Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.106
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 20(6): e1012334, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38941356

ABSTRACT

Plasmodium vivax serological exposure markers (SEMs) have emerged as promising tools for the actionable surveillance and implementation of targeted interventions to accelerate malaria elimination. To determine the dynamic profiles of SEMs in current and past P. vivax infections, we screened and selected 11 P. vivax proteins from 210 putative proteins using protein arrays, with a set of serum samples obtained from patients with acute P. vivax and documented past P. vivax infections. Then we used a murine protein immune model to initially investigate the humoral and memory B cell response involved in the generation of long-lived antibodies. We show that of the 11 proteins, especially C-terminal 42-kDa region of P. vivax merozoite surface protein 1 (PvMSP1-42) induced longer-lasting long-lived antibodies, as these antibodies were detected in individuals infected with P. vivax in the 1960-1970s who were not re-infected until 2012. In addition, we provide a potential mechanism for the maintenance of long-lived antibodies after the induction of PvMSP1-42. The results indicate that PvMSP1-42 induces more CD73+CD80+ memory B cells (MBCs) compared to P. vivax GPI-anchored micronemal antigen (PvGAMA), allowing IgG anti-PvMSP1-42 antibodies to be maintained for a long time.


Subject(s)
Antibodies, Protozoan , Malaria, Vivax , Memory B Cells , Merozoite Surface Protein 1 , Plasmodium vivax , Plasmodium vivax/immunology , Humans , Malaria, Vivax/immunology , Antibodies, Protozoan/immunology , Animals , Merozoite Surface Protein 1/immunology , Mice , Memory B Cells/immunology , Immunity, Humoral/immunology , Biomarkers/blood , Female , Immunologic Memory/immunology , B-Lymphocytes/immunology , Antigens, Protozoan/immunology
2.
J Infect Dis ; 230(3): e737-e742, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-38441336

ABSTRACT

We previously described a novel Plasmodium vivax invasion mechanism into human reticulocytes via the PvRBP2a-CD98 receptor-ligand pair. Using linear epitope mapping, we assessed the PvRBP2a epitopes involved in CD98 binding and recognized by antibodies from patients who were infected. We identified 2 epitope clusters mediating PvRBP2a-CD98 interaction. Cluster B (PvRBP2a431-448, TAALKEKGKLLANLYNKL) was the target of antibody responses in humans infected by P vivax. Peptides from each cluster were able to prevent live parasite invasion of human reticulocytes. These results provide new insights for development of a malaria blood-stage vaccine against P vivax.


Subject(s)
Antibodies, Protozoan , Epitope Mapping , Malaria, Vivax , Plasmodium vivax , Protozoan Proteins , Reticulocytes , Humans , Plasmodium vivax/immunology , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Malaria, Vivax/immunology , Malaria, Vivax/parasitology , Reticulocytes/parasitology , Reticulocytes/metabolism , Reticulocytes/immunology , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Epitopes/immunology , Malaria Vaccines/immunology , Membrane Proteins
3.
J Infect Dis ; 229(6): 1894-1903, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38408353

ABSTRACT

BACKGROUND: Plasmodium falciparum and Plasmodium vivax account for >90% global malaria burden. Transmission intervention strategies encompassing transmission-blocking vaccines (TBV) and drugs represent ideal public health tools to eliminate malaria at the population level. The availability of mature P. falciparum gametocytes through in vitro culture has facilitated development of a standard membrane feeding assay to assess efficacy of transmission interventions against P. falciparum. The lack of in vitro culture for P. vivax has significantly hampered similar progress on P. vivax and limited studies have been possible using blood from infected patients in endemic areas. The ethical and logistical limitations of on-time access to blood from patients have impeded the development of P. vivax TBVs. METHODS: Transgenic murine malaria parasites (Plasmodium berghei) expressing TBV candidates offer a promising alternative for evaluation of P. vivax TBVs through in vivo studies in mice, and ex vivo membrane feeding assay (MFA). RESULTS: We describe the development of transmission-competent transgenic TgPbvs25 parasites and optimization of parameters to establish an ex vivo MFA to evaluate P. vivax TBV based on Pvs25 antigen. CONCLUSIONS: The MFA is expected to expedite Pvs25-based TBV development without dependence on blood from P. vivax-infected patients in endemic areas for evaluation.


Subject(s)
Malaria Vaccines , Malaria, Vivax , Plasmodium berghei , Plasmodium vivax , Animals , Malaria Vaccines/immunology , Malaria Vaccines/genetics , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Malaria, Vivax/transmission , Malaria, Vivax/prevention & control , Malaria, Vivax/parasitology , Plasmodium berghei/genetics , Plasmodium berghei/immunology , Mice , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Humans , Female , Antigens, Surface
4.
Malar J ; 23(1): 163, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783317

ABSTRACT

BACKGROUND: Plasmodium vivax represents the most geographically widespread human malaria parasite affecting civilian and military populations in endemic areas. Targeting the pre-erythrocytic (PE) stage of the parasite life cycle is especially appealing for developing P. vivax vaccines as it would prevent disease and transmission. Here, naturally acquired immunity to a panel of P. vivax PE antigens was explored, which may facilitate vaccine development and lead to a better understanding of naturally acquired PE immunity. METHODS: Twelve P. vivax PE antigens orthologous to a panel of P. falciparum antigens previously identified as highly immunogenic in protected subjects after immunization with radiation attenuated sporozoites (RAS) were used for evaluation of humoral and cellular immunity by ELISA and IFN-γ ELISpot. Samples from P. vivax infected individuals (n = 76) from a low endemic malaria region in the Peruvian Amazon Basin were used. RESULTS: In those clinical samples, all PE antigens evaluated showed positive IgG antibody reactivity with a variable prevalence of 58-99% in recently P. vivax diagnosed patients. The magnitude of the IgG antibody response against PE antigens was lower compared with blood stage antigens MSP1 and DBP-II, although antibody levels persisted better for PE antigens (average decrease of 6% for PE antigens and 43% for MSP1, p < 0.05). Higher IgG antibodies was associated with one or more previous malaria episodes only for blood stage antigens (p < 0.001). High IgG responders across PE and blood stage antigens showed significantly lower parasitaemia compared to low IgG responders (median 1,921 vs 4,663 par/µl, p < 0.05). In a subgroup of volunteers (n = 17),positive IFN-γ T cell response by ELISPOT was observed in 35% vs 9-35% against blood stage MSP1 and PE antigens, respectively, but no correlation with IgG responses. CONCLUSIONS: These results demonstrate clear humoral and T cell responses against P. vivax PE antigens in individuals naturally infected with P. vivax. These data identify novel attractive PE antigens suitable for use in the potential development and selection of new malaria vaccine candidates which can be used as a part of malaria prevention strategies in civilian and military populations living in P. vivax endemic areas.


Subject(s)
Antigens, Protozoan , Malaria, Vivax , Plasmodium vivax , Protozoan Proteins , Plasmodium vivax/immunology , Peru/epidemiology , Humans , Malaria, Vivax/immunology , Malaria, Vivax/epidemiology , Adult , Male , Young Adult , Adolescent , Female , Middle Aged , Protozoan Proteins/immunology , Antigens, Protozoan/immunology , Immunoglobulin G/blood , Antibodies, Protozoan/blood , Enzyme-Linked Immunosorbent Assay , Child , Aged , Enzyme-Linked Immunospot Assay
6.
Immunol Rev ; 293(1): 190-215, 2020 01.
Article in English | MEDLINE | ID: mdl-31840844

ABSTRACT

The efficient spread of malaria from infected humans to mosquitoes is a major challenge for malaria elimination initiatives. Gametocytes are the only Plasmodium life stage infectious to mosquitoes. Here, we summarize evidence for naturally acquired anti-gametocyte immunity and the current state of transmission blocking vaccines (TBV). Although gametocytes are intra-erythrocytic when present in infected humans, developing Plasmodium falciparum gametocytes may express proteins on the surface of red blood cells that elicit immune responses in naturally exposed individuals. This immune response may reduce the burden of circulating gametocytes. For both P. falciparum and Plasmodium vivax, there is a solid evidence that antibodies against antigens present on the gametocyte surface, when co-ingested with gametocytes, can influence transmission to mosquitoes. Transmission reducing immunity, reducing the burden of infection in mosquitoes, is a well-acknowledged but poorly quantified phenomenon that forms the basis for the development of TBV. Transmission enhancing immunity, increasing the likelihood or intensity of transmission to mosquitoes, is more speculative in nature but is convincingly demonstrated for P. vivax. With the increased interest in malaria elimination, TBV and monoclonal antibodies have moved to the center stage of malaria vaccine development. Methodologies to prioritize and evaluate products are urgently needed.


Subject(s)
Host-Parasite Interactions/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Malaria, Vivax/immunology , Malaria, Vivax/parasitology , Plasmodium falciparum/growth & development , Plasmodium falciparum/immunology , Plasmodium vivax/growth & development , Plasmodium vivax/immunology , Antibodies, Blocking/immunology , Antibodies, Protozoan/immunology , Humans , Immunity , Immunomodulation , Life Cycle Stages , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/transmission , Malaria, Vivax/prevention & control , Malaria, Vivax/transmission
7.
J Biol Chem ; 298(9): 102241, 2022 09.
Article in English | MEDLINE | ID: mdl-35809642

ABSTRACT

Malaria and other apicomplexan-caused diseases affect millions of humans, agricultural animals, and pets. Cell traversal is a common feature used by multiple apicomplexan parasites to migrate through host cells and can be exploited to develop therapeutics against these deadly parasites. Here, we provide insights into the mechanism of the Cell-traversal protein for ookinetes and sporozoites (CelTOS), a conserved cell-traversal protein in apicomplexan parasites and malaria vaccine candidate. CelTOS has previously been shown to form pores in cell membranes to enable traversal of parasites through cells. We establish roles for the distinct protein regions of Plasmodium vivax CelTOS and examine the mechanism of pore formation. We further demonstrate that CelTOS dimer dissociation is required for pore formation, as disulfide bridging between monomers inhibits pore formation, and this inhibition is rescued by disulfide-bridge reduction. We also show that a helix-destabilizing amino acid, Pro127, allows CelTOS to undergo significant conformational changes to assemble into pores. The flexible C terminus of CelTOS is a negative regulator that limits pore formation. Finally, we highlight that lipid binding is a prerequisite for pore assembly as mutation of a phospholipids-binding site in CelTOS resulted in loss of lipid binding and abrogated pore formation. These findings identify critical regions in CelTOS and will aid in understanding the egress mechanism of malaria and other apicomplexan parasites as well as have implications for studying the function of other essential pore-forming proteins.


Subject(s)
Malaria Vaccines , Malaria, Vivax , Plasmodium vivax , Protozoan Proteins , Binding Sites , Disulfides/chemistry , Humans , Malaria Vaccines/chemistry , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Malaria, Vivax/prevention & control , Phospholipids/immunology , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Proline/chemistry , Proline/genetics , Protein Conformation, alpha-Helical , Protein Multimerization , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Sporozoites/genetics , Sporozoites/immunology
8.
PLoS Pathog ; 17(7): e1008864, 2021 07.
Article in English | MEDLINE | ID: mdl-34197567

ABSTRACT

Plasmodium vivax is responsible for the majority of malaria cases outside Africa. Unlike P. falciparum, the P. vivax life-cycle includes a dormant liver stage, the hypnozoite, which can cause infection in the absence of mosquito transmission. An effective vaccine against P. vivax blood stages would limit symptoms and pathology from such recurrent infections, and therefore could play a critical role in the control of this species. Vaccine development in P. vivax, however, lags considerably behind P. falciparum, which has many identified targets with several having transitioned to Phase II testing. By contrast only one P. vivax blood-stage vaccine candidate based on the Duffy Binding Protein (PvDBP), has reached Phase Ia, in large part because the lack of a continuous in vitro culture system for P. vivax limits systematic screening of new candidates. We used the close phylogenetic relationship between P. vivax and P. knowlesi, for which an in vitro culture system in human erythrocytes exists, to test the scalability of systematic reverse vaccinology to identify and prioritise P. vivax blood-stage targets. A panel of P. vivax proteins predicted to function in erythrocyte invasion were expressed as full-length recombinant ectodomains in a mammalian expression system. Eight of these antigens were used to generate polyclonal antibodies, which were screened for their ability to recognize orthologous proteins in P. knowlesi. These antibodies were then tested for inhibition of growth and invasion of both wild type P. knowlesi and chimeric P. knowlesi lines modified using CRISPR/Cas9 to exchange P. knowlesi genes with their P. vivax orthologues. Candidates that induced antibodies that inhibited invasion to a similar level as PvDBP were identified, confirming the utility of P. knowlesi as a model for P. vivax vaccine development and prioritizing antigens for further follow up.


Subject(s)
Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Plasmodium knowlesi/immunology , Plasmodium vivax/immunology , Antigens, Protozoan/immunology , Cells, Cultured , Humans , Malaria, Vivax/prevention & control , Protozoan Proteins/immunology
9.
Proc Natl Acad Sci U S A ; 117(23): 13056-13065, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32439708

ABSTRACT

Plasmodium vivax, the most widely distributed human malaria parasite, causes severe clinical syndromes despite low peripheral blood parasitemia. This conundrum is further complicated as cytoadherence in the microvasculature is still a matter of investigations. Previous reports in Plasmodium knowlesi, another parasite species shown to infect humans, demonstrated that variant genes involved in cytoadherence were dependent on the spleen for their expression. Hence, using a global transcriptional analysis of parasites obtained from spleen-intact and splenectomized monkeys, we identified 67 P. vivax genes whose expression was spleen dependent. To determine their role in cytoadherence, two Plasmodium falciparum transgenic lines expressing two variant proteins pertaining to VIR and Pv-FAM-D multigene families were used. Cytoadherence assays demonstrated specific binding to human spleen but not lung fibroblasts of the transgenic line expressing the VIR14 protein. To gain more insights, we expressed five P. vivax spleen-dependent genes as recombinant proteins, including members of three different multigene families (VIR, Pv-FAM-A, Pv-FAM-D), one membrane transporter (SECY), and one hypothetical protein (HYP1), and determined their immunogenicity and association with clinical protection in a prospective study of 383 children in Papua New Guinea. Results demonstrated that spleen-dependent antigens are immunogenic in natural infections and that antibodies to HYP1 are associated with clinical protection. These results suggest that the spleen plays a major role in expression of parasite proteins involved in cytoadherence and can reveal antigens associated with clinical protection, thus prompting a paradigm shift in P. vivax biology toward deeper studies of the spleen during infections.


Subject(s)
Antigens, Protozoan/immunology , Genes, Protozoan , Malaria, Vivax/immunology , Plasmodium vivax/immunology , Spleen/metabolism , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Protozoan/genetics , Aotidae , CHO Cells , Cell Adhesion/genetics , Cell Adhesion/immunology , Child , Cricetulus , Disease Models, Animal , Fibroblasts , Gene Expression Profiling , Host-Pathogen Interactions/genetics , Humans , Malaria, Vivax/blood , Malaria, Vivax/parasitology , Multigene Family , Papua New Guinea , Plasmodium vivax/genetics , Spleen/cytology , Spleen/parasitology , Splenectomy , Tissue Array Analysis
10.
J Immunol ; 204(4): 943-953, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31941654

ABSTRACT

MHC class II (MHCII) molecules are cell surface glycoproteins that play an important role to develop adaptive immune responses. MHCII-disease association is not restricted to structural variation alone but also may extend to genetic variations, which may modulate gene expression. The observed variations in class II gene expression make it possible that the association of MHCII polymorphism with diseases may relate to the level of gene expression in addition to the restriction of response to Ag. Understanding the extent of, and the mechanisms underlying, transcription factor DNA binding variation is therefore key to elucidate the molecular determinants of complex phenotypes. In this study, we investigated whether single nucleotide polymorphisms in MHCII-DRB regulatory gene may be associated with clinical outcomes of malaria in Plasmodium-infected individuals. To this end, we conducted a case-control study to compare patients who had mild malaria with those patients who had asymptomatic Plasmodium infection. It demonstrates that GTAT haplotype exerts an increased DRB transcriptional activity, resulting in higher DRB expression and subsequently perturbed Ag presentation and T cell activation, higher TLR-mediated innate immune gene expression, and Ag clearance, so low parasitemia in comparison with haplotypes other than GTAT (GTAC, GGGT). Hence, we hypothesized that DRB gene promoter polymorphism might lead to altered DRB gene expression, which could possibly affect the TLR-triggered innate immune responses in malaria patients. These genetic findings may contribute to the understanding of the pathogenesis of malaria and will facilitate the rational vaccine design for malaria.


Subject(s)
HLA-DR beta-Chains/genetics , Malaria/immunology , Parasitemia/immunology , Plasmodium falciparum/immunology , Plasmodium vivax/immunology , Adolescent , Aged , Animals , Antigens, Protozoan/immunology , Asymptomatic Infections , Case-Control Studies , Female , Gene Expression Regulation/immunology , HLA-DR beta-Chains/immunology , Haplotypes , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Immunity, Innate/genetics , Malaria/blood , Malaria/parasitology , Male , Middle Aged , Parasite Load , Parasitemia/blood , Parasitemia/parasitology , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , Young Adult
11.
Infect Immun ; 89(2)2021 01 19.
Article in English | MEDLINE | ID: mdl-33199351

ABSTRACT

Research on erythrocytic Plasmodium vivax merozoite antigens is critical for identifying potential vaccine candidates in reducing P. vivax disease. However, many P. vivax studies are constrained by its inability to undergo long-term culture in vitro Conserved across all Plasmodium spp., merozoite surface proteins are essential for invasion into erythrocytes and highly expressed on erythrocytic merozoites, thus making it an ideal vaccine candidate. In clinical trials, the P. vivax merozoite surface protein 1 (PvMSP1-19) vaccine candidate alone has shown to have limited immunogenicity in patients; hence, we incorporate the highly conserved and immunogenic C terminus of both P. vivax merozoite surface protein 8 (PvMSP8) and PvMSP1-19 to develop a multicomponent chimeric protein rPvMSP8+1 for immunization of mice. The resulted chimeric rPvMSP8+1 antibody was shown to recognize native protein MSP8 and MSP1-19 of mature P. vivax schizonts. In the immunized mice, an elevated antibody response was observed in the rPvMSP8+1-immunized group compared to that immunized with single-antigen components. In addition, we examined the growth inhibition of these antibodies against Plasmodium cynomolgi (Berok strain) parasites, which is phylogenetically close to P. vivax and sustains long-term culture in vitro Similarly, the chimeric anti-rPvMSP8+1 antibodies recognize P. cynomolgi MSP8 and MSP1-19 on mature schizonts and showed strong inhibition in vitro via growth inhibition assay. This study provides support for a new multiantigen-based paradigm rPvMSP8+1 to explore potential chimeric vaccine candidates against P. vivax malaria using sister species P. cynomolgi.


Subject(s)
Antibodies, Protozoan/immunology , Malaria, Vivax/genetics , Malaria, Vivax/immunology , Merozoite Surface Protein 1/genetics , Merozoite Surface Protein 1/immunology , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Virulence/immunology , Animals , Antibodies, Protozoan/genetics , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Erythrocytes/immunology , Gene Expression Regulation , Humans , Mice , Models, Animal , Virulence/genetics
12.
PLoS Pathog ; 15(9): e1007974, 2019 09.
Article in English | MEDLINE | ID: mdl-31536608

ABSTRACT

Plasmodium relapses are attributed to the activation of dormant liver-stage parasites and are responsible for a significant number of recurring malaria blood-stage infections. While characteristic of human infections caused by P. vivax and P. ovale, their relative contribution to malaria disease burden and transmission remains poorly understood. This is largely because it is difficult to identify 'bona fide' relapse infections due to ongoing transmission in most endemic areas. Here, we use the P. cynomolgi-rhesus macaque model of relapsing malaria to demonstrate that clinical immunity can form after a single sporozoite-initiated blood-stage infection and prevent illness during relapses and homologous reinfections. By integrating data from whole blood RNA-sequencing, flow cytometry, P. cynomolgi-specific ELISAs, and opsonic phagocytosis assays, we demonstrate that this immunity is associated with a rapid recall response by memory B cells that expand and produce anti-parasite IgG1 that can mediate parasite clearance of relapsing parasites. The reduction in parasitemia during relapses was mirrored by a reduction in the total number of circulating gametocytes, but importantly, the cumulative proportion of gametocytes increased during relapses. Overall, this study reveals that P. cynomolgi relapse infections can be clinically silent in macaques due to rapid memory B cell responses that help to clear asexual-stage parasites but still carry gametocytes.


Subject(s)
Immunity, Humoral , Malaria/immunology , Malaria/parasitology , Plasmodium cynomolgi/immunology , Plasmodium cynomolgi/pathogenicity , Animals , Antibodies, Protozoan/blood , B-Lymphocytes/immunology , Gene Expression Profiling , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Immunity, Humoral/genetics , Immunoglobulin G/blood , Immunologic Memory/genetics , Macaca mulatta , Malaria/genetics , Malaria, Vivax/genetics , Malaria, Vivax/immunology , Malaria, Vivax/parasitology , Male , Parasitemia/genetics , Parasitemia/immunology , Parasitemia/parasitology , Plasmodium vivax/immunology , Plasmodium vivax/pathogenicity , Recurrence , Sporozoites/immunology , Sporozoites/pathogenicity
13.
PLoS Comput Biol ; 16(10): e1008181, 2020 10.
Article in English | MEDLINE | ID: mdl-33031369

ABSTRACT

The mutation responsible for Duffy negativity, which impedes Plasmodium vivax infection, has reached high frequencies in certain human populations. Conversely, mutations capable of blocking the more lethal P. falciparum have not succeeded in malarious zones. Here we present an evolutionary-epidemiological model of malaria which demonstrates that if adaptive immunity against the most virulent effects of malaria is gained rapidly by the host, mutations which prevent infection per se are unlikely to succeed. Our results (i) explain the rarity of strain-transcending P. falciparum infection blocking adaptations in humans; (ii) make the surprising prediction that mutations which block P. falciparum infection are most likely to be found in populations experiencing low or infrequent malaria transmission, and (iii) predict that immunity against some of the virulent effects of P. vivax malaria may be built up over the course of many infections.


Subject(s)
Adaptive Immunity/genetics , Genetic Predisposition to Disease/genetics , Malaria, Falciparum/genetics , Mutation/genetics , Computational Biology , Evolution, Molecular , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Malaria, Vivax/epidemiology , Malaria, Vivax/genetics , Malaria, Vivax/immunology , Models, Genetic , Plasmodium falciparum/immunology , Plasmodium vivax/immunology
14.
Malar J ; 20(1): 86, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33579292

ABSTRACT

BACKGROUND: As malaria incidence and transmission in a region decreases, it becomes increasingly difficult to identify areas of active transmission. Improved methods for identifying and monitoring foci of active malaria transmission are needed in areas of low parasite prevalence in order to achieve malaria elimination. Serological assays can provide population-level infection history to inform elimination campaigns. METHODS: A bead-based multiplex antibody detection assay was used to evaluate a chimeric Plasmodium vivax MSP1 protein (PvRMC-MSP1), designed to be broadly immunogenic for use in vaccine studies, to act as a pan-malaria serological tool based on its ability to capture IgG in plasma samples obtained from naturally exposed individuals. Samples from 236 US travellers with PCR confirmed infection status from all four major Plasmodium species infecting humans, Plasmodium falciparum (n = 181), Plasmodium vivax (n = 38), Plasmodium malariae (n = 4), and Plasmodium ovale (n = 13) were tested for IgG capture using PvRMC-MSP1 as well as the four recombinant MSP1-19 kD isoforms representative of these Plasmodium species. RESULTS: Regardless of infecting Plasmodium species, a large proportion of plasma samples from infected US travellers provided a high assay signal to the PvRMC-MSP1 chimeric protein, with 115 high responders out of 236 samples assessed (48.7%). When grouped by active infection, 38.7% P. falciparum-, 92.1% of P. vivax-, 75.0% P. malariae-, and 53.4% of P. ovale-infected individuals displayed high assay signals in response to PvRMC-MSP1. It was also determined that plasma from P. vivax-infected individuals produced increased assay signals in response to the PvRMC-MSP1 chimera as compared to the recombinant PvMSP1 for 89.5% (34 out of 38) of individuals. PvRMC-MSP1 also showed improved ability to capture IgG antibodies from P. falciparum-infected individuals when compared to the capture by recombinant PvMSP1, with high assay signals observed for 38.7% of P. falciparum-infected travellers in response to PvRMC-MSP1 IgG capture compared to just 1.1% who were high responders to capture by the recombinant PvMSP1 protein. CONCLUSIONS: These results support further study of designed antigens as an approach for increasing sensitivity or broadening binding capacity to improve existing serological tools for determining population-level exposure to Plasmodium species. Including both broad-reacting and Plasmodium species-specific antigen-coated beads in an assay panel could provide a nuanced view of population-level exposure histories, an extensive IgG profile, and detailed seroestimates. A more sensitive serological tool for detection of P. vivax exposure would aid malaria elimination campaigns in co-endemic areas and regions where P. vivax is the dominant parasite.


Subject(s)
Antibodies, Protozoan/blood , Malaria/immunology , Plasmodium falciparum/immunology , Plasmodium malariae/immunology , Plasmodium ovale/immunology , Plasmodium vivax/immunology , Protozoan Proteins/immunology , Animals , Female , Mice , Mice, Inbred BALB C , Rabbits , Recombinant Fusion Proteins/immunology
15.
Malar J ; 20(1): 288, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34183015

ABSTRACT

BACKGROUND: Plasmodium vivax proteins with variant interspersed repeats (VIR) are the key proteins used by the parasite to escape from the host immune system through the creation of antigenic variations. However, few studies have been done to elucidate their role as targets of immunity. Thus, this study evaluated the naturally-acquired immune response against VIR proteins in vivax malaria-infected individuals in the Republic of Korea (ROK). METHODS: Seven recombinant VIR proteins and two synthetic peptides previously studied in other countries that elicited a robust immune response were used to investigate the antibody and cellular immune response in 681 P. vivax-infected people in ROK. The expression of IgM, IgG, and IgG subclasses against each VIR antigen or against PvMSP1-19 was analysed by ELISA. PvMSP1-19, known as a promising vaccine candidate of P. vivax, was used as the positive control for immune response assessment. Furthermore, the cellular immune response to VIR antigens was evaluated by in vitro proliferative assay, cellular activation assay, and cytokine detection in mononuclear cells of the P. vivax-infected population. RESULTS: IgM or IgG were detected in 52.4% of the population. Among all the VIR antigens, VIR25 elicited the highest humoral immune response in the whole population with IgG and IgM prevalence of 27.8% and 29.2%, respectively, while PvMSP1-19 elicited even higher prevalence (92%) of IgG in the population. As for the cellular immune response, VIR-C2, PvLP2, and PvMSP1-19 induced high cell activation and secretion of IL-2, IL-6, IL-10, and G-CSF in mononuclear cells from the P. vivax-infected population, comparable with results from PvMSP1-19. However, no significant proliferation response to these antigens was observed between the malaria-infected and healthy groups. CONCLUSION: Moderate natural acquisition of antibody and cellular responses in P. vivax-infected Korean malaria patients presented here are similar to that in other countries. It is interesting that the immune response to VIR antigens is conserved among malaria parasites in different countries, considering that VIR genes are highly polymorphic. This thus warrants further studies to elucidate molecular mechanisms by which human elicit immune response to the malaria parasite VIR antigens.


Subject(s)
Antigens, Protozoan/immunology , Immunity, Cellular , Immunity, Humoral , Malaria Vaccines/immunology , Plasmodium vivax/immunology , Adolescent , Adult , Female , Humans , Interspersed Repetitive Sequences , Malaria, Vivax , Male , Middle Aged , Republic of Korea , Vaccines, Synthetic/immunology , Young Adult
16.
J Immunol ; 202(9): 2648-2660, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30944159

ABSTRACT

Plasmodium vivax invasion of reticulocytes relies on distinct receptor-ligand interactions between the parasite and host erythrocytes. Engagement of the highly polymorphic domain II of the P. vivax Duffy-binding protein (DBPII) with the erythrocyte's Duffy Ag receptor for chemokines (DARC) is essential. Some P. vivax-exposed individuals acquired Abs to DBPII that block DBPII-DARC interaction and inhibit P. vivax reticulocyte invasion, and Ab levels correlate with protection against P. vivax malaria. To better understand the functional characteristics and fine specificity of protective human Abs to DBPII, we sorted single DBPII-specific IgG+ memory B cells from three individuals with high blocking activity to DBPII. We identified 12 DBPII-specific human mAbs from distinct lineages that blocked DBPII-DARC binding. All mAbs were P. vivax strain transcending and targeted known binding motifs of DBPII with DARC. Eleven mAbs competed with each other for binding, indicating recognition of the same or overlapping epitopes. Naturally acquired blocking Abs to DBPII from individuals with high levels residing in different P. vivax-endemic areas worldwide competed with mAbs, suggesting broadly shared recognition sites. We also found that mAbs inhibited P. vivax entry into reticulocytes in vitro. These findings suggest that IgG+ memory B cell activity in individuals with P. vivax strain-transcending Abs to DBPII display a limited clonal response with inhibitory blocking directed against a distinct region of the molecule.


Subject(s)
Antibodies, Blocking/immunology , Antibodies, Monoclonal/immunology , Antibody Specificity , B-Lymphocytes/immunology , Immunologic Memory , Malaria, Vivax/immunology , Plasmodium vivax/immunology , Antigens, Protozoan/immunology , B-Lymphocytes/pathology , Female , Humans , Malaria, Vivax/pathology , Malaria, Vivax/prevention & control , Male , Protozoan Proteins/immunology , Receptors, Cell Surface/immunology
17.
Parasitol Res ; 120(5): 1789-1797, 2021 May.
Article in English | MEDLINE | ID: mdl-33797613

ABSTRACT

Invasion of Plasmodium into the red blood cell involves the interactions of a substantial number of proteins, with red cell membrane proteins as the most involved throughout the process from entry to exit. The objective of this work was to identify proteins of the human erythrocyte membrane capable of generating an antigenic response to P. falciparum and P. vivax infection, with the goal of searching for new molecular targets of interest with an immunological origin to prevent Plasmodium infection. To identify these proteins, an immunoproteomic technique was carried out in four stages: protein separation (electrophoresis), detection of antigenic proteins (western blotting), identification of proteins of interest (mass spectrometry), and interpretation of the data (bioinformatic analysis). Four proteins were identified from extracts of membrane proteins from erythrocytes infected with P. falciparum: Spectrin, Ankyrin-1, Band 3 and band 4.2, and a single protein was identified from erythrocytes infected with P. vivax: Band 3. These results demonstrate that modifications in the red blood cell membrane during infection with P. falciparum and P. vivax can generate an immune response, altering proteins of great structural and functional importance.


Subject(s)
Erythrocyte Membrane/immunology , Malaria, Falciparum/immunology , Malaria, Vivax/immunology , Membrane Proteins/immunology , Plasmodium falciparum/immunology , Plasmodium vivax/immunology , Adult , Ankyrins/immunology , Cytoskeletal Proteins , Female , Humans , Male , Membrane Proteins/analysis , Middle Aged
18.
Infect Immun ; 88(4)2020 03 23.
Article in English | MEDLINE | ID: mdl-32014895

ABSTRACT

The interactions between Plasmodium parasites and human erythrocytes are prime targets of blood stage malaria vaccine development. The reticulocyte binding protein 2-P1 (RBP2-P1) of Plasmodium vivax, a member of the reticulocyte binding protein family, has recently been shown to be highly antigenic in several settings endemic for malaria. Yet, its functional characteristics and the relevance of its antibody response in human malaria have not been examined. In this study, the potential function of RBP2-P1 as an invasion ligand of P. vivax was evaluated. The protein was found to be expressed in schizonts, be localized at the apical end of the merozoite, and preferentially bind reticulocytes over normocytes. Human antibodies to this protein also exhibit erythrocyte binding inhibition at physiologically relevant concentrations. Furthermore, RBP2-P1 antibodies are associated with lower parasitemia and tend to be higher in asymptomatic carriers than in patients. This study provides evidence supporting a role of RBP2-P1 as an invasion ligand and its consideration as a vaccine target.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/metabolism , Malaria, Vivax/immunology , Membrane Proteins/metabolism , Plasmodium vivax/immunology , Protozoan Proteins/metabolism , Reticulocytes/metabolism , Adaptive Immunity , Adolescent , Adult , Aged , Antigens, Protozoan/immunology , Female , Humans , Immunoglobulin G/blood , Malaria, Vivax/parasitology , Male , Membrane Proteins/immunology , Middle Aged , Protein Binding , Protozoan Proteins/immunology , Young Adult
19.
Article in English | MEDLINE | ID: mdl-32122891

ABSTRACT

Plasmodium vivax relapse is one of the major causes of sustained global malaria transmission. Primaquine (PQ) is the only commercial drug available to prevent relapses, and its efficacy is dependent on metabolic activation by cytochrome P450 2D6 (CYP2D6). Impaired CYP2D6 function, caused by allelic polymorphisms, leads to the therapeutic failure of PQ as a radical cure for P. vivax malaria. Here, we hypothesized that the host immune response to malaria parasites modulates susceptibility to P. vivax recurrences in association with CYP2D6 activity. We performed a 10-year retrospective study by genotyping CYP2D6 polymorphisms in 261 malaria-exposed individuals from the Brazilian Amazon. The immune responses against a panel of P. vivax blood-stage antigens were evaluated by serological assays. We confirmed our previous findings, which indicated an association between impaired CYP2D6 activity and a higher risk of multiple episodes of P. vivax recurrence (risk ratio, 1.75; 95% confidence interval [CI], 1.2 to 2.6; P = 0.0035). An important finding was a reduction of 3% in the risk of recurrence (risk ratio, 0.97; 95% CI, 0.96 to 0.98; P < 0.0001) per year of malaria exposure, which was observed for individuals with both reduced and normal CYP2D6 activity. Accordingly, subjects with long-term malaria exposure and persistent antibody responses to various antigens showed fewer episodes of malaria recurrence. Our findings have direct implications for malaria control, since it was shown that nonimmune individuals who do not respond adequately to treatment due to reduced CYP2D6 activity may present a significant challenge for sustainable progress toward P. vivax malaria elimination.


Subject(s)
Antimalarials/therapeutic use , Cytochrome P-450 CYP2D6/metabolism , Malaria, Vivax/drug therapy , Plasmodium vivax/drug effects , Primaquine/therapeutic use , Adolescent , Adult , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Brazil , Child , Cytochrome P-450 CYP2D6/genetics , Female , Humans , Male , Middle Aged , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Recurrence , Treatment Failure , Young Adult
20.
Am J Hum Genet ; 101(6): 977-984, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29129317

ABSTRACT

From the eighth century onward, the Indian Ocean was the scene of extensive trade of sub-Saharan African slaves via sea routes controlled by Muslim Arab and Swahili traders. Several populations in present-day Pakistan and India are thought to be the descendants of such slaves, yet their history of admixture and natural selection remains largely undefined. Here, we studied the genome-wide diversity of the African-descent Makranis, who reside on the Arabian Sea coast of Pakistan, as well that of four neighboring Pakistani populations, to investigate the genetic legacy, population dynamics, and tempo of the Indian Ocean slave trade. We show that the Makranis are the result of an admixture event between local Baluch tribes and Bantu-speaking populations from eastern or southeastern Africa; we dated this event to ∼300 years ago during the Omani Empire domination. Levels of parental relatedness, measured through runs of homozygosity, were found to be similar across Pakistani populations, suggesting that the Makranis rapidly adopted the traditional practice of endogamous marriages. Finally, we searched for signatures of post-admixture selection at traits evolving under positive selection, including skin color, lactase persistence, and resistance to malaria. We demonstrate that the African-specific Duffy-null blood group-believed to confer resistance against Plasmodium vivax infection-was recently introduced to Pakistan through the slave trade and evolved adaptively in this P. vivax malaria-endemic region. Our study reconstructs the genetic and adaptive history of a neglected episode of the African Diaspora and illustrates the impact of recent admixture on the diffusion of adaptive traits across human populations.


Subject(s)
Asian People/genetics , Black People/genetics , Duffy Blood-Group System/genetics , Enslaved Persons , Malaria, Vivax/immunology , Plasmodium vivax/immunology , Population Dynamics , Quantitative Trait, Heritable , Gene Frequency , Genetic Variation/genetics , Genetics, Population , Humans , Indian Ocean , Pakistan/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL