically with described CLE receptor ectodomains. Consistently, CLERK also acts genetically independently of CLV2-CRN We, thus, have discovered a novel hub for redundant CLE sensing in the root.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Plant Roots/enzymology , Protein Serine-Threonine Kinases/metabolism , Arabidopsis Proteins/genetics , Genome, Plant/genetics , Membrane Proteins/genetics , Plants, Genetically Modified , Protein Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL