Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.230
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 32: 157-87, 2014.
Article in English | MEDLINE | ID: mdl-24655294

ABSTRACT

Malaria is a mosquito-borne disease caused by parasites of the obligate intracellular Apicomplexa phylum the most deadly of which, Plasmodium falciparum, prevails in Africa. Malaria imposes a huge health burden on the world's most vulnerable populations, claiming the lives of nearly one million children and pregnant women each year. Although there is keen interest in eradicating malaria, we do not yet have the necessary tools to meet this challenge, including an effective malaria vaccine and adequate vector control strategies. Here we review what is known about the mechanisms at play in immune resistance to malaria in both the human and mosquito hosts at each step in the parasite's complex life cycle with a view toward developing the tools that will contribute to the prevention of disease and death and, ultimately, to the goal of malaria eradication. In so doing, we hope to inspire immunologists to participate in defeating this devastating disease.


Subject(s)
Culicidae/immunology , Host-Pathogen Interactions/immunology , Malaria/immunology , Plasmodium/immunology , Animals , Culicidae/parasitology , Humans , Life Cycle Stages , Malaria/parasitology , Malaria/prevention & control , Plasmodium/growth & development , Plasmodium falciparum/growth & development , Plasmodium falciparum/immunology
2.
Annu Rev Biochem ; 89: 667-693, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32169021

ABSTRACT

Myosins are among the most fascinating enzymes in biology. As extremely allosteric chemomechanical molecular machines, myosins are involved in myriad pivotal cellular functions and are frequently sites of mutations leading to disease phenotypes. Human ß-cardiac myosin has proved to be an excellent target for small-molecule therapeutics for heart muscle diseases, and, as we describe here, other myosin family members are likely to be potentially unique targets for treating other diseases as well. The first part of this review focuses on how myosins convert the chemical energy of ATP hydrolysis into mechanical movement, followed by a description of existing therapeutic approaches to target human ß-cardiac myosin. The next section focuses on the possibility of targeting nonmuscle members of the human myosin family for several diseases. We end the review by describing the roles of myosin in parasites and the therapeutic potential of targeting them to block parasitic invasion of their hosts.


Subject(s)
Enzyme Inhibitors/therapeutic use , Heart Failure/drug therapy , Myosins/metabolism , Neoplasms/drug therapy , Nervous System Diseases/drug therapy , Protozoan Infections/drug therapy , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Allosteric Regulation/drug effects , Animals , Biomechanical Phenomena , Cryptosporidium/drug effects , Cryptosporidium/enzymology , Enzyme Inhibitors/chemistry , Gene Expression , Heart Failure/enzymology , Heart Failure/genetics , Heart Failure/pathology , Humans , Multigene Family , Mutation , Myosins/antagonists & inhibitors , Myosins/classification , Myosins/genetics , Neoplasms/enzymology , Neoplasms/genetics , Neoplasms/pathology , Nervous System Diseases/enzymology , Nervous System Diseases/genetics , Nervous System Diseases/pathology , Plasmodium/drug effects , Plasmodium/enzymology , Protozoan Infections/enzymology , Protozoan Infections/genetics , Protozoan Infections/pathology , Toxoplasma/drug effects , Toxoplasma/enzymology
3.
Cell ; 183(2): 554-554.e1, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33064992

ABSTRACT

Malaria is a prominent vector-borne illness caused by Plasmodium parasites. Therapeutic intervention remains a critical component for disease eradication efforts but is complicated by the emergence of drug resistance. This SnapShot summarizes the human-relevant stages of the P. falciparum life cycle and describes how licensed antimalarials, clinical candidates, and newly emerging compounds target each stage to prevent, treat, or block transmission of malaria. To view this SnapShot, open or download the PDF.


Subject(s)
Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria/drug therapy , Disease Eradication , Drug Resistance , Humans , Malaria/parasitology , Malaria, Falciparum/parasitology , Plasmodium/drug effects , Plasmodium falciparum/drug effects
4.
Cell ; 177(2): 315-325.e14, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30929905

ABSTRACT

Transmission of malaria parasites occurs when a female Anopheles mosquito feeds on an infected host to acquire nutrients for egg development. How parasites are affected by oogenetic processes, principally orchestrated by the steroid hormone 20-hydroxyecdysone (20E), remains largely unknown. Here we show that Plasmodium falciparum development is intimately but not competitively linked to processes shaping Anopheles gambiae reproduction. We unveil a 20E-mediated positive correlation between egg and oocyst numbers; impairing oogenesis by multiple 20E manipulations decreases parasite intensities. These manipulations, however, accelerate Plasmodium growth rates, allowing sporozoites to become infectious sooner. Parasites exploit mosquito lipids for faster growth, but they do so without further affecting egg development. These results suggest that P. falciparum has adopted a non-competitive evolutionary strategy of resource exploitation to optimize transmission while minimizing fitness costs to its mosquito vector. Our findings have profound implications for currently proposed control strategies aimed at suppressing mosquito populations.


Subject(s)
Ecdysterone/metabolism , Host-Parasite Interactions/physiology , Malaria, Falciparum/parasitology , Animals , Anopheles/parasitology , Culicidae , Ecdysterone/physiology , Female , HEK293 Cells , Humans , Insect Vectors , Malaria/parasitology , Mice , Mosquito Vectors , NIH 3T3 Cells , Oogenesis/physiology , Plasmodium/metabolism , Plasmodium falciparum , Sporozoites , Steroids/metabolism
5.
Nat Immunol ; 21(12): 1597-1610, 2020 12.
Article in English | MEDLINE | ID: mdl-33046889

ABSTRACT

The dynamics of CD4+ T cell memory development remain to be examined at genome scale. In malaria-endemic regions, antimalarial chemoprevention protects long after its cessation and associates with effects on CD4+ T cells. We applied single-cell RNA sequencing and computational modelling to track memory development during Plasmodium infection and treatment. In the absence of central memory precursors, two trajectories developed as T helper 1 (TH1) and follicular helper T (TFH) transcriptomes contracted and partially coalesced over three weeks. Progeny of single clones populated TH1 and TFH trajectories, and fate-mapping suggested that there was minimal lineage plasticity. Relationships between TFH and central memory were revealed, with antimalarials modulating these responses and boosting TH1 recall. Finally, single-cell epigenomics confirmed that heterogeneity among effectors was partially reset in memory. Thus, the effector-to-memory transition in CD4+ T cells is gradual during malaria and is modulated by antiparasitic drugs. Graphical user interfaces are presented for examining gene-expression dynamics and gene-gene correlations ( http://haquelab.mdhs.unimelb.edu.au/cd4_memory/ ).


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Immunologic Memory , Malaria/immunology , Plasmodium/immunology , Transcriptome , Adoptive Transfer , Animals , Antimalarials/pharmacology , Biomarkers , Chromatin/genetics , Disease Models, Animal , Gene Expression Profiling , Humans , Malaria/parasitology , Malaria/therapy , Mice , Plasmodium/drug effects
6.
Nat Immunol ; 21(10): 1205-1218, 2020 10.
Article in English | MEDLINE | ID: mdl-32839608

ABSTRACT

Immune-modulating therapies have revolutionized the treatment of chronic diseases, particularly cancer. However, their success is restricted and there is a need to identify new therapeutic targets. Here, we show that natural killer cell granule protein 7 (NKG7) is a regulator of lymphocyte granule exocytosis and downstream inflammation in a broad range of diseases. NKG7 expressed by CD4+ and CD8+ T cells played key roles in promoting inflammation during visceral leishmaniasis and malaria-two important parasitic diseases. Additionally, NKG7 expressed by natural killer cells was critical for controlling cancer initiation, growth and metastasis. NKG7 function in natural killer and CD8+ T cells was linked with their ability to regulate the translocation of CD107a to the cell surface and kill cellular targets, while NKG7 also had a major impact on CD4+ T cell activation following infection. Thus, we report a novel therapeutic target expressed on a range of immune cells with functions in different immune responses.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Inflammation/immunology , Killer Cells, Natural/immunology , Leishmania donovani/physiology , Leishmaniasis, Visceral/immunology , Malaria/immunology , Membrane Proteins/metabolism , Plasmodium/physiology , Animals , Cells, Cultured , Cytotoxicity, Immunologic , Disease Models, Animal , Exocytosis , Humans , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Secretory Vesicles/metabolism
7.
Cell ; 168(5): 904-915.e10, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28235200

ABSTRACT

Sexual reproduction is almost universal in eukaryotic life and involves the fusion of male and female haploid gametes into a diploid cell. The sperm-restricted single-pass transmembrane protein HAP2-GCS1 has been postulated to function in membrane merger. Its presence in the major eukaryotic taxa-animals, plants, and protists (including important human pathogens like Plasmodium)-suggests that many eukaryotic organisms share a common gamete fusion mechanism. Here, we report combined bioinformatic, biochemical, mutational, and X-ray crystallographic studies on the unicellular alga Chlamydomonas reinhardtii HAP2 that reveal homology to class II viral membrane fusion proteins. We further show that targeting the segment corresponding to the fusion loop by mutagenesis or by antibodies blocks gamete fusion. These results demonstrate that HAP2 is the gamete fusogen and suggest a mechanism of action akin to viral fusion, indicating a way to block Plasmodium transmission and highlighting the impact of virus-cell genetic exchanges on the evolution of eukaryotic life.


Subject(s)
Chlamydomonas/metabolism , Membrane Fusion Proteins/chemistry , Plant Proteins/chemistry , Plasmodium/metabolism , Protozoan Proteins/chemistry , Amino Acid Sequence , Biological Evolution , Chlamydomonas/cytology , Crystallography, X-Ray , Germ Cells/chemistry , Germ Cells/metabolism , Membrane Fusion Proteins/genetics , Membrane Fusion Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plasmodium/cytology , Protein Domains , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment
8.
Annu Rev Biochem ; 84: 813-41, 2015.
Article in English | MEDLINE | ID: mdl-25621510

ABSTRACT

Phylum Apicomplexa comprises a large group of obligate intracellular parasites of high medical and veterinary importance. These organisms succeed intracellularly by effecting remarkable changes in a broad range of diverse host cells. The transformation of the host erythrocyte is particularly striking in the case of the malaria parasite Plasmodium falciparum. P. falciparum exports hundreds of proteins that mediate a complex cellular renovation marked by changes in the permeability, rigidity, and cytoadherence properties of the host erythrocyte. The past decade has seen enormous progress in understanding the identity and function of these exported effectors, as well as the mechanisms by which they are trafficked into the host cell. Here we review these advances, place them in the context of host manipulation by related apicomplexans, and propose key directions for future research.


Subject(s)
Erythrocytes/parasitology , Plasmodium/physiology , Animals , Apicomplexa/classification , Apicomplexa/physiology , Humans , Malaria/immunology , Malaria/parasitology , Protein Sorting Signals , Proteins/metabolism , Protozoan Infections/immunology , Protozoan Infections/parasitology , Protozoan Proteins/metabolism
9.
Nature ; 631(8019): 125-133, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38867050

ABSTRACT

Malaria-causing protozoa of the genus Plasmodium have exerted one of the strongest selective pressures on the human genome, and resistance alleles provide biomolecular footprints that outline the historical reach of these species1. Nevertheless, debate persists over when and how malaria parasites emerged as human pathogens and spread around the globe1,2. To address these questions, we generated high-coverage ancient mitochondrial and nuclear genome-wide data from P. falciparum, P. vivax and P. malariae from 16 countries spanning around 5,500 years of human history. We identified P. vivax and P. falciparum across geographically disparate regions of Eurasia from as early as the fourth and first millennia BCE, respectively; for P. vivax, this evidence pre-dates textual references by several millennia3. Genomic analysis supports distinct disease histories for P. falciparum and P. vivax in the Americas: similarities between now-eliminated European and peri-contact South American strains indicate that European colonizers were the source of American P. vivax, whereas the trans-Atlantic slave trade probably introduced P. falciparum into the Americas. Our data underscore the role of cross-cultural contacts in the dissemination of malaria, laying the biomolecular foundation for future palaeo-epidemiological research into the impact of Plasmodium parasites on human history. Finally, our unexpected discovery of P. falciparum in the high-altitude Himalayas provides a rare case study in which individual mobility can be inferred from infection status, adding to our knowledge of cross-cultural connectivity in the region nearly three millennia ago.


Subject(s)
DNA, Ancient , Genome, Mitochondrial , Genome, Protozoan , Malaria , Plasmodium , Female , Humans , Male , Altitude , Americas/epidemiology , Asia/epidemiology , Biological Evolution , Disease Resistance/genetics , DNA, Ancient/analysis , Europe/epidemiology , Genome, Mitochondrial/genetics , Genome, Protozoan/genetics , History, Ancient , Malaria/parasitology , Malaria/history , Malaria/transmission , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/history , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/history , Malaria, Vivax/parasitology , Malaria, Vivax/transmission , Plasmodium/genetics , Plasmodium/classification , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Plasmodium malariae/genetics , Plasmodium malariae/isolation & purification , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification
10.
Cell ; 159(6): 1277-89, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25480293

ABSTRACT

Glycosylation processes are under high natural selection pressure, presumably because these can modulate resistance to infection. Here, we asked whether inactivation of the UDP-galactose:ß-galactoside-α1-3-galactosyltransferase (α1,3GT) gene, which ablated the expression of the Galα1-3Galß1-4GlcNAc-R (α-gal) glycan and allowed for the production of anti-α-gal antibodies (Abs) in humans, confers protection against Plasmodium spp. infection, the causative agent of malaria and a major driving force in human evolution. We demonstrate that both Plasmodium spp. and the human gut pathobiont E. coli O86:B7 express α-gal and that anti-α-gal Abs are associated with protection against malaria transmission in humans as well as in α1,3GT-deficient mice, which produce protective anti-α-gal Abs when colonized by E. coli O86:B7. Anti-α-gal Abs target Plasmodium sporozoites for complement-mediated cytotoxicity in the skin, immediately after inoculation by Anopheles mosquitoes. Vaccination against α-gal confers sterile protection against malaria in mice, suggesting that a similar approach may reduce malaria transmission in humans.


Subject(s)
Escherichia coli/physiology , Immunoglobulin M/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/transmission , Plasmodium/physiology , Polysaccharides/immunology , Adult , Animals , Anopheles/parasitology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Autoantigens/immunology , Cell Line, Tumor , Child , Escherichia coli/classification , Escherichia coli/immunology , Female , Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Gastrointestinal Tract/microbiology , Germ-Free Life , Humans , Immunoglobulin M/blood , Malaria, Falciparum/microbiology , Malaria, Falciparum/parasitology , Mice , Plasmodium/classification , Plasmodium/growth & development , Plasmodium/immunology , Plasmodium falciparum/immunology , Plasmodium falciparum/physiology , Sporozoites/immunology , Toll-Like Receptor 9/agonists
11.
Nature ; 608(7921): 93-97, 2022 08.
Article in English | MEDLINE | ID: mdl-35794471

ABSTRACT

Insects, unlike vertebrates, are widely believed to lack male-biased sex steroid hormones1. In the malaria mosquito Anopheles gambiae, the ecdysteroid 20-hydroxyecdysone (20E) appears to have evolved to both control egg development when synthesized by females2 and to induce mating refractoriness when sexually transferred by males3. Because egg development and mating are essential reproductive traits, understanding how Anopheles females integrate these hormonal signals can spur the design of new malaria control programs. Here we reveal that these reproductive functions are regulated by distinct sex steroids through a sophisticated network of ecdysteroid-activating/inactivating enzymes. We identify a male-specific oxidized ecdysteroid, 3-dehydro-20E (3D20E), which safeguards paternity by turning off female sexual receptivity following its sexual transfer and activation by dephosphorylation. Notably, 3D20E transfer also induces expression of a reproductive gene that preserves egg development during Plasmodium infection, ensuring fitness of infected females. Female-derived 20E does not trigger sexual refractoriness but instead licenses oviposition in mated individuals once a 20E-inhibiting kinase is repressed. Identifying this male-specific insect steroid hormone and its roles in regulating female sexual receptivity, fertility and interactions with Plasmodium parasites suggests the possibility for reducing the reproductive success of malaria-transmitting mosquitoes.


Subject(s)
Anopheles , Ecdysteroids , Malaria , Sexual Behavior, Animal , Animals , Anopheles/enzymology , Anopheles/parasitology , Anopheles/physiology , Ecdysteroids/biosynthesis , Ecdysteroids/metabolism , Female , Fertility , Humans , Malaria/parasitology , Malaria/prevention & control , Malaria/transmission , Male , Mosquito Vectors/parasitology , Oviposition , Phosphorylation , Plasmodium
12.
Annu Rev Microbiol ; 76: 67-90, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35417197

ABSTRACT

Human malaria, caused by infection with Plasmodium parasites, remains one of the most important global public health problems, with the World Health Organization reporting more than 240 million cases and 600,000 deaths annually as of 2020 (World malaria report 2021). Our understanding of the biology of these parasites is critical for development of effective therapeutics and prophylactics, including both antimalarials and vaccines. Plasmodium is a protozoan organism that is intracellular for most of its life cycle. However, to complete its complex life cycle and to allow for both amplification and transmission, the parasite must egress out of the host cell in a highly regulated manner. This review discusses the major pathways and proteins involved in the egress events during the Plasmodium life cycle-merozoite and gametocyte egress out of red blood cells, sporozoite egress out of the oocyst, and merozoite egress out of the hepatocyte. The similarities, as well as the differences, between the various egress pathways of the parasite highlight both novel cell biology and potential therapeutic targets to arrest its life cycle.


Subject(s)
Malaria , Parasites , Plasmodium , Animals , Erythrocytes/metabolism , Erythrocytes/parasitology , Humans , Life Cycle Stages , Parasites/metabolism , Plasmodium/genetics , Plasmodium falciparum , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
13.
Cell ; 148(6): 1271-83, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22424234

ABSTRACT

Although caused by vastly different pathogens, the world's three most serious infectious diseases, tuberculosis, malaria, and HIV-1 infection, share the common problem of drug resistance. The pace of drug development has been very slow for tuberculosis and malaria and rapid for HIV-1. But for each disease, resistance to most drugs has appeared quickly after the introduction of the drug. Learning how to manage and prevent resistance is a major medical challenge that requires an understanding of the evolutionary dynamics of each pathogen. This Review summarizes the similarities and differences in the evolution of drug resistance for these three pathogens.


Subject(s)
Drug Resistance , HIV Infections/drug therapy , Malaria/drug therapy , Tuberculosis/drug therapy , Animals , Disease Models, Animal , HIV Infections/virology , HIV-1/drug effects , Humans , Malaria/parasitology , Mycobacterium tuberculosis/drug effects , Plasmodium/drug effects , Tuberculosis/microbiology
14.
Proc Natl Acad Sci U S A ; 121(13): e2312611121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38517977

ABSTRACT

Many cells face search problems, such as finding food, mates, or shelter, where their success depends on their search strategy. In contrast to other unicellular organisms, the slime mold Physarum polycephalum forms a giant network-shaped plasmodium while foraging for food. What is the advantage of the giant cell on the verge of multicellularity? We experimentally study and quantify the migration behavior of P. polycephalum plasmodia on the time scale of days in the absence and presence of food. We develop a model which successfully describes its migration in terms of ten data-derived parameters. Using the mechanistic insights provided by our data-driven model, we find that regardless of the absence or presence of food, P. polycephalum achieves superdiffusive migration by performing a self-avoiding run-and-tumble movement. In the presence of food, the run duration statistics change, only controlling the short-term migration dynamics. However, varying organism size, we find that the long-term superdiffusion arises from self-avoidance determined by cell size, highlighting the potential evolutionary advantage that this macroscopically large cell may have.


Subject(s)
Physarum polycephalum , Plasmodium , Movement
15.
Proc Natl Acad Sci U S A ; 121(30): e2410708121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39028692

ABSTRACT

Gliding motility proceeds with little changes in cell shape and often results from actively driven surface flows of adhesins binding to the extracellular environment. It allows for fast movement over surfaces or through tissue, especially for the eukaryotic parasites from the phylum apicomplexa, which includes the causative agents of the widespread diseases malaria and toxoplasmosis. We have developed a fully three-dimensional active particle theory which connects the self-organized, actively driven surface flow over a fixed cell shape to the resulting global motility patterns. Our analytical solutions and numerical simulations show that straight motion without rotation is unstable for simple shapes and that straight cell shapes tend to lead to pure rotations. This suggests that the curved shapes of Plasmodium sporozoites and Toxoplasma tachyzoites are evolutionary adaptations to avoid rotations without translation. Gliding motility is also used by certain myxo- or flavobacteria, which predominantly move on flat external surfaces and with higher control of cell surface flow through internal tracks. We extend our theory for these cases. We again find a competition between rotation and translation and predict the effect of internal track geometry on overall forward speed. While specific mechanisms might vary across species, in general, our geometrical theory predicts and explains the rotational, circular, and helical trajectories which are commonly observed for microgliders. Our theory could also be used to design synthetic microgliders.


Subject(s)
Cell Shape , Models, Biological , Cell Shape/physiology , Cell Movement/physiology , Toxoplasma/physiology , Plasmodium/physiology
16.
Immunol Rev ; 316(1): 84-103, 2023 07.
Article in English | MEDLINE | ID: mdl-37014087

ABSTRACT

Nearly half of the world's population is at risk of malaria, a disease caused by the protozoan parasite Plasmodium, which is estimated to cause more than 240,000,000 infections and kill more than 600,000 people annually. The emergence of Plasmodia resistant to chemoprophylactic treatment highlights the urgency to develop more effective vaccines. In this regard, whole sporozoite vaccination approaches in murine models and human challenge studies have provided substantial insight into the immune correlates of protection from malaria. From these studies, CD8+ T cells have come to the forefront, being identified as critical for vaccine-mediated liver-stage immunity that can prevent the establishment of the symptomatic blood stages and subsequent transmission of infection. However, the unique biological characteristics required for CD8+ T cell protection from liver-stage malaria dictate that more work must be done to design effective vaccines. In this review, we will highlight a subset of studies that reveal basic aspects of memory CD8+ T cell-mediated protection from liver-stage malaria infection.


Subject(s)
Malaria Vaccines , Malaria , Plasmodium , Mice , Humans , Animals , Immunologic Memory , Liver , CD8-Positive T-Lymphocytes
17.
Traffic ; 25(1): e12922, 2024 01.
Article in English | MEDLINE | ID: mdl-37926971

ABSTRACT

The parasite Plasmodium falciparum causes the most severe form of malaria and to invade and replicate in red blood cells (RBCs), it exports hundreds of proteins across the encasing parasitophorous vacuole membrane (PVM) into this host cell. The exported proteins help modify the RBC to support rapid parasite growth and avoidance of the human immune system. Most exported proteins possess a conserved Plasmodium export element (PEXEL) motif with the consensus RxLxE/D/Q amino acid sequence, which acts as a proteolytic cleavage recognition site within the parasite's endoplasmic reticulum (ER). Cleavage occurs after the P1 L residue and is thought to help release the protein from the ER so it can be putatively escorted by the HSP101 chaperone to the parasitophorous vacuole space surrounding the intraerythrocytic parasite. HSP101 and its cargo are then thought to assemble with the rest of a Plasmodium translocon for exported proteins (PTEX) complex, that then recognises the xE/D/Q capped N-terminus of the exported protein and translocates it across the vacuole membrane into the RBC compartment. Here, we present evidence that supports a dual role for the PEXEL's conserved P2 ' position E/Q/D residue, first, for plasmepsin V cleavage in the ER, and second, for efficient PTEX mediated export across the PVM into the RBC. We also present evidence that the downstream 'spacer' region separating the PEXEL motif from the folded functional region of the exported protein controls cargo interaction with PTEX as well. The spacer must be of a sufficient length and permissive amino acid composition to engage the HSP101 unfoldase component of PTEX to be efficiently translocated into the RBC compartment.


Subject(s)
Parasites , Plasmodium , Animals , Humans , Plasmodium falciparum/metabolism , Protein Transport , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Plasmodium/metabolism , Erythrocytes/parasitology , Parasites/metabolism
18.
PLoS Pathog ; 20(8): e1012052, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39102421

ABSTRACT

Avian malaria is expanding upslope with warmer temperatures and driving multiple species of Hawaiian birds towards extinction. Methods to reduce malaria transmission are urgently needed to prevent further declines. Releasing Wolbachia-infected incompatible male mosquitoes could suppress mosquito populations and releasing Wolbachia-infected female mosquitoes (or both sexes) could reduce pathogen transmission if the Wolbachia strain reduced vector competence. We cleared Culex quinquefasciatus of their natural Wolbachia pipientis wPip infection and transinfected them with Wolbachia wAlbB isolated from Aedes albopictus. We show that wAlbB infection was transmitted transovarially, and demonstrate cytoplasmic incompatibility with wild-type mosquitoes infected with wPip from Oahu and Maui, Hawaii. We measured vector competence for avian malaria, Plasmodium relictum, lineage GRW4, of seven mosquito lines (two with wAlbB; three with natural wPip infection, and two cleared of Wolbachia infection) by allowing them to feed on canaries infected with recently collected field isolates of Hawaiian P. relictum. We tested 73 groups (Ntotal = 1176) of mosquitoes for P. relictum infection in abdomens and thoraxes 6-14 days after feeding on a range of parasitemias from 0.028% to 2.49%, as well as a smaller subset of salivary glands. We found no measurable effect of Wolbachia on any endpoint, but strong effects of parasitemia, days post feeding, and mosquito strain on both abdomen and thorax infection prevalence. These results suggest that releasing male wAlbB-infected C. quinquefasciatus mosquitoes could suppress wPip-infected mosquito populations, but would have little positive or negative impact on mosquito vector competence for P. relictum if wAlbB became established in local mosquito populations. More broadly, the lack of Wolbachia effects on vector competence we observed highlights the variable impacts of both native and transinfected Wolbachia infections in mosquitoes.


Subject(s)
Culex , Malaria, Avian , Mosquito Vectors , Plasmodium , Wolbachia , Animals , Female , Male , Aedes/microbiology , Culex/microbiology , Culex/parasitology , Hawaii , Malaria, Avian/transmission , Mosquito Vectors/microbiology , Mosquito Vectors/parasitology , Wolbachia/physiology
19.
J Immunol ; 212(9): 1467-1478, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38477614

ABSTRACT

Development of Plasmodium-specific humoral immunity is critically dependent on CD4 Th cell responses and germinal center (GC) reactions during blood-stage Plasmodium infection. IL-21, a cytokine primarily produced by CD4 T cells, is an essential regulator of affinity maturation, isotype class-switching, B cell differentiation, and maintenance of GC reactions in response to many infection and immunization models. In models of experimental malaria, mice deficient in IL-21 or its receptor IL-21R fail to develop memory B cell populations and are not protected against secondary infection. However, whether sustained IL-21 signaling in ongoing GCs is required for maintaining GC magnitude, organization, and output is unclear. In this study, we report that CD4+ Th cells maintain IL-21 expression after resolution of primary Plasmodium yoelii infection. We generated an inducible knockout mouse model that enabled cell type-specific and timed deletion of IL-21 in peripheral, mature CD4 T cells. We found that persistence of IL-21 signaling in active GCs had no impact on the magnitude of GC reactions or their capacity to produce memory B cell populations. However, the memory B cells generated in the absence of IL-21 exhibited reduced recall function upon challenge. Our data support that IL-21 prevents premature cellular dissolution within the GC and promotes stringency of selective pressures during B cell fate determination required to produce high-quality Plasmodium-specific memory B cells. These data are additionally consistent with a temporal requirement for IL-21 in fine-tuning humoral immune memory responses during experimental malaria.


Subject(s)
CD4-Positive T-Lymphocytes , Interleukins , Malaria , Plasmodium , Animals , Mice , B-Lymphocytes , CD4-Positive T-Lymphocytes/metabolism , Germinal Center/immunology , Germinal Center/metabolism , Malaria/immunology , Memory B Cells/immunology , Mice, Inbred C57BL , Plasmodium/immunology
20.
J Immunol ; 212(6): 992-1001, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38305633

ABSTRACT

Malaria, which results from infection with Plasmodium parasites, remains a major public health problem. Although humans do not develop long-lived, sterilizing immunity, protection against symptomatic disease develops after repeated exposure to Plasmodium parasites and correlates with the acquisition of humoral immunity. Despite the established role Abs play in protection from malaria disease, dysregulated inflammation is thought to contribute to the suboptimal immune response to Plasmodium infection. Plasmodium berghei ANKA (PbA) infection results in a fatal severe malaria disease in mice. We previously demonstrated that treatment of mice with IL-15 complex (IL-15C; IL-15 bound to an IL-15Rα-Fc fusion protein) induces IL-10 expression in NK cells, which protects mice from PbA-induced death. Using a novel MHC class II tetramer to identify PbA-specific CD4+ T cells, in this study we demonstrate that IL-15C treatment enhances T follicular helper (Tfh) differentiation and modulates cytokine production by CD4+ T cells. Moreover, genetic deletion of NK cell-derived IL-10 or IL-10R expression on T cells prevents IL-15C-induced Tfh differentiation. Additionally, IL-15C treatment results in increased anti-PbA IgG Ab levels and improves survival following reinfection. Overall, these data demonstrate that IL-15C treatment, via its induction of IL-10 from NK cells, modulates the dysregulated inflammation during Plasmodium infection to promote Tfh differentiation and Ab generation, correlating with improved survival from reinfection. These findings will facilitate improved control of malaria infection and protection from disease by informing therapeutic strategies and vaccine design.


Subject(s)
Malaria , Plasmodium , Mice , Humans , Animals , Interleukin-10/metabolism , Interleukin-15/metabolism , Antibody Formation , Reinfection , CD4-Positive T-Lymphocytes , T-Lymphocytes, Helper-Inducer , Inflammation/metabolism , Mice, Inbred C57BL , Plasmodium berghei
SELECTION OF CITATIONS
SEARCH DETAIL