ABSTRACT
The mobilizable resistance island Salmonella genomic island 1 (SGI1) is specifically mobilized by IncA and IncC conjugative plasmids. SGI1, its variants and IncC plasmids propagate multidrug resistance in pathogenic enterobacteria such as Salmonella enterica serovars and Proteus mirabilis. SGI1 modifies and uses the conjugation apparatus encoded by the helper IncC plasmid, thus enhancing its own propagation. Remarkably, although SGI1 needs a coresident IncC plasmid to excise from the chromosome and transfer to a new host, these elements have been reported to be incompatible. Here, the stability of SGI1 and its helper IncC plasmid, each expressing a different fluorescent reporter protein, was monitored using fluorescence-activated cell sorting (FACS). Without selective pressure, 95% of the cells segregated into two subpopulations containing either SGI1 or the helper plasmid. Furthermore, FACS analysis revealed a high level of SGI1-specific fluorescence in IncC+ cells, suggesting that SGI1 undergoes active replication in the presence of the helper plasmid. SGI1 replication was confirmed by quantitative PCR assays, and extraction and restriction of its plasmid form. Deletion of genes involved in SGI1 excision from the chromosome allowed a stable coexistence of SGI1 with its helper plasmid without selective pressure. In addition, deletion of S003 (rep) or of a downstream putative iteron-based origin of replication, while allowing SGI1 excision, abolished its replication, alleviated the incompatibility with the helper plasmid and enabled its cotransfer to a new host. Like SGI1 excision functions, rep expression was found to be controlled by AcaCD, the master activator of IncC plasmid transfer. Transient SGI1 replication seems to be a key feature of the life cycle of this family of genomic islands. Sequence database analysis revealed that SGI1 variants encode either a replication initiator protein with a RepA_C domain, or an alternative replication protein with N-terminal replicase and primase C terminal 1 domains.
Subject(s)
Bacterial Proteins/genetics , Conjugation, Genetic/genetics , Genomic Islands/genetics , Phosphoproteins/genetics , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Chromosomes/drug effects , Chromosomes/genetics , DNA Helicases/genetics , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/drug effects , Proteus mirabilis/genetics , Salmonella enterica/genetics , Trans-Activators/geneticsABSTRACT
The rolling-circle replication is the most common mechanism for the replication of small plasmids carrying antibiotic resistance genes in Gram-positive bacteria. It is initiated by the binding and nicking of double-stranded origin of replication by a replication initiator protein (Rep). Duplex unwinding is then performed by the PcrA helicase, whose processivity is critically promoted by its interaction with Rep. How Rep and PcrA proteins interact to nick and unwind the duplex is not fully understood. Here, we have used magnetic tweezers to monitor PcrA helicase unwinding and its relationship with the nicking activity of Staphylococcus aureus plasmid pT181 initiator RepC. Our results indicate that PcrA is a highly processive helicase prone to stochastic pausing, resulting in average translocation rates of 30 bp s-1, while a typical velocity of 50 bp s-1 is found in the absence of pausing. Single-strand DNA binding protein did not affect PcrA translocation velocity but slightly increased its processivity. Analysis of the degree of DNA supercoiling required for RepC nicking, and the time between RepC nicking and DNA unwinding, suggests that RepC and PcrA form a protein complex on the DNA binding site before nicking. A comprehensive model that rationalizes these findings is presented.
Subject(s)
Bacterial Proteins/genetics , DNA Helicases/genetics , DNA Replication/genetics , Drug Resistance, Bacterial/genetics , DNA Breaks, Single-Stranded/drug effects , DNA-Binding Proteins/genetics , Geobacillus stearothermophilus/drug effects , Geobacillus stearothermophilus/genetics , Geobacillus stearothermophilus/pathogenicity , Plasmids/drug effects , Plasmids/genetics , Protein Binding/genetics , Protein Interaction Domains and Motifs/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Tetracycline/pharmacology , Trans-Activators/geneticsABSTRACT
This review will consider the gut as a reservoir for antimicrobial resistance, colonization resistance, and how disruption of the microbiome can lead to colonization by pathogenic organisms. There is a focus on the gut as a reservoir for ß-lactam and plasmid-mediated quinolone resistance. Finally, the role of functional metagenomics and long-read sequencing technologies to detect and understand antimicrobial resistance genes within the gut microbiome is discussed, along with the potential for future microbiome-directed methods to detect and prevent infection.
Subject(s)
Drug Resistance, Microbial/genetics , Gastrointestinal Microbiome/genetics , Anti-Infective Agents/pharmacology , Bacterial Infections/immunology , Bacterial Infections/microbiology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Genes, Microbial/genetics , Humans , Metagenomics , Plasmids/drug effects , Plasmids/geneticsABSTRACT
The acquisition process of antibiotic resistance in an otherwise susceptible organism is shaped by the ecology of the species. Unlike other relevant human pathogens, Listeria monocytogenes has maintained a high rate of susceptibility to the antibiotics used for decades to treat human and animal infections. However, L. monocytogenes can acquire antibiotic resistance genes from other organisms' plasmids and conjugative transposons. Ecological factors could account for its susceptibility. L. monocytogenes is ubiquitous in nature, most frequently including reservoirs unexposed to antibiotics, including intracellular sanctuaries. L. monocytogenes has a remarkably closed genome, reflecting limited community interactions, small population sizes and high niche specialization. The L. monocytogenes species is divided into variants that are specialized in small specific niches, which reduces the possibility of coexistence with potential donors of antibiotic resistance. Interactions with potential donors are also hampered by interspecies antagonism. However, occasional increases in population sizes (and thus the possibility of acquiring antibiotic resistance) can derive from selection of the species based on intrinsic or acquired resistance to antibiotics, biocides, heavy metals or by a natural tolerance to extreme conditions. High-quality surveillance of the emergence of resistance to the key drugs used in primary therapy is mandatory.
Subject(s)
Drug Resistance, Bacterial/genetics , Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Microbial/genetics , Humans , Microbial Sensitivity Tests , Plasmids/drug effectsABSTRACT
XerCD-dif site-specific recombination is a well characterized system, found in most bacteria and archaea. Its role is resolution of chromosomal dimers that arise from homologous recombination. Xer-mediated recombination is also used by several plasmids for multimer resolution to enhance stability and by some phage for integration into the chromosome. In the past decade, it has been hypothesized that an alternate and novel function exists for this system in the dissemination of genetic elements, notably antibiotic resistance genes, in Acinetobacter species. Currently the mechanism underlying this apparent genetic mobility is unknown. Multidrug resistant Acinetobacter baumannii is an increasingly problematic pathogen that can cause recurring infections. Sequencing of numerous plasmids from clinical isolates of A. baumannii revealed the presence of possible mobile modules: genes were found flanked by pairs of Xer recombination sites, called plasmid-dif (pdif) sites. These modules have been identified in multiple otherwise unrelated plasmids and in different genetic contexts suggesting they are mobile elements. In most cases, the pairs of sites flanking a gene (or genes) are in inverted repeat, but there can be multiple modules per plasmid providing pairs of recombination sites that can be used for inversion or fusion/deletion reactions; as many as 16 pdif sites have been seen in a single plasmid. Similar modules including genes for surviving environmental toxins have also been found in strains of Acinetobacter Iwoffi isolated from permafrost cores; this suggests that these mobile modules are an ancient adaptation and not a novel response to antibiotic pressure. These modules bear all the hallmarks of mobile genetic elements, yet, their movement has never been directly observed to date. This review gives an overview of the current state of this novel research field.
Subject(s)
Acinetobacter/metabolism , Drug Resistance, Bacterial/genetics , Homologous Recombination/genetics , Anti-Bacterial Agents/pharmacology , Homologous Recombination/physiology , Integrases/metabolism , Interspersed Repetitive Sequences/genetics , Plasmids/drug effects , Recombinases/genetics , Recombinases/metabolism , Recombination, Genetic/geneticsABSTRACT
Although efficient methods of gene silencing have been established in eukaryotes, many different techniques are still used in bacteria due to the lack of a standardized tool. Here, we developed a convenient and efficient method to downregulate the expression of a specific gene using â¼140 nucleotide RNA with a 24-nucleotide antisense region from an arabinose-inducible expression plasmid by taking Escherichia coli lacZ and phoA genes encoding ß-galactosidase and alkaline phosphatase, respectively, as target genes to evaluate the model. We examined the antisense RNA (asRNA) design, including targeting position, uORF stability elements at the 5'-end, and Hfq-binding module at the 3'-end, and inducer amount required to obtain effective experimental conditions for gene silencing. Furthermore, we constructed multiplexed dual-acting asRNA genes in the plasmid, which were transcribed as polycistronic RNA and were able to knockdown multiple target genes simultaneously. We observed the highest inhibition level of 98.6% when lacZ was targeted using the pMKN104 asRNA expression plasmid, containing a five times stronger PBAD -10 promoter sequence with no requirement of the Hfq protein for repression. These features allow the system to be utilized as an asRNA expression platform in many bacteria, besides E. coli, for gene regulation.
Subject(s)
Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Gene Knockdown Techniques/methods , Gene Silencing , Genes/genetics , RNA, Antisense/genetics , Arabinose/metabolism , Arabinose/pharmacology , Base Sequence , Codon, Initiator/genetics , Escherichia coli/drug effects , Gene Expression Regulation, Bacterial/drug effects , Gene Silencing/drug effects , Genes/drug effects , Genes, Reporter , Plasmids/drug effects , Plasmids/genetics , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/genetics , RNA, Antisense/biosynthesisABSTRACT
The increase in the use of antimicrobials such as colistin for the treatment of infectious diseases has led to the appearance of Aeromonas strains resistant to this drug. However, resistance to colistin not only occurs in the clinical area but has also been determined in Aeromonas isolates from the environment or animals, which has been determined by the detection of mcr genes that confer a resistance mechanism to colistin. The variants mcr-1, mcr-3, and mcr-5 have been detected in the genus Aeromonas in animal, environmental, and human fluids samples. In this article, an overview of the resistance to colistin in Aeromonas is shown, as well as the generalities of this molecule and the recommended methods to determine colistin resistance to be used in some of the genus Aeromonas.
Subject(s)
Aeromonas/genetics , Anti-Bacterial Agents/chemistry , Colistin/chemistry , Drug Resistance, Bacterial/genetics , Aeromonas/drug effects , Aeromonas/pathogenicity , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Colistin/therapeutic use , Humans , Plasmids/drug effects , Plasmids/geneticsABSTRACT
Staphylococcus nepalensis is a commensal bacterium from the oral microbiota of domestic cats, with a still obscure clinical importance. In this work, we analysed the ability of feline strains of S. nepalensis to transfer antimicrobial resistance genes to Staphylococcus aureus isolated from humans through plasmids. To this end, we first analysed all publicly available genomes from cat staphylococci using computational methods to build a pan-resistome. Genes that encode resistance to erythromycin, gentamicin, mupirocin and tetracycline, common to human and cat staphylococci and previously described to be located in mobile genetic elements, were chosen for the next analyses. We studied 15 strains of S. nepalensis, which were shown to be genetically different by GTG5-PCR. As observed by disc diffusion, resistance to tetracycline was widespread (80â%), followed by resistance to erythromycin (40â%), gentamicin (27â%) and mupirocin (7â%). The strains were positive for several antimicrobial resistance genes and more than half of them harboured plasmids. The loss of plasmids and resistance genes in some strains were induced by stress with SDS. Through conjugation experiments, we observed that these plasmids can be transferred to S. aureus, thus increasing its potential to resist drug therapy. Our findings show that S. nepalensis, an underestimated inhabitant of the cat microbiota, can be a reservoir of antimicrobial resistance genes for S. aureus and, like many other staphylococci, be an overlooked and silent threat to their animal hosts and humans living with them.
Subject(s)
Disease Reservoirs/veterinary , Drug Resistance, Bacterial/genetics , Gene Transfer, Horizontal , Staphylococcus/physiology , Animals , Animals, Domestic , Anti-Bacterial Agents/pharmacology , Cats , Disease Reservoirs/microbiology , Drug Resistance, Bacterial/drug effects , Genes, Bacterial , Genetic Variation , Microbial Sensitivity Tests , Plasmids/drug effects , Plasmids/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcus/drug effects , Staphylococcus/genetics , Staphylococcus/isolation & purification , Staphylococcus aureus/geneticsABSTRACT
BACKGROUND: The emergence of plasmid-mediated tet(X3)/tet(X4) genes is threatening the role of tigecycline as a last-resort antibiotic to treat clinical infections caused by XDR bacteria. Considering the possible public health threat posed by tet(X) and its variants [which we collectively call 'tet(X) genes' in this study], global monitoring and surveillance are urgently required. OBJECTIVES: Here we conducted a worldwide survey of the global distribution and spread of tet(X) genes. METHODS: We analysed a comprehensive dataset of bacterial genomes in conjunction with surveillance data from our laboratory and the NCBI database, as well as sufficient metadata to characterize the results. RESULTS: The global distribution features of tet(X) genes were revealed. We clustered three types of genetic backbones of tet(X) genes embedded or transferred in bacterial genomes. Our pan-genome analyses revealed a large genetic pool composed of tet(X)-carrying sequences. Moreover, phylogenetic trees of tet(X) genes and tet(X)-like proteins were built. CONCLUSIONS: To the best of our knowledge, our results provide the first view of the global distribution of tet(X) genes, demonstrate the features of tet(X)-carrying fragments and highlight the possible evolution of tigecycline-inactivation enzymes in diverse bacterial species and habitats.
Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Tigecycline , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Genes, Bacterial/drug effects , Phylogeny , Plasmids/drug effects , Plasmids/genetics , Tetracycline Resistance , Tigecycline/pharmacologyABSTRACT
Pseudomonas putida S12 is highly tolerant of organic solvents in saturating concentrations, rendering this microorganism suitable for the industrial production of various aromatic compounds. Previous studies revealed that P. putida S12 contains the single-copy 583-kbp megaplasmid pTTS12. pTTS12 carries several important operons and gene clusters facilitating P. putida S12 survival and growth in the presence of toxic compounds or other environmental stresses. We wished to revisit and further scrutinize the role of pTTS12 in conferring solvent tolerance. To this end, we cured the megaplasmid from P. putida S12 and conclusively confirmed that the SrpABC efflux pump is the major determinant of solvent tolerance on the megaplasmid pTTS12. In addition, we identified a novel toxin-antitoxin module (proposed gene names slvT and slvA, respectively) encoded on pTTS12 which contributes to the solvent tolerance phenotype and is important for conferring stability to the megaplasmid. Chromosomal introduction of the srp operon in combination with the slvAT gene pair created a solvent tolerance phenotype in non-solvent-tolerant strains, such as P. putida KT2440, Escherichia coli TG1, and E. coli BL21(DE3).IMPORTANCE Sustainable alternatives for high-value chemicals can be achieved by using renewable feedstocks in bacterial biocatalysis. However, during the bioproduction of such chemicals and biopolymers, aromatic compounds that function as products, substrates, or intermediates in the production process may exert toxicity to microbial host cells and limit the production yield. Therefore, solvent tolerance is a highly preferable trait for microbial hosts in the biobased production of aromatic chemicals and biopolymers. In this study, we revisit the essential role of megaplasmid pTTS12 from solvent-tolerant Pseudomonas putida S12 for molecular adaptation to an organic solvent. In addition to the solvent extrusion pump (SrpABC), we identified a novel toxin-antitoxin module (SlvAT) which contributes to short-term tolerance in moderate solvent concentrations, as well as to the stability of pTTS12. These two gene clusters were successfully expressed in non-solvent-tolerant strains of P. putida and Escherichia coli strains to confer and enhance solvent tolerance.
Subject(s)
Bacterial Toxins/genetics , Plasmids/drug effects , Pseudomonas putida/drug effects , Solvents/metabolism , Bacterial Toxins/metabolism , Pseudomonas putida/geneticsABSTRACT
Many of the disease-causing toxins of the pathogenic bacterium Clostridium perfringens are harboured on large, highly stable, conjugative plasmids. Previous work has established the requirement of a ParMRC-like partitioning system for plasmid maintenance, but little is known about other mechanisms used to ensure stable plasmid inheritance. The archetypal 47â¯kb Tcp plasmid, pCW3, encodes a gene, resP, whose putative product has sequence similarity to members of the serine recombinase family of site-specific recombinases. ResP is therefore likely to function to resolve plasmid multimers. Sequence analysis identified that resP genes are present on all C. perfringens plasmid families, suggesting a conserved function in these plasmids. To assess the requirement of resP for the stability of pCW3, deletion mutants were constructed. Deletion of resP from pCW3 resulted in a marked instability phenotype that was rescued upon complementation with the wild-type resP gene. Complementation with resP genes from two different C. perfringens plasmids demonstrated that only closely related resP genes can complement the mutation on pCW3. The function of ResP in vivo was examined using an Escherichia coli model system, which determined that two directly repeated res sites were required for the resolution of DNA and that ResP could resolve multimeric plasmid forms into monomeric units. Based on these findings we concluded that ResP could catalyse the resolution of plasmid multimers and was required for the maintenance of Tcp plasmids within C. perfringens. Overall, the results of this study have significant implications for our understanding of the maintenance of toxin-encoding plasmids within C. perfringens.
Subject(s)
Clostridium Infections/genetics , Clostridium perfringens/genetics , Genes, Bacterial/genetics , Plasmids/genetics , Clostridium Infections/drug therapy , Clostridium Infections/microbiology , Clostridium perfringens/drug effects , Clostridium perfringens/pathogenicity , Conjugation, Genetic/genetics , DNA, Bacterial/genetics , Humans , Plasmids/drug effects , Tetracycline/pharmacologyABSTRACT
Antibiotic resistance is a growing global challenge to public health. Polymyxin is considered to be the last-resort antibiotic against most gram-negative bacteria. Recently, discoveries of a plasmid-mediated, transferable mobilized polymyxin resistance gene (mcr-1) in many countries have heralded the increased threat of the imminent emergence of pan-drug-resistant super bacteria. MCR-1 is an inner membrane protein that enables bacteria to develop resistance to polymyxin by transferring phosphoethanolamine to lipid A. However, the mechanism associated with polymyxin resistance has yet to be elucidated, and few drugs exist to address this issue. Here, we review our current understanding regarding MCR-1 and small molecule inhibitors to provide a detailed enzymatic mechanism of MCR-1 and the associated implications for drug design.
Subject(s)
Bacterial Proteins/drug effects , Drug Resistance, Bacterial/genetics , Escherichia coli Proteins/drug effects , Polymyxins/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Colistin/chemistry , Colistin/pharmacology , Drug Design , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Genes, Bacterial , Gram-Negative Bacterial Infections/drug therapy , Humans , Plasmids/drug effects , Polymyxins/chemistryABSTRACT
Etoposide is a widely-used anticancer agent that targets human type II topoisomerases. Evidence suggests that metabolism of etoposide in myeloid progenitor cells is associated with translocations involved in leukemia development. Previous studies suggest halogenation at the C-2' position of etoposide reduces metabolism. Halogens were introduced into the C-2' position by electrophilic aromatic halogenation onto etoposide (ETOP, 1), podophyllotoxin (PPT, 2), and 4-dimethylepipodophyllotoxin (DMEP, 3), and to bridge the gap of knowledge regarding the activity of these metabolically stable analogs. Five halogenated analogs (6-10) were synthesized. Analogs 8-10 displayed variable ability to inhibit DNA relaxation. Analog 9 was the only analog to show concentration-dependent enhancement of Top2-mediated DNA cleavage. Dose response assay results indicated that 8 and 10 were most effective at decreasing the viability of HCT-116 and A549 cancer cell lines in culture. Flow cytometry with 8 and 10 in HCT-116 cells provide evidence of sub-G1 cell populations indicative of apoptosis. Taken together, these results indicate C-2' halogenation of etoposide and its precursors, although metabolically stable, decreases overall activity relative to etoposide.
Subject(s)
Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type II/metabolism , Etoposide/pharmacology , Podophyllotoxin/pharmacology , Topoisomerase II Inhibitors/pharmacology , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Cleavage , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Etoposide/chemical synthesis , Etoposide/chemistry , HCT116 Cells , Humans , Molecular Docking Simulation , Molecular Structure , Plasmids/drug effects , Podophyllotoxin/chemical synthesis , Podophyllotoxin/chemistry , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistryABSTRACT
AIMS: Although a link between agricultural cephalosporin use and resistance in Salmonella has been demonstrated with the drug ceftiofur, the underlying mechanism of the correlation is unclear. This study investigated the impact of ceftiofur exposure in S. Saintpaul on ceftriaxone resistance, the gene expression and the conjugative transfer of the blaCTX-M-65 gene. METHODS AND RESULTS: Prior ceftiofur exposure caused a twofold increase in MIC from 1024 to 2048 µg ml-1 towards ceftriaxone and increased the enzymatic activity of BlaCTX-M-65 2·2 folds from 3·46 to 7·67 nmol nitrocefin hydrolysed min-1 . A threefold upregulation in gene expression of the blaCTX-M-65 gene was also observed. Donors exposed to ceftiofur subsequently demonstrated a 2·5-fold decrease in transfer efficiency. CONCLUSIONS: Prior exposure of S. Saintpaul to ceftiofur led to increased phenotypic resistance towards ceftriaxone while its ability to spread the cephalosporin resistance through conjugation, conversely, was impaired. SIGNIFICANCE AND IMPACT OF THE STUDY: Findings from this study shed light on one possible mechanism in which agricultural cephalosporin exposure in Salmonella may subsequently impact clinical treatment. The finding that cephalosporin exposure in donors may hinder the subsequent spread of resistance instead of aiding it up was counter-intuitive.
Subject(s)
Cephalosporin Resistance/drug effects , Cephalosporins/pharmacology , Conjugation, Genetic/drug effects , Plasmids/drug effects , Salmonella enterica/drug effects , Agriculture , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ceftriaxone/pharmacology , Cephalosporin Resistance/genetics , Humans , Plasmids/genetics , Salmonella enterica/geneticsABSTRACT
Design and biological activities of fluorescent imidazo-phenanthroline derivatives; (E)-5-((4-((4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenoxy)methyl)benzylidene)amino)- isophthalicacid, 2 and 2-(4-(((5-chloroquinolin-8-yl)oxy)methyl)phenyl)-1H-imidazo[4,5f] [1,10]phenanthroline, 3, have been reported. Their characterizations were performed by spectroscopic techniques. Their promising photophysical behaviours were observed in absorbance and fluorescence studies. The antibacterial activities of the compounds were determined against seven different microorganisms; Bacillus subtilis ATCC 6633(G + ), Pseudomonas aeruginosa ATCC 29853(G-), Escherichia coli ATCC 35,218 (G-), Enterococcus faecalis ATCC 292,112 (G + ), Salmonella typhimurium ST-10 (G-), Streptococcus mutans NCTC 10,449 (G + ), and Staphylococcus aureus ATCC 25923(G + ). MIC values of 3 was determined as 156,25 µM on all tested bacteria. A preliminary study of the structure-activity relationship (SAR) also revealed that the antimicrobial activity depended on the substituents on the phenyl ring. The electron withdrawing Cl-substitued compound 3 most favour for antimicrobial activity even at lowest concentration compared to other compounds. DNA-cleavage activities of the compounds were also investigated. The interactions of the compounds with supercoiled pBR322 plasmid DNA were obtained by agarose gel electrophoresis. All imidazo-phenanthroline derivatives were found to be highly effective on DNA, even at the lowest concentrations because of their planar nature which provides ease of bind to the helix structure of DNA.
Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , DNA Cleavage/drug effects , Phenanthrolines/chemistry , Phenanthrolines/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Humans , Plasmids/drug effects , Structure-Activity RelationshipABSTRACT
OBJECTIVES: Earlier studies have demonstrated the use of inactivated recombinant E. coli (bacterins), to protect against Clostridium spp. in vaccinated animals. These bacterins have a simpler, safer, and faster production process. However, these bacterins carry expression plasmids, containing antibiotic resistance gene, which could be assimilate accidentally by environmental microorganisms. Considering this, we aimed to impair this plasmids using formaldehyde at different concentrations. RESULTS: This compound inactivated the highest density of cells in 24 h. KanR cassette amplification was found to be impaired with 0.8% for 24 h or 0.4% for 72 h. Upon electroporation, E. coli DH5α ultracompetent cells were unable to acquire the plasmids extracted from the bacterins after inactivation procedure. Formaldehyde-treated bacterins were incubated with other viable strains of E. coli, leading to no detectable gene transfer. CONCLUSIONS: We found that this compound is effective as an inactivation agent. Here we demonstrate the biosafety involving antibiotic resistance gene of recombinant E. coli vaccines allowing to industrial production and animal application.
Subject(s)
Escherichia coli/genetics , Formaldehyde/pharmacology , Kanamycin Resistance/drug effects , Plasmids/drug effects , Escherichia coli/drug effects , Escherichia coli Vaccines/adverse effects , Escherichia coli Vaccines/genetics , Gene Transfer, Horizontal/drug effects , Plasmids/genetics , Vaccines, Inactivated , Vaccines, SyntheticABSTRACT
Antibiotic residues in the environment pose a great risk to global public health. They increase antibiotic resistance by enhancing plasmid conjugation among bacteria or mutations within bacterial genomes. However, little is known about whether the putative environmental levels of antibiotics are sufficient to influence plasmid-mediated transformability. In this study, we explored the effect of eight kinds of representative antibiotics and several other compounds on the plasmid transformability of competent Escherichia coli. Only levofloxacin (LEV) at the putative environmental levels was found to facilitate the frequency of PBR322-or RP4-plasmid-mediated transformation by up to 5.3-fold. Additionally, PBR322 transformation frequency could be further enhanced by copper ion or ammonia nitrogen but inhibited by humic acid. However, when competent E. coli was exposed to the minimal inhibitory concentrations (MIC) of the antibiotics, an enhanced plasmid-assimilation ability was observed and plasmid transformation frequency was increased by up to 98.6-fold for all the tested antibiotics. Furthermore, E. coli exhibited a preference for the uptake of plasmids harbouring the resistance genes to the antibiotics it had been exposed to. Among these antibiotics, cephalexin, tetracycline, and kanamycin induced the highest uptake of RP4. The putative environmental levels of LEV enhanced plasmid transformability regardless of the presence of corresponding antibiotic resistance gene (ARG) on the genetic elements, suggesting environmental LEV residues may facilitate dissemination of antibiotic resistance by any plasmid-mediated transformability, thereby posing a great risk to health.
Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Levofloxacin/pharmacology , Transformation, Bacterial/drug effects , Plasmids/drug effectsABSTRACT
Bacterial resistance caused by the abuse of antibiotics has attracted worldwide attention. However, there are few studies exploring bacterial resistance under the environmental exposure condition of antibiotics that is featured by low-dose and mixture. In this study, sulfonamides (SAs), sulfonamide potentiators (SAPs) and tetracyclines (TCs) were used to determine the effects of antibiotics on plasmid RP4 conjugative transfer of Escherichia coli (E. coli) under single or combined exposure, and the relationship between the effects of antibiotics on conjugative transfer and growth was investigated. The results show that the effects of single or binary antibiotics on plasmid RP4 conjugative transfer all exhibit a hormetic phenomenon. The linear regression reveals that the concentrations of the three antibiotics promoting conjugative transfer are correlated with the concentrations promoting growth and the physicochemical properties of the compounds. The combined effects of SAs-SAPs and SAs-TCs on plasmid conjugative transfer are mainly synergistic and antagonistic. While SAPs provide more effective concentrations for the promotion of conjugative transfer in SAs-SAPs mixtures, SAs play a more important role in promoting conjugative transfer in SAs-TCs mixtures. Mechanism explanation shows that SAs, SAPs and TCs inhibit bacterial growth by acting on their target proteins DHPS, DHFR and 30S ribosomal subunit, respectively. This study indicates that toxic stress stimulates the occurrence of conjugative transfer and promotes the development of bacterial resistance, which will provide a reference for resistance risk assessment of antibiotic exposure.
Subject(s)
Anti-Bacterial Agents/toxicity , Conjugation, Genetic/drug effects , Environmental Pollutants/toxicity , Escherichia coli/drug effects , Hormesis , Plasmids , Drug Antagonism , Drug Synergism , Escherichia coli/genetics , Escherichia coli/growth & development , Plasmids/drug effects , Plasmids/genetics , Sulfonamides/toxicity , Tetracyclines/toxicityABSTRACT
BACKGROUND: The selection pressure exercised by antibiotic drugs is an important consideration for the wise stewardship of antimicrobial treatment programs. Treatment decisions are currently based on crude assumptions, and there is an urgent need to develop a more quantitative knowledge base that can enable predictions of the impact of individual antibiotics on the human gut microbiome and resistome. RESULTS: Using shotgun metagenomics, we quantified changes in the gut microbiome in two cohorts of hematological patients receiving prophylactic antibiotics; one cohort was treated with ciprofloxacin in a hospital in Tübingen and the other with cotrimoxazole in a hospital in Cologne. Analyzing this rich longitudinal dataset, we found that gut microbiome diversity was reduced in both treatment cohorts to a similar extent, while effects on the gut resistome differed. We observed a sharp increase in the relative abundance of sulfonamide antibiotic resistance genes (ARGs) by 148.1% per cumulative defined daily dose of cotrimoxazole in the Cologne cohort, but not in the Tübingen cohort treated with ciprofloxacin. Through multivariate modeling, we found that factors such as individual baseline microbiome, resistome, and plasmid diversity; liver/kidney function; and concurrent medication, especially virostatic agents, influence resistome alterations. Strikingly, we observed different effects on the plasmidome in the two treatment groups. There was a substantial increase in the abundance of ARG-carrying plasmids in the cohort treated with cotrimoxazole, but not in the cohort treated with ciprofloxacin, indicating that cotrimoxazole might contribute more efficiently to the spread of resistance. CONCLUSIONS: Our study represents a step forward in developing the capability to predict the effect of individual antimicrobials on the human microbiome and resistome. Our results indicate that to achieve this, integration of the individual baseline microbiome, resistome, and mobilome status as well as additional individual patient factors will be required. Such personalized predictions may in the future increase patient safety and reduce the spread of resistance. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02058888 . Registered February 10 2014.
Subject(s)
Anti-Bacterial Agents/adverse effects , Ciprofloxacin/adverse effects , Drug Resistance, Microbial , Gastrointestinal Microbiome/drug effects , Plasmids/drug effects , Trimethoprim, Sulfamethoxazole Drug Combination/adverse effects , Anti-Bacterial Agents/therapeutic use , Ciprofloxacin/therapeutic use , Cohort Studies , Drug Resistance, Microbial/drug effects , Drug Resistance, Microbial/genetics , Genes, Bacterial/drug effects , Germany , Humans , Longitudinal Studies , Metagenomics/methods , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic useABSTRACT
Food contaminated with Shiga toxin-producing Escherichia coli (STEC) represents a hazardous public health problem worldwide. Therefore, the present study was performed to elucidate the virulent and antimicrobial resistance characteristics of STEC isolated from milk and dairy products marketed in Egypt. A total of 125 samples (raw market milk, bulk tank milk, Kareish cheese, white soft cheese, and small scale-produced ice cream, 25 each) were collected for determination the prevalence and antimicrobial resistance profiling of STEC. Thirty-six STEC isolates were recovered from milk and dairy products. Serological analysis illustrated that three isolates were E. coli O157:H7 and 33 isolates belonged to different serotypes. Molecular examination indicated that all isolates harboured stx1 and/or stx2 genes, 14 isolates expressed eaeA gene and 3 isolates possessed rfbE gene. Antimicrobial resistance profiling of the isolates was both phenotypically and genetically examined. Interestingly, 31 out of 36 (86.11%) isolates were multidrug-resistant and harboured the extended-spectrum ß-lactamase encoding genes, namely, blaCTX-M-15, blaSHV-12 and blaCTX-M-14. Moreover, 12 isolates (33.33%) harboured plasmid-mediated quinolone resistant gene, qnrS. The overall conclusion of the current investigation indicated insufficient hygienic measures adopted during milking, handling, and processing leading to development of pathogenic and multidrug-resistant STEC.