Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
Add more filters

Publication year range
1.
Pestic Biochem Physiol ; 204: 106038, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39277365

ABSTRACT

Weed resistance to a range of herbicides has rapidly evolved, often with different mechanisms of action. The resulting uninhibited growth of weeds poses demonstrable threats to crop production and sustainable agriculture. Digitaria sanguinalis (L.) Scop., a troublesome weed in corn and other agricultural fields, has developed resistance to herbicides that inhibiting ALS (Acetolactate Synthase), such as nicosulfuron. Understanding the weed's resistance patterns and mechanisms is crucial. However, little is known of the non-target site resistance (NTSR) mechanisms of D. sanguinalis owing to a lack of relevant genome sequences and other materials. Therefore, in this study, a population of D.sanguinalis presenting multiple resistance was tested and found that its high level of resistance to ALS-inhibiting herbicides was not associated with target-related alterations.Administration of P450 inhibitors reversed the resistance to ALS-inhibiting herbicides. Following the application of ALS-inhibiting herbicides, the activities of NADPH-P450 reductase and p-nitroanisole O-demethylase (PNOD) were notably greater in the resistant population of D. sanguinalis than those in the susceptible population. The results suggested P450 enzyme familyplays a major role in the metabolic resistance mechanism, that increased P450 enzyme activity promote cross-resistance in D. sanguinalis to ALS-inhibiting herbicides. RNA-seq analysis showed that five genes from the P450 family (CYP709B2, CYP714C2, CYP71A1, CYP76C2, and CYP81E8) were upregulated in resistant D. sanguinalis. In conclusion, the upregulation of several P450 genes is responsible for establishing resistance to ALS-inhibiting herbicides in D. sanguinalis.


Subject(s)
Acetolactate Synthase , Cytochrome P-450 Enzyme System , Digitaria , Herbicide Resistance , Herbicides , Herbicides/pharmacology , Herbicides/toxicity , Acetolactate Synthase/metabolism , Acetolactate Synthase/genetics , Acetolactate Synthase/antagonists & inhibitors , Herbicide Resistance/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Digitaria/drug effects , Sulfonylurea Compounds/pharmacology , Plant Weeds/drug effects , Plant Weeds/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pyridines
2.
Pestic Biochem Physiol ; 204: 106099, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39277422

ABSTRACT

Echinochloa crus-galli (L.) P. Beauv is a monocotyledonous weed that seriously infests rice fields. Florpyrauxifen-benzyl, a novel synthetic auxin herbicide commercialized in China in 2018, is an herbicide for controlling E. crus-galli. However, a suspected resistant population (R) collected in 2012 showed resistance to the previously unused florpyrauxifen-benzyl. Whole-plant dose-response bioassay indicated that the R population evolved high resistance to quinclorac and florpyrauxifen-benzyl. Pretreatment with P450 inhibitors did not influence the GR50 of E. crus-galli to florpyrauxifen-benzyl. The expression of target receptor EcAFB4 was down-regulated in the R population, leading to the reduced response to florpyrauxifen-benzyl (suppresses over-production of ethylene and ABA). We verified this resistance mechanism in the knockout OsAFB4 in Oryza sativa L. The Osafb4 mutants exhibited high resistance to florpyrauxifen-benzyl and moderate resistance to quinclorac. Furthermore, DNA methylation in the EcAFB4 promoter regulated its low expression in the R population after florpyrauxifen-benzyl treatment. In summary, the low expression of the auxin receptor EcAFB4 confers target resistance to the synthetic auxin herbicide florpyrauxifen-benzyl in the R- E. crus-galli.


Subject(s)
Echinochloa , Herbicide Resistance , Herbicides , Plant Proteins , Echinochloa/drug effects , Echinochloa/genetics , Echinochloa/metabolism , Herbicides/pharmacology , Herbicide Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Oryza/genetics , Oryza/metabolism , Oryza/drug effects , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Quinolines/pharmacology , Plant Weeds/drug effects , Plant Weeds/genetics , Plant Weeds/metabolism
3.
Int J Mol Sci ; 25(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38397082

ABSTRACT

Brassicanate A sulfoxide, a secondary metabolite of broccoli, exhibited the inhibition of weed growth, but its mechanism of action on weeds remains unclear. To elucidate the mechanism by which brassicanate A sulfoxide suppresses weeds, this study explores the interaction between brassicanate A sulfoxide and the photosystem II D1 protein through molecular docking and molecular dynamics simulations. This research demonstrates that brassicanate A sulfoxide interacts with the photosystem II D1 protein by forming hydrogen bonds with Phe-261 and His-214. The successful expression of the photosystem II D1 protein in an insect cell/baculovirus system validated the molecular docking and dynamics simulations. Biolayer interferometry experiments elucidated that the affinity constant of brassicanate A sulfoxide with photosystem II was 2.69 × 10-3 M, suggesting that brassicanate A sulfoxide can stably bind to the photosystem II D1 protein. The findings of this study contribute to the understanding of the mode of action of brassicanate A sulfoxide and also aid in the development of natural-product-based photosynthesis-inhibiting herbicides.


Subject(s)
Herbicides , Herbicides/chemistry , Photosystem II Protein Complex/metabolism , Molecular Docking Simulation , Photosynthesis , Plant Weeds/metabolism , Sulfoxides
4.
Plant Cell Physiol ; 64(9): 1034-1045, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37307421

ABSTRACT

Seeds of root parasitic plants, Striga, Orobanche and Phelipanche spp., are induced to germinate by strigolactones (SLs) exudated from host roots. In Striga-resistant cultivars of Sorghum bicolor, the loss-of-function of the Low Germination Stimulant 1 (LGS1) gene changes the major SL from 5-deoxystrigol (5DS) to orobanchol, which has an opposite C-ring stereochemistry. The biosynthetic pathway of 5DS catalyzed by LGS1 has not been fully elucidated. Since other unknown regulators, in addition to LGS1 encoding a sulfotransferase, appear to be necessary for the stereoselective biosynthesis of 5DS, we examined Sobic.005G213500 (Sb3500), encoding a 2-oxoglutarate-dependent dioxygenase, as a candidate regulator, which is co-expressed with LGS1 and located 5'-upstream of LGS1 in the sorghum genome. When LGS1 was expressed with known SL biosynthetic enzyme genes including the cytochrome P450 SbMAX1a in Nicotiana benthamiana leaves, 5DS and its diastereomer 4-deoxyorobanchol (4DO) were produced in approximately equal amounts, while the production of 5DS was significantly larger than that of 4DO when Sb3500 was also co-expressed. We also confirmed the stereoselective 5DS production in an in vitro feeding experiment using synthetic chemicals with recombinant proteins expressed in Escherichia coli and yeast. This finding demonstrates that Sb3500 is a stereoselective regulator in the conversion of the SL precursor carlactone to 5DS, catalyzed by LGS1 and SbMAX1a, providing a detailed understanding of how different SLs are produced to combat parasitic weed infestations.


Subject(s)
Dioxygenases , Sorghum , Sorghum/genetics , Sorghum/metabolism , Ketoglutaric Acids/analysis , Ketoglutaric Acids/metabolism , Lactones/metabolism , Plant Weeds/metabolism , Germination , Dioxygenases/metabolism , Catalysis , Plant Roots/genetics , Plant Roots/metabolism
5.
Plant Physiol ; 185(4): 1411-1428, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33793945

ABSTRACT

Seeds of the root parasitic plant Striga hermonthica can sense very low concentrations of strigolactones (SLs) exuded from host roots. The S. hermonthica hyposensitive to light (ShHTL) proteins are putative SL receptors, among which ShHTL7 reportedly confers sensitivity to picomolar levels of SL when expressed in Arabidopsis thaliana. However, the molecular mechanism underlying ShHTL7 sensitivity is unknown. Here we determined the ShHTL7 crystal structure and quantified its interactions with various SLs and key interacting proteins. We established that ShHTL7 has an active-site pocket with broad-spectrum response to different SLs and moderate affinity. However, in contrast to other ShHTLs, we observed particularly high affinity of ShHTL7 for F-box protein AtMAX2. Furthermore, ShHTL7 interacted with AtMAX2 and with transcriptional regulator AtSMAX1 in response to nanomolar SL concentration. ShHTL7 mutagenesis analyses identified surface residues that contribute to its high-affinity binding to AtMAX2 and residues in the ligand binding pocket that confer broad-spectrum response to SLs with various structures. Crucially, yeast-three hybrid experiments showed that AtMAX2 confers responsiveness of the ShHTL7-AtSMAX1 interaction to picomolar levels of SL in line with the previously reported physiological sensitivity. These findings highlight the key role of SL-induced MAX2-ShHTL7-SMAX1 complex formation in determining the sensitivity to SL. Moreover, these data suggest a strategy to screen for compounds that could promote suicidal seed germination at physiologically relevant levels.


Subject(s)
Heterocyclic Compounds, 3-Ring/metabolism , Host-Parasite Interactions/physiology , Lactones/metabolism , Ligands , Plant Roots/metabolism , Plant Weeds/metabolism , Striga/physiology , Striga/parasitology , Host-Parasite Interactions/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Striga/genetics
6.
J Exp Bot ; 73(7): 1992-2004, 2022 04 05.
Article in English | MEDLINE | ID: mdl-34850875

ABSTRACT

Root parasitic weeds of the Orobanchaceae, such as witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.), cause serious losses in agriculture worldwide, and efforts have been made to control these parasitic weeds. Understanding the characteristic physiological processes in the life cycle of root parasitic weeds is particularly important to identify specific targets for growth modulators. In our previous study, planteose metabolism was revealed to be activated soon after the perception of strigolactones in germinating seeds of O. minor. Nojirimycin inhibited planteose metabolism and impeded seed germination of O. minor, indicating a possible target for root parasitic weed control. In the present study, we investigated the distribution of planteose in dry seeds of O. minor by matrix-assisted laser desorption/ionization-mass spectrometry imaging. Planteose was detected in tissues surrounding-but not within-the embryo, supporting its suggested role as a storage carbohydrate. Biochemical assays and molecular characterization of an α-galactosidase family member, OmAGAL2, indicated that the enzyme is involved in planteose hydrolysis in the apoplast around the embryo after the perception of strigolactones, to provide the embryo with essential hexoses for germination. These results indicate that OmAGAL2 is a potential molecular target for root parasitic weed control.


Subject(s)
Orobanche , Germination/physiology , Hydrolysis , Lactones/metabolism , Plant Roots/metabolism , Plant Weeds/metabolism , Seeds , alpha-Galactosidase
7.
J Chem Inf Model ; 62(7): 1712-1722, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35192364

ABSTRACT

Parasitic weeds such as Striga have led to significant losses in agricultural productivity worldwide. These weeds use the plant hormone strigolactone as a germination stimulant. Strigolactone signaling involves substrate hydrolysis followed by a conformational change of the receptor to a "closed" or "active" state that associates with a signaling partner, MAX2/D3. Crystal structures of active and inactive AtD14 receptors have helped elucidate the structural changes involved in activation. However, the mechanism by which the receptor activates remains unknown. The ligand dependence of AtD14 activation has been disputed by mutagenesis studies showing that enzymatically inactive receptors are able to associate with MAX2 proteins. Furthermore, activation differences between strigolactone receptor in Striga, ShHTL7, and AtD14 could contribute to the high sensitivity to strigolactones exhibited by parasitic plants. Using molecular dynamics simulations, we demonstrate that both AtD14 and ShHTL7 could adopt an active conformation in the absence of ligand. However, ShHTL7 exhibits a higher population in the inactive apo state as compared to the AtD14 receptor. We demonstrate that this difference in inactive state population is caused by sequence differences between their D-loops and interactions with the catalytic histidine that prevent full binding pocket closure in ShHTL7. These results indicate that ligand hydrolysis would enhance the active state population by destabilizing the inactive state in ShHTL7 as compared to AtD14. We also show that the mechanism of activation is more concerted in AtD14 than in ShHTL7 and that the main barrier to activation in ShHTL7 is closing of the binding pocket.


Subject(s)
Striga , Carrier Proteins/metabolism , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/metabolism , Lactones/chemistry , Lactones/metabolism , Lactones/pharmacology , Ligands , Plant Weeds/chemistry , Plant Weeds/metabolism , Striga/chemistry , Striga/metabolism
8.
Pestic Biochem Physiol ; 184: 105089, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35715035

ABSTRACT

Managing emerged weeds that have evolved resistance to acetyl CoA carboxylase (ACCase)-inhibiting herbicides is a challenging task. A dose-response experiment was conducted on barnyardgrass biotypes resistant (R) and susceptible (S) to three aryloxyphenoxypropionate herbicides cyhalofop-butyl (CyB), fenoxaprop-ethyl (FeE), and quizalofop-ethyl (QuE) along with investigations into the potential resistance mechanism of these biotypes. The tested R barnyardgrass biotypes had strong resistance to CyB and FeE (resistant/susceptible ratio: 7.9-14.4) but weak resistance to QuE (resistant/susceptible ratio: 2.4-3.1). Absorption, translocation, and total metabolism of CyB and QuE were not associated with differences among S and R barnyardgrass biotypes. However, differences between S and R barnyardgrass were observed in production of active acid forms of each herbicide (cyhalofop-acid and quizalofop-acid). Production of cyhalofop-acid was >1.6-fold less in R barnyardgrass (3-8%) for 24 h after herbicide application than in the S barnyardgrass (8-16%). Meanwhile, production of quizalofop-acid was less in R barnyardgrass (< 14%) throughout the study period than in the S barnyardgrass (< 22%). Sequencing results of ACCase gene showed no difference between S and R barnyardgrass. Overall results show that a non-target-site resistance mechanism altering metabolism of CyB and QuE likely contributes to resistance of the barnyardgrass biotypes to these herbicides.


Subject(s)
Echinochloa , Herbicides , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Echinochloa/metabolism , Herbicide Resistance/genetics , Herbicides/metabolism , Herbicides/toxicity , Plant Weeds/metabolism
9.
Pestic Biochem Physiol ; 187: 105213, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36127057

ABSTRACT

The KRA18-249 strain, isolated from a natural recreational forest near Jeongseon, Gangwon-do, when applied to plants induced signs of wilting within 24 h, leading to plant death. The isolated actinomycete was identified as Streptomyces gardneri based on 16S rRNA gene homogeneity analysis. The culture filtrate was solvent fractionated to obtain the active substance, and the active compound 249-Y1 was isolated from the purified fractions via a herbicide activity test using Digitaria ciliaris. NMR and ESI-MS analyses revealed that the molecular formula of 249-Y1 is C20H16O6 [MW = 352.0947] and is an anthraquinone (rubiginone D2) produce by polyketide synthetase system. The active compound 249-Y1 showed strong (100%) herbicidal activity against several weeds at 500 µg mL-1 concentration. Twisting symptoms began to appear within 24 h of treatment and intensified over time. The KRA18-249 strain produced the herbicidal compound under specific culture conditions, that is, at 200 rpm, 35 °C, for eight days at an initial pH of 10. We also found that 249-Y1 inhibited chlorophyll, but was not a radical generator. Overall, the secondary metabolite 249-Y1, produced by KRA18-249, can be used as a new biological agent for weed control.


Subject(s)
Herbicides , Polyketides , Streptomyces , Anthraquinones/pharmacology , Biological Factors/metabolism , Chlorophyll/metabolism , Herbicides/chemistry , Ligases/metabolism , Plant Weeds/metabolism , Polyketides/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Solvents , Streptomyces/chemistry
10.
Genomics ; 113(3): 964-975, 2021 05.
Article in English | MEDLINE | ID: mdl-33610796

ABSTRACT

Effective and complete control of the invasive weed Mikania micrantha is required to avoid increasing damages. We exogenously applied indole 3-acetic acid (IAA), gibberellin (GA), and N-(2-Chloro-4-pyridyl)-N'-phenylurea (CPPU), and their combinations i.e. IAA + CPPU (IC), GA + CPPU (GC), and GA + IAA + CPPU (GIC), at 5, 10, 25, 50, and 75 ppm against distilled water as a control (CK), to examine their effects on the weed. The increasing concentrations of these hormones when applied alone or in combination were fatal to M. micrantha and led towards the death of inflorescences and/or florets. CPPU and GIC were found as the most effective phytohormones. Transcriptome analysis revealed differential regulation of genes in auxin, cytokinin, gibberellin and abscisic acid signaling pathways, suggesting their role in the prohibition of axillary bud differentiation. Collectively, CPPU and GIC at a high concentration (75 ppm) could be used as a control measure to protect forests and other lands from the invasion of M. micrantha.


Subject(s)
Mikania , Gene Expression Profiling , Gibberellins/pharmacology , Mikania/genetics , Mikania/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Weeds/genetics , Plant Weeds/metabolism
11.
J Basic Microbiol ; 62(3-4): 415-427, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34750838

ABSTRACT

Over the decades the presence of aquatic weeds has caused immense biodiversity loss to the ecosystem. The use of herbicides has arisen emergence of herbicide-resistant weeds and loss of inherent flora and fauna due to the recalcitrant nature of the chemicals used. Hence, there is a need to use nontoxic, ecosustainable, low-cost, and efficient biological molecules that are analogous to chemical herbicides. Various plants, bacteria, fungi as well a few viruses are reported to secrete allelopathic biomolecules that inhibit the growth and development of weeds. However, majorly fungal pathogens and their metabolites are found to be effective biocontrol agents for the water hyacinth. The present review puts forward major findings and interventions in the biological control of the weed, water hyacinth. The biosynthesis, mechanism of action and factors regulating the activity of bioherbicides are discussed. In addition, the issues associated with the in situ application of these bioherbicides are also conferred focusing on the available mode of applications and formulation used. The major factors include the type and concentration of allelopathic biomolecules, age, type, and morphology of targeted weed, formulation type, mode of application and other physiological and environmental factors. Among various modes for the application of bioherbicides, emulsions are found to be most effective for the control of water hyacinth. Most of the toxicity studies indicated no toxicity of this fungal pathogen to other ecological plant species except water hyacinth. Yet, in-depth investigations are needed of these allelochemicals and toxins before field applications. Overall, lab-scale studies have shown promising results and highlighted a few potential fungi that need to be further explored for optimizing their bioherbicidal activity.


Subject(s)
Eichhornia , Ecosystem , Fungi , Plant Weeds/metabolism , Prospective Studies
12.
Int J Mol Sci ; 23(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36077586

ABSTRACT

Mikania micrantha, recognized as one of the world's top 10 pernicious weeds, is a rapidly spreading tropical vine that has invaded the coastal areas of South China, causing serious economic losses and environmental damage. Rapid stem growth is an important feature of M. micrantha which may be related to its greater number of genes involved in auxin signaling and transport pathways and its ability to synthesize more auxin under adverse conditions to promote or maintain stem growth. Plant growth and development is closely connected to the regulation of endogenous hormones, especially the polar transport and asymmetric distribution of auxin. The PIN-FORMED (PIN) auxin efflux carrier gene family plays a key role in the polar transport of auxin and then regulates the growth of different plant tissues, which could indicate that the rapid growth of M. micrantha is closely related to this PIN-dependent auxin regulation. In this study, 11 PIN genes were identified and the phylogenetic relationship and structural compositions of the gene family in M. micrantha were analyzed by employing multiple bioinformatic methods. The phylogenetic analysis indicated that the PIN proteins could be divided into five distinct clades. The structural analysis revealed that three putative types of PIN (canonical, noncanonical and semi-canonical) exist among the proteins according to the length and the composition of the hydrophilic domain. The majority of the PINs were involved in the process of axillary bud differentiation and stem response under abiotic stress, indicating that M. micrantha may regulate its growth, development and stress response by regulating PIN expression in the axillary bud and stem, which may help explain its strong growth ability and environmental adaptability. Our study emphasized the structural features and stress response patterns of the PIN gene family and provided useful insights for further study into the molecular mechanism of auxin-regulated growth and control in M. micrantha.


Subject(s)
Mikania , Indoleacetic Acids/metabolism , Mikania/genetics , Mikania/metabolism , Phylogeny , Plant Development , Plant Weeds/metabolism
13.
Int J Mol Sci ; 23(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35806486

ABSTRACT

The extensive application of herbicides in crop cultivation has indisputably led to the emergence of weed populations characterized by multiple herbicide resistance (MHR). This phenomenon is associated with the enhanced metabolism and detoxifying ability of endogenous enzymes, such as phi class glutathione transferases (GSTFs). In the present work, a library of mutant GSTFs was created by in vitro directed evolution via DNA shuffling. Selected gstf genes from the weeds Alopecurus myosuroides and Lolium rigidum, and the cereal crops Triticum durum and Hordeum vulgare were recombined to forge a library of novel chimeric GSTFs. The library was activity screened and the best-performing enzyme variants were purified and characterized. The work allowed the identification of enzyme variants that exhibit an eight-fold improvement in their catalytic efficiency, higher thermal stability (8.3 °C) and three-times higher inhibition sensitivity towards the herbicide butachlor. The crystal structures of the best-performing enzyme variants were determined by X-ray crystallography. Structural analysis allowed the identification of specific structural elements that are responsible for kcat regulation, thermal stability and inhibition potency. These improved novel enzymes hold the potential for utilization in biocatalysis and green biotechnology applications. The results of the present work contribute significantly to our knowledge of the structure and function of phi class plant GSTs and shed light on their involvement in the mechanisms of MHR.


Subject(s)
Herbicide Resistance , Herbicides , Crops, Agricultural/metabolism , Glutathione Transferase/metabolism , Herbicide Resistance/genetics , Herbicides/pharmacology , Plant Weeds/genetics , Plant Weeds/metabolism , Poaceae/genetics
14.
Plant Cell Physiol ; 62(11): 1770-1785, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34453831

ABSTRACT

Herbicide resistance in weeds can be conferred by target-site and/or non-target-site mechanisms, such as rapid metabolic detoxification. Resistance to the very-long-chain fatty acid-inhibiting herbicide, S-metolachlor, in multiple herbicide-resistant populations (CHR and SIR) of waterhemp (Amaranthus tuberculatus) is conferred by rapid metabolism compared with sensitive populations. However, enzymatic pathways for S-metolachlor metabolism in waterhemp are unknown. Enzyme assays using S-metolachlor were developed to determine the specific activities of glutathione S-transferases (GSTs) and cytochrome P450 monooxygenases (P450s) from CHR and SIR seedlings to compare with tolerant corn and sensitive waterhemp (WUS). GST activities were greater (∼2-fold) in CHR and SIR compared to WUS but much less than corn. In contrast, P450s in microsomal extracts from CHR and SIR formed O-demethylated S-metolachlor, and their NADPH-dependent specific activities were greater (>20-fold) than corn or WUS. Metabolite profiles of S-metolachlor generated via untargeted and targeted liquid chromatography-mass spectrometry from CHR and SIR differed from WUS, with greater relative abundances of O-demethylated S-metolachlor and O-demethylated S-metolachlor-glutathione conjugates formed by CHR and SIR. In summary, our results demonstrate that S-metolachlor metabolism in resistant waterhemp involves Phase I and Phase II metabolic activities acting in concert, but the initial O-demethylation reaction confers resistance.


Subject(s)
Acetamides/pharmacology , Amaranthus/metabolism , Herbicide Resistance , Herbicides/pharmacology , Zea mays/metabolism , Amaranthus/drug effects , Metabolic Networks and Pathways , Plant Weeds/drug effects , Plant Weeds/metabolism , Zea mays/drug effects
15.
Plant Cell Environ ; 44(12): 3492-3501, 2021 12.
Article in English | MEDLINE | ID: mdl-34331317

ABSTRACT

Translocation of metabolites between different plant species provides important hints in understanding the fate of bioactive root exudates. In the present study, targeted and untargeted mass spectrometry-based metabolomics was applied to elucidate the transfer of bioactive compounds between rye and several crops and weed species. Our results demonstrated that benzoxazinoids (BXs) synthesized by rye were taken up by roots of neighbouring plant species and translocated into their shoots. Furthermore, we showed that roots of rye plants took up compounds originating from neighbouring plants. Among the compounds taken up by rye roots, wogonin was detected in the rye shoot, which indicated a root-to-shoot translocation of this compound. Elucidating the transfer of bioactive compounds between plants is essential for understanding plant-plant interactions, developing natural pesticides and understanding their modes of action.


Subject(s)
Crops, Agricultural/metabolism , Mass Spectrometry , Metabolomics/methods , Phytochemicals/metabolism , Plant Weeds/metabolism , Secale/metabolism , Biological Transport
16.
Metabolomics ; 17(3): 28, 2021 02 20.
Article in English | MEDLINE | ID: mdl-33609206

ABSTRACT

INTRODUCTION: Glufosinate resistant (GR) buffalo grasses were genetically modified to resist the broad-spectrum herbicide, glufosinate by inserting a novel pat gene into its genome. This modification results in a production of additional phosphinothricin acetyltransferase (PAT) to detoxify the deleterious effects of glufosinate. The GR grasses and its associated herbicide form a modern, weeding program, to eradicate obnoxious weeds in turf lawn without damaging the grasses at relatively low costs and labor. As with several principal crops which are genetically modified to improve agricultural traits, biosafety of the GR buffalo grasses is inevitably expected to become a public concern. For the first time, we had previously examined the metabolome of glufosinate-resistant buffalo grasses, using a GC-MS untargeted approach to assess the risk of GR as well as identify any pleotropic effects arising from the genetically modification process. In this paper, an untargeted high-resolution LC-MS (LC-HRMS) untargeted metabolomics approach was carried out to complement our previous findings with respect to GR and wild type (WT) buffalo grasses. OBJECTIVE: One of the major aims of this present work was to compare GR to WT buffalo grasses by including the detection of the secondary metabolome and determine any unprecedented metabolic changes. METHODS: Eight-week old plants of 4 GR buffalo grasses, (93-1A, 93-2B, 93-3 C and 93-5A) and 3 wild type varieties (WT 8-4A, WT 9-1B and WT 9-1B) were submerged in either 5 % v/v of glufosinate or distilled water 3 days prior to a LC-HRMS based untargeted metabolomics analysis (glufosinate-treated or control, samples, respectively). An Ultra-High-Performance Liquid Chromatography (UHPLC) system coupled to a Velos Pro Orbitrap mass spectrometer system was employed to holistically measure the primary and secondary metabolome of both GR and WT buffalo grasses either treated with or without glufosinate and subsequently apply several bioinformatic tools including the automated pathway analysis algorithm, mummichog. RESULTS: LC-HRMS untargeted based metabolomics clearly identified that the global metabolite pools of both GR and WT cultivars were highly similar, providing strong, supporting evidence of substantial equivalence between the GR and WT varieties. These findings indicate that if any associated risks to these GR grasses were somehow present, the risk would be within those acceptable ranges present in the WT. Additionally, mummichog-based pathway analysis indicated that phenylalanine metabolism and the TCA cycle were significantly impacted by glufosinate treatment in the WT cultivar. It was possible that alterations in the relative concentrations of several intermediates in these pathways were likely due to glufosinate-induced production of secondary metabolites to enhance plant defense mechanisms against herbicidal stress at the expense of primary metabolism. CONCLUSIONS: GR buffalo grasses were found to be near identical to its WT comparator based on this complementary LC-HRMS based untargeted metabolomics. Therefore, these results further support the safe use of these GR buffalo grasses with substantial evidence. Interestingly, despite protected by PAT, GR buffalo grasses still demonstrated the response to glufosinate treatment by up-regulating some secondary metabolite-related pathways.


Subject(s)
Aminobutyrates/pharmacology , Buffaloes/metabolism , Chromatography, Liquid/methods , Metabolomics/methods , Poaceae/metabolism , Tandem Mass Spectrometry/methods , Agriculture , Animals , Chromatography, High Pressure Liquid , Crops, Agricultural/metabolism , Gas Chromatography-Mass Spectrometry , Herbicide Resistance/genetics , Herbicides/metabolism , Herbicides/pharmacology , Metabolome , Plant Weeds/metabolism
17.
Molecules ; 26(7)2021 Apr 04.
Article in English | MEDLINE | ID: mdl-33916510

ABSTRACT

Amino acids have a wide range of biological activities, which usually rely on the stereoisomer presented. In this study, glycine and 21 common α-amino acids were investigated for their herbicidal property against Chinese amaranth (Amaranthus tricolor L.) and barnyard grass (Echinochloa crus-galli (L.) Beauv.). Both d- and l-isomers, as well as a racemic mixture, were tested and found that most compounds barely inhibited germination but moderately suppressed seedling growth. Various ratios of d:l-mixture were studied and synergy between enantiomers was found. For Chinese amaranth, the most toxic d:l-mixtures were at 3:7 (for glutamine), 8:2 (for methionine), and 5:5 (for tryptophan). For barnyard grass, rac-glutamine was more toxic than the pure forms; however, d-tryptophan exhibited greater activity than racemate and l-isomer, indicating the sign of enantioselective toxicity. The mode of action was unclear, but d-tryptophan caused bleaching of leaves, indicating pigment synthesis of the grass was inhibited. The results highlighted the enantioselective and synergistic toxicity of some amino acids, which relied upon plant species, chemical structures, and concentrations. Overall, our finding clarifies the effect of stereoisomers, and provides a chemical clue of amino acid herbicides, which may be useful in the development of herbicides from natural substances.


Subject(s)
Amaranthus/drug effects , Amino Acids/pharmacology , Echinochloa/drug effects , Herbicides/pharmacology , Seedlings/drug effects , Amaranthus/growth & development , Amaranthus/metabolism , Amino Acids/chemistry , Dose-Response Relationship, Drug , Echinochloa/growth & development , Echinochloa/metabolism , Germination/drug effects , Germination/physiology , Green Chemistry Technology , Herbicides/chemistry , Humans , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Weeds/drug effects , Plant Weeds/growth & development , Plant Weeds/metabolism , Seedlings/growth & development , Seedlings/metabolism , Seeds/drug effects , Seeds/growth & development , Seeds/metabolism , Stereoisomerism , Structure-Activity Relationship
18.
Ecotoxicol Environ Saf ; 194: 110399, 2020 May.
Article in English | MEDLINE | ID: mdl-32146196

ABSTRACT

Release of huge quantities of toxic hexavalent chromium (Cr6+) owing to its widespread use in several industrial and mining activities is a major environmental concern in 21st century. The present in situ vegetation analysis at three study sites gives insight on Cr hyperaccumulation potentiality which evaluates the phytoremediation ability of abundant native weeds growing in and around the Cr contaminated effluent discharge site at South Kaliapani chromite mine area, Odisha, India. Moreover, the study measure the relative bioconcentration of chromium in different plant parts with analysis of uptake related phytoremediation indices viz. Bioconcentration factor (BCF), Transportation index (Ti), Translocation factor (TF) and Metal Extraction Ratio (MER) to assess hyperaccumulation potentiality. Vegetation study near mine effluent discharge site (Site-1) reported maximum abundance for Diectomis fastigiata (8.25) followed by Vernonia cinerea (7.6) with Ti values 56 and 657 respectively. In site-2 (uncultivated barren land near site-1), Croton sparsiflorus showed maximum abundance (6.7) followed by Tephrosia purpurea (5.8) with Ti values 95.2 and 87.8 respectively whereas Kyllinga monocephala reported maximum abundance (6.1) followed by Fern sps. (5.9) with Ti values 62.4 and 81.1 respectively in site-3 (a swampy land flooded with chemically treated mine waste effluent). The highest Cr concentrations was recorded in roots of Diectomis fastigiata (2371 mg/kg dry matter) and shoot of Vernonia cinerea (5500 mg/kg dry matter) indicating their Cr phytoremediation potential. Moreover, the study provides the early indicative tools for detecting native Cr hyperaccumulators growing in an in situ environment with an in situ phytoremediation perspective.


Subject(s)
Chromium/analysis , Industrial Waste/analysis , Mining , Plant Weeds/drug effects , Soil Pollutants/analysis , Biodegradation, Environmental , Biodiversity , Chromium/metabolism , India , Industry , Plant Roots/chemistry , Plant Roots/drug effects , Plant Roots/metabolism , Plant Weeds/metabolism , Prospective Studies , Soil Pollutants/metabolism
19.
Int J Mol Sci ; 21(7)2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32268484

ABSTRACT

Alligator weed is reported to have a strong ability to adapt to potassium deficiency (LK) stress. Leaves are the primary organs responsible for photosynthesis of plants. However, quantitative proteomic changes in alligator weed leaves in response to LK stress are largely unknown. In this study, we investigated the physiological and proteomic changes in leaves of alligator weed under LK stress. We found that chloroplast and mesophyll cell contents in palisade tissue increased, and that the total chlorophyll content, superoxide dismutase (SOD) activity and net photosynthetic rate (PN) increased after 15 day of LK treatment, but the soluble protein content decreased. Quantitative proteomic analysis suggested that a total of 119 proteins were differentially abundant proteins (DAPs). KEGG analysis suggested that most represented DAPs were associated with secondary metabolism, the stress response, photosynthesis, protein synthesis, and degradation pathway. The proteomic results were verified using parallel reaction monitoring mass spectrometry (PRM-MS) analysis and quantitative real-time PCR (qRT-PCR)assays. Additional research suggested that overexpression of cationic peroxidase 1 of alligator weed (ApCPX1) in tobacco increased LK tolerance. The seed germination rate, peroxidase (POD) activity, and K+ content increased, and the hydrogen peroxide (H2O2) content decreased in the three transgenic tobacco lines after LK stress. The number of root hairs of the transgenic line was significantly higher than that of WT, and net K efflux rates were severely decreased in the transgenic line under LK stress. These results confirmed that ApCPX1 played positive roles in low-K+ signal sensing. These results provide valuable information on the adaptive mechanisms in leaves of alligator weed under LK stress and will help identify vital functional genes to apply to the molecular breeding of LK-tolerant plants in the future.


Subject(s)
Peroxidases/metabolism , Plant Leaves/metabolism , Plant Weeds/metabolism , Potassium Deficiency/metabolism , Proteome , Proteomics , Stress, Physiological , Animals , Chromatography, High Pressure Liquid , Computational Biology/methods , Gene Ontology , Phenotype , Proteomics/methods , Tandem Mass Spectrometry
20.
Molecules ; 25(14)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32668802

ABSTRACT

Calluna vulgaris (heather) is an aggressive invasive weed on the Central Plateau, North Is., New Zealand (NZ), where it encounters different environmental factors compared to its native range in Europe, such as high ultraviolet radiation (UV) and a lack of specialist herbivores. The specialist herbivore Lochmaea suturalis (heather beetle) was introduced from the United Kingdom (UK) in 1996 as a biocontrol agent to manage this invasive weed. Like other plant invaders, a novel environment may be challenging for heather as it adjusts to its new conditions. This process of "adjustment" involves morphological and physiological changes often linked to phenotypic plasticity. The biochemical responses of exotic plants to environmental variables in their invaded range is poorly understood. The production and release of volatile organic compounds (VOCs) is essential to plant communication and highly susceptible to environmental change. This study therefore aimed to explore the VOC emissions of heather in response to different levels of UV exposure, and to feeding damage by L. suturalis. Using tunnel houses clad with UV-selective filters, we measured VOCs produced by heather under NZ ambient, 20% attenuated, and 95% attenuated solar UV treatments. We also compared VOC emissions in the field at adjacent sites where L. suturalis was present or absent. Volatiles produced by the same target heather plants were measured at four different times in the spring and summer of 2018-2019, reflecting variations in beetle's abundance, feeding stage and plant phenology. Heather plants under 95% attenuated UV produced significantly higher amounts of (E)-ß-farnesene, decanal, benzaldehyde, and benzeneacetaldehyde compared to 25% attenuated and ambient UV radiation. We also found significant differences in volatiles produced by heather plants in beetle-present versus beetle-absent sites on most sampling occasions. We also recorded a lower number of generalist herbivores on heather at sites where L. suturalis was present. Interactions between invasive plants, a novel environment, and the native communities they invade, are discussed.


Subject(s)
Calluna/metabolism , Calluna/radiation effects , Herbivory , Plant Weeds/metabolism , Plant Weeds/radiation effects , Volatile Organic Compounds/metabolism , Animals , Biological Control Agents , Coleoptera , New Zealand , Stress, Physiological , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL