Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.342
Filter
Add more filters

Publication year range
1.
Prostaglandins Other Lipid Mediat ; 172: 106818, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38340978

ABSTRACT

Platelet-activating factor (PAF) plays a significant role in several leucocyte functions, including platelet aggregation and inflammation. Additionally, PAF has a role in the behavioral and physiological changes in mammals. However, the effect of PAF has not been well studied in birds. Therefore, the study aimed to determine if PAF affects feeding behavior, voluntary activity, cloacal temperature, and feed passage through the digestive tract in chicks (Gallus gallus). We also studied the involvement of PAF in the innate immune system induced by lipopolysaccharide (LPS), a cell wall component of gram-negative bacteria. Both intraperitoneal (IP) and intracerebroventricular (ICV) injections of PAF significantly decreased food intake. IP injection of PAF significantly decreased voluntary activity and slowed the feed passage from the crop, whereas ICV injection had no effect. Conversely, ICV injection of PAF significantly increased the cloacal temperature, but IP injection had no effect. The IP injection of LPS significantly reduced the mRNA expression of lysophosphatidylcholine acyltransferase 2, an enzyme responsible for PAF production in the heart and pancreas. On the other hand, LPS significantly increased the mRNA expression of the PAF receptor in the peripheral organs. The present study shows that PAF influences behavioral and physiological responses and is related to the response against bacterial infections in chicks.


Subject(s)
Body Temperature , Chickens , Cloaca , Crop, Avian , Eating , Platelet Activating Factor , Animals , Male , Body Temperature/drug effects , Cloaca/drug effects , Cloaca/physiology , Crop, Avian/drug effects , Crop, Avian/metabolism , Eating/drug effects , Feeding Behavior/drug effects , Lipopolysaccharides/pharmacology , Platelet Activating Factor/pharmacology , Platelet Activating Factor/metabolism , Platelet Membrane Glycoproteins/genetics , Platelet Membrane Glycoproteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics
2.
J Pharmacol Sci ; 154(4): 256-263, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485343

ABSTRACT

Platelet-activating factor (PAF) is expected to increase esophageal motility. However, to the best of our knowledge, this has not been examined. Thus, we investigated the contractile effects of PAF on guinea pig (GP) esophageal muscularis mucosae (EMM) and the extracellular Ca2+ influx pathways responsible. PAF (10-9-10-6 M) contracted EMM in a concentration-dependent manner. PAF (10-6 M)-induced contractions were almost completely suppressed by apafant (a PAF receptor antagonist, 3 × 10-5 M). In EMM strips, PAF receptor and PAF-synthesizing/degrading enzyme mRNAs were detected. PAF (10-6 M)-induced contractions were abolished by extracellular Ca2+ removal but were not affected by diltiazem [a voltage-dependent Ca2+ channel (VDCC) inhibitor, 10-5 M]. PAF (10-6 M)-induced contractions in the presence of diltiazem were significantly suppressed by LOE-908 [a receptor-operated Ca2+ channel (ROCC) inhibitor, 3 × 10-5 M], SKF-96365 [an ROCC and store-operated Ca2+ channel (SOCC) inhibitor, 3 × 10-5 M], and LOE-908 plus SKF-96365. Among the tested ROCC/SOCC-related mRNAs, Trpc3, Trpc6, and Trpv4/Orai1, Orai3, and Stim2 were abundantly expressed in EMM strips. These results indicate that PAF potently induces GP EMM contractions that are dependent on extracellular Ca2+ influx through ROCCs/SOCCs, and VDCCs are unlikely to be involved.


Subject(s)
Diltiazem , Isoquinolines , Platelet Activating Factor , Guinea Pigs , Animals , Diltiazem/pharmacology , Platelet Activating Factor/pharmacology , Acetamides , Calcium Channels/metabolism , Mucous Membrane/metabolism , Calcium/metabolism
3.
Am J Physiol Heart Circ Physiol ; 324(5): H610-H623, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36867447

ABSTRACT

Microvascular hyperpermeability is a hallmark of inflammation. Many negative effects of hyperpermeability are due to its persistence beyond what is required for preserving organ function. Therefore, we propose that targeted therapeutic approaches focusing on mechanisms that terminate hyperpermeability would avoid the negative effects of prolonged hyperpermeability while retaining its short-term beneficial effects. We tested the hypothesis that inflammatory agonist signaling leads to hyperpermeability and initiates a delayed cascade of cAMP-dependent pathways that causes inactivation of hyperpermeability. We applied platelet-activating factor (PAF) and vascular endothelial growth factor (VEGF) to induce hyperpermeability. We used an Epac1 agonist to selectively stimulate exchange protein activated by cAMP (Epac1) and promote inactivation of hyperpermeability. Stimulation of Epac1 inactivated agonist-induced hyperpermeability in the mouse cremaster muscle and in human microvascular endothelial cells (HMVECs). PAF induced nitric oxide (NO) production and hyperpermeability within 1 min and NO-dependent increased cAMP concentration in about 15-20 min in HMVECs. PAF triggered phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in a NO-dependent manner. Epac1 stimulation promoted cytosol-to-membrane eNOS translocation in HMVECs and in myocardial microvascular endothelial (MyEnd) cells from wild-type mice, but not in MyEnd cells from VASP knockout mice. We demonstrate that PAF and VEGF cause hyperpermeability and stimulate the cAMP/Epac1 pathway to inactivate agonist-induced endothelial/microvascular hyperpermeability. Inactivation involves VASP-assisted translocation of eNOS from the cytosol to the endothelial cell membrane. We demonstrate that hyperpermeability is a self-limiting process, whose timed inactivation is an intrinsic property of the microvascular endothelium that maintains vascular homeostasis in response to inflammatory conditions.NEW & NOTEWORTHY Termination of microvascular hyperpermeability has been so far accepted to be a passive result of the removal of the applied proinflammatory agonists. We provide in vivo and in vitro evidence that 1) inactivation of hyperpermeability is an actively regulated process, 2) proinflammatory agonists (PAF and VEGF) stimulate microvascular hyperpermeability and initiate endothelial mechanisms that terminate hyperpermeability, and 3) eNOS location-translocation is critical in the activation-inactivation cascade of endothelial hyperpermeability.


Subject(s)
Endothelial Cells , Vascular Endothelial Growth Factor A , Mice , Humans , Animals , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Inflammation/metabolism , Platelet Activating Factor/metabolism , Platelet Activating Factor/pharmacology , Mice, Knockout , Endothelium/metabolism , Capillary Permeability , Endothelium, Vascular/metabolism
4.
J Biomed Sci ; 30(1): 62, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37533081

ABSTRACT

BACKGROUND: Excess polymorphonuclear neutrophil (PMN) recruitment or excessive neutrophil extracellular trap (NET) formation can lead to the development of multiple organ dysfunction during sepsis. M2 macrophage-derived exosomes (M2-Exos) have exhibited anti-inflammatory activities in some inflammatory diseases to mediate organ functional protection, but their role in treating sepsis-related acute lung injury (ALI) remains unclear. In this study, we sought to investigate whether M2-Exos could prevent potentially deleterious inflammatory effects during sepsis-related ALI by modulating abnormal PMN behaviours. METHODS: C57BL/6 wild-type mice were subjected to a caecal ligation and puncture (CLP) mouse model to mimic sepsis in vivo, and M2-Exos were administered intraperitoneally 1 h after CLP. H&E staining, immunofluorescence and immunohistochemistry were conducted to investigate lung tissue injury, PMN infiltration and NET formation in the lung. We further demonstrated the role of M2-Exos on PMN function and explored the potential mechanisms through an in vitro coculture experiment using PMNs isolated from both healthy volunteers and septic patients. RESULTS: Here, we report that M2-Exos inhibited PMN migration and NET formation, alleviated lung injury and reduced mortality in a sepsis mouse model. In vitro, M2-Exos significantly decreased PMN migration and NET formation capacity, leading to lipid mediator class switching from proinflammatory leukotriene B4 (LTB4) to anti-inflammatory lipoxin A4 (LXA4) by upregulating 15-lipoxygenase (15-LO) expression in PMNs. Treatment with LXA4 receptor antagonist attenuated the effect of M2-Exos on PMNs and lung injury. Mechanistically, prostaglandin E2 (PGE2) enriched in M2-Exos was necessary to increase 15-LO expression in PMNs by functioning on the EP4 receptor, upregulate LXA4 production to downregulate chemokine (C-X-C motif) receptor 2 (CXCR2) and reactive oxygen species (ROS) expressions, and finally inhibit PMN function. CONCLUSIONS: Our findings reveal a previously unknown role of M2-Exos in regulating PMN migration and NET formation through lipid mediator class switching, thus highlighting the potential application of M2-Exos in controlling PMN-mediated tissue injury in patients with sepsis.


Subject(s)
Extracellular Traps , Lung Injury , Sepsis , Mice , Animals , Dinoprostone/metabolism , Dinoprostone/pharmacology , Neutrophils/metabolism , Neutrophil Infiltration , Lung Injury/metabolism , Immunoglobulin Class Switching , Mice, Inbred C57BL , Macrophages , Platelet Activating Factor/metabolism , Platelet Activating Factor/pharmacology
5.
Ann Allergy Asthma Immunol ; 131(2): 239-252.e6, 2023 08.
Article in English | MEDLINE | ID: mdl-37098406

ABSTRACT

BACKGROUND: The underlying mechanisms of an immediate food-induced allergic reaction involve mast cell degranulation and recruitment of other effector cells, such as lymphocytes, eosinophils, and basophils. How the interaction of various mediators and cells results in anaphylaxis is not fully understood. OBJECTIVE: To evaluate changes in platelet-activating factor (PAF), platelet-activating factor acetylhydrolase (PAF-AH), tryptase, eosinophils, basophils, and eosinophil cationic protein (ECP) in cashew nut-induced anaphylaxis. METHODS: Open cashew nut challenges were performed on 106 children (aged 1-16 years), sensitized to cashew nut, with earlier allergic reaction to cashew nut or no known exposure. PAF, PAF-AH, tryptase, ECP, eosinophils, and basophils were measured at 4 time points. RESULTS: Of 72 challenges with positive results, 34 were defined as anaphylactic. Eosinophil count decreased progressively during an anaphylactic reaction at all 4 time points (P < .005*) compared with baseline. Although significant PAF elevation was observed 1 hour from moderate-to-severe reaction (P = .04*), PAF seemed to peak especially in anaphylaxis but did not achieve statistical significance. PAF peak ratio (peak PAF/baseline PAF) was significantly greater in anaphylactic reactions compared with the no-anaphylaxis group (P = .008*). Maximal percentage change in eosinophils revealed negative correlation to severity score and PAF peak ratio (Spearman's rho -0.424 and -0.516, respectively). Basophils decreased significantly in moderate-to-severe reactions and in anaphylaxis (P < .05*) compared with baseline. Delta-tryptase (peak tryptase minus baseline) did not differ significantly between anaphylaxis and the no-anaphylaxis subgroups (P = .05). CONCLUSION: PAF is a specific anaphylaxis biomarker. Marked decline of eosinophils during anaphylaxis may be related to robust secretion of PAF reflecting migration of eosinophils to target tissues.


Subject(s)
Anacardium , Anaphylaxis , Child , Humans , Tryptases/metabolism , Nuts , Platelet Activating Factor/metabolism , Platelet Activating Factor/pharmacology , Eosinophils , Lymphocytes
6.
J Pharmacol Sci ; 152(2): 123-127, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37169476

ABSTRACT

We investigated the extracellular Ca2+ influx pathways involved in platelet-activating factor (PAF)-enhanced guinea pig detrusor smooth muscle (DSM) contractile activities. One micromolar PAF-enhanced DSM contractile activities were completely inhibited by extracellular Ca2+ removal and strongly suppressed by voltage-dependent Ca2+ channel (VDCC) inhibitors. PAF-enhanced DSM contractile activities remaining in the presence of verapamil (10 µM) were not inhibited by LOE-908 (30 µM, an inhibitor of receptor-operated Ca2+ channels (ROCCs)), but were almost completely inhibited by SKF-96365 (30 µM, an inhibitor of store-operated Ca2+ channels (SOCCs) and ROCCs). These results suggest that VDCCs and SOCCs are responsible for PAF-enhanced DSM contractile activities.


Subject(s)
Muscle, Smooth , Platelet Activating Factor , Guinea Pigs , Animals , Platelet Activating Factor/pharmacology , Platelet Activating Factor/metabolism , Muscle, Smooth/metabolism , Muscle Contraction , Calcium Channels/metabolism , Verapamil , Calcium/metabolism
7.
Biol Pharm Bull ; 46(7): 997-1003, 2023.
Article in English | MEDLINE | ID: mdl-37394649

ABSTRACT

Platelet-activating factor (PAF) not only acts as a mediator of platelet aggregation, inflammation, and allergy responses but also as a constrictor of various smooth muscle (SM) tissues, including gastrointestinal, tracheal/bronchial, and pregnancy uterine SMs. Previously, we reported that PAF induces basal tension increase (BTI) and oscillatory contraction (OC) in mouse urinary bladder SM (UBSM). In this study, we examined the Ca2+ influx pathways involved in PAF-induced BTI and OC in the mouse UBSM. PAF (10-6 M) induced BTI and OC in mouse UBSM. However, the PAF-induced BTI and OC were completely suppressed by extracellular Ca2+ removal. PAF-induced BTI and OC frequencies were markedly suppressed by voltage-dependent Ca2+ channel (VDCC) inhibitors (verapamil (10-5 M), diltiazem (10-5 M), and nifedipine (10-7 M)). However, these VDCC inhibitors had a minor effect on the PAF-induced OC amplitude. The PAF-induced OC amplitude in the presence of verapamil (10-5 M) was strongly suppressed by SKF-96365 (3 × 10-5 M), an inhibitor of receptor-operated Ca2+ channel (ROCC) and store-operated Ca2+ channel (SOCC), but not by LOE-908 (3 × 10-5 M) (an inhibitor of ROCC). Overall, PAF-induced BTI and OC in mouse UBSM depend on Ca2+ influx and the main Ca2+ influx pathways in PAF-induced BTI and OC may be VDCC and SOCC. Of note, VDCC may be involved in PAF-induced BTI and OC frequency, and SOCC might be involved in PAF-induced OC amplitude.


Subject(s)
Calcium Channels, L-Type , Urinary Bladder , Pregnancy , Female , Mice , Animals , Urinary Bladder/physiology , Platelet Activating Factor/pharmacology , Verapamil/pharmacology , Muscle Contraction , Calcium/metabolism
8.
Molecules ; 28(19)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37836742

ABSTRACT

Inflammatory mediators constitute a recently coined term in the field of metal-based complexes with antiplatelet activities. Our strategy targets Platelet-Activating Factor (PAF) and its receptor, which is the most potent lipid mediator of inflammation. Thus, the antiplatelet (anti-PAF) potency of any substance could be exerted by inhibiting the PAF-induced aggregation in washed rabbit platelets (WRPs), which internationally is a well-accepted methodology. Herein, a series of mononuclear (mer-[Cr(pqx)Cl3(H2O]) (1), [Co(pqx)Cl2(DMF)] (2) (DMF = N,N'-dimethyl formamide), [Cu(pqx)Cl2(DMSO)] (3) (DMSO = dimethyl sulfoxide), [Zn(pqx)Cl2] (4)) and dinuclear complexes ([Mn(pqx)(H2O)2Cl2]2 (5), [Fe(pqx)Cl2]2 (6) and [Ni(pqx)Cl2]2 (7)) incorporating the 2-(2'-pyridyl)quinoxaline ligand (pqx), were biologically evaluated as inhibitors of the PAF- and thrombin-induced aggregation in washed rabbit platelets (WRPs). The molecular structure of the five-co-ordinate analog (3) has been elucidated by single-crystal X-ray diffraction revealing a trigonal bipyramidal geometry. All complexes are potent inhibitors of the PAF-induced aggregation in WRPs in the micromolar range. Complex (6) displayed a remarkable in vitro dual inhibition against PAF and thrombin, with IC50 values of 1.79 µM and 0.46 µM, respectively. Within the series, complex (5) was less effective (IC50 = 39 µM) while complex (1) was almost 12-fold more potent against PAF, as opposed to thrombin-induced aggregation. The biological behavior of complexes 1, 6 and 7 on PAF's basic metabolic enzymatic pathways reveals that they affect key biosynthetic and catabolic enzymes of PAF underlying the anti-inflammatory properties of the relevant complexes. The in vitro cytotoxic activities of all complexes in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) are described via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The results reveal that complex 3 is the most potent within the series.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Transition Elements , Animals , Humans , Rabbits , Platelet Aggregation , Platelet Activating Factor/pharmacology , Platelet Activating Factor/metabolism , Blood Platelets/metabolism , Thrombin/metabolism , Coordination Complexes/pharmacology , Coordination Complexes/metabolism , Ligands , Inflammation Mediators/metabolism , Dimethyl Sulfoxide/pharmacology , Quinoxalines/pharmacology , HEK293 Cells , HeLa Cells , Antineoplastic Agents/pharmacology , Transition Elements/metabolism
9.
Blood ; 136(15): 1773-1782, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32542378

ABSTRACT

G protein-coupled receptors are critical mediators of platelet activation whose signaling can be modulated by members of the regulator of G protein signaling (RGS) family. The 2 most abundant RGS proteins in human and mouse platelets are RGS10 and RGS18. While each has been studied individually, critical questions remain about the overall impact of this mode of regulation in platelets. Here, we report that mice missing both proteins show reduced platelet survival and a 40% decrease in platelet count that can be partially reversed with aspirin and a P2Y12 antagonist. Their platelets have increased basal (TREM)-like transcript-1 expression, a leftward shift in the dose/response for a thrombin receptor-activating peptide, an increased maximum response to adenosine 5'-diphosphate and TxA2, and a greatly exaggerated response to penetrating injuries in vivo. Neither of the individual knockouts displays this constellation of findings. RGS10-/- platelets have an enhanced response to agonists in vitro, but platelet count and survival are normal. RGS18-/- mice have a 15% reduction in platelet count that is not affected by antiplatelet agents, nearly normal responses to platelet agonists, and normal platelet survival. Megakaryocyte number and ploidy are normal in all 3 mouse lines, but platelet recovery from severe acute thrombocytopenia is slower in RGS18-/- and RGS10-/-18-/- mice. Collectively, these results show that RGS10 and RGS18 have complementary roles in platelets. Removing both at the same time discloses the extent to which this regulatory mechanism normally controls platelet reactivity in vivo, modulates the hemostatic response to injury, promotes platelet production, and prolongs platelet survival.


Subject(s)
Blood Platelets/metabolism , Platelet Activation/genetics , RGS Proteins/genetics , Thrombopoiesis/genetics , Animals , Blood Platelets/drug effects , Cell Survival/genetics , Mice , Mice, Knockout , Phosphorylation , Platelet Activating Factor/pharmacology , Platelet Activation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Count , RGS Proteins/metabolism , Thrombopoiesis/drug effects
10.
Circ Res ; 126(1): 75-90, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31829100

ABSTRACT

RATIONALE: Specialized pro-resolving mediators (SPM-lipoxins, resolvins, protectins, and maresins) are produced via the enzymatic conversion of essential fatty acids, including the omega-3 fatty acids docosahexaenoic acid and n-3 docosapentaenoic acid. These mediators exert potent leukocyte directed actions and control vascular inflammation. Supplementation of animals and humans with essential fatty acids, in particular omega-3 fatty acids, exerts protective actions reducing vascular and systemic inflammation. Of note, the mechanism(s) activated by these supplements in exerting their protective actions remain poorly understood. OBJECTIVE: Given that essential fatty acids are precursors in the biosynthesises of SPM, the aim of the present study was to establish the relationship between supplementation and peripheral SPM concentrations. We also investigated the relationship between changes in plasma SPM concentrations and peripheral blood platelet and leukocyte responses. METHODS AND RESULTS: Healthy volunteers were enrolled in a double-blinded, placebo-controlled, crossover study, and peripheral blood was collected at baseline, 2, 4, 6, and 24 hours post administration of placebo or one of 3 doses of an enriched marine oil supplement. Assessment of plasma SPM concentrations using lipid mediator profiling demonstrated a time- and dose-dependent increase in peripheral blood SPM concentration. Supplementation also led to a regulation of peripheral blood cell responses. Here we found a dose-dependent increase in neutrophil and monocyte phagocytosis of bacteria and a decrease in the diurnal activation of leukocytes and platelets, as measured by a reduction in adhesion molecule expression. In addition, transcriptomic analysis of peripheral blood cells demonstrated a marked change in transcript levels of immune and metabolic genes 24 hours post supplementation when compared with placebo. CONCLUSIONS: Together, these findings demonstrate that supplementation with an enriched marine oil leads to an increase in peripheral blood SPM concentrations and reprograms peripheral blood cells, indicating a role for SPM in mediating the immune-directed actions of this supplement. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT03347006.


Subject(s)
Dietary Supplements , Docosahexaenoic Acids/blood , Fatty Acids, Omega-3/pharmacology , Fish Oils/pharmacology , Immune System/drug effects , Lipoxins/blood , Adult , Biomarkers , Blood Cells/drug effects , Blood Cells/metabolism , Cell Adhesion Molecules/blood , Circadian Rhythm/drug effects , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Fatty Acids, Essential/physiology , Fatty Acids, Omega-3/administration & dosage , Female , Fish Oils/administration & dosage , Gene Ontology , Humans , Male , Middle Aged , Phagocytosis/drug effects , Platelet Activating Factor/pharmacology , Platelet Aggregation/drug effects , Transcription, Genetic/drug effects , Young Adult
11.
Prostaglandins Other Lipid Mediat ; 158: 106606, 2022 02.
Article in English | MEDLINE | ID: mdl-34923152

ABSTRACT

In the present work the entomopathogenic fungus B. bassiana lipids were studied against the potent pro-inflammatory and thrombotic mediators implicated in several disorders, platelet-activating factor (PAF) and thrombin. Bioactivities of lipid extracts from B. bassiana cells and culture supernatants and of their lipid fractions separated by a one-step HPLC-analysis ere assessed against the PAF/Thrombin-induced aggregation of washed rabbit platelets. Lipid extracts from both cell-biomass and supernatant inhibited strongly PAF/Thrombin-activities and platelet-aggregation, exhibiting higher specificity against PAF. Similarly, HPLC-derived lipid-fractions of phenolics/glycolipids, Sphingomyelins and Phosphatidylcholines (PC) showed strong anti-PAF potency. PC PAF-like molecules exhibited the strongest antagonistic anti-PAF effects, while in higher amounts they agonistically inhibited PAF-activities. Some bioactive lipids with strong anti-PAF effects are exo-cellularly secreted in the culture media during fungal growth, while others are not. The presence of such lipid bioactives in B. bassiana with strong anti-inflammatory and anti-thrombotic properties, provide new perspectives and putative future applications for this entomopathogenic fungus.


Subject(s)
Beauveria , Animals , Anti-Inflammatory Agents/pharmacology , Chromatography, High Pressure Liquid , Platelet Activating Factor/pharmacology , Platelet Aggregation , Rabbits
12.
Platelets ; 33(4): 562-569, 2022 May 19.
Article in English | MEDLINE | ID: mdl-34348059

ABSTRACT

Experiments were undertaken to identify the nature of a previously identified inhibitor of PAF-induced platelet aggregation (PA) in human saliva. Human saliva fractionated by preparative thin layer chromatography (TLC) yielded a fraction that co-migrated with fatty acids (FAs) and inhibited PAF-induced aggregation of platelets. Synthetic FAs tested for their capacities to inhibit 0.1 nM PAF-induced PA showed that only the cis-unsaturated compounds were inhibitory with activities of some of the polyunsaturated FAs (PUFA) reaching almost 100% at 20 µM. Eicosapentanoic acid (EPA) and 8,11,14-eicosatrienoic acid also deaggregated the PAF-induced aggregates. With the exception of oleic acid (OLA), cis-monounsaturated FAs, and elaidic acid, the trans isomer of OLA, were poor inhibitors. In a direct comparison with other platelet agonists, ADP, thrombin, and ionophore A23187, the active saliva fraction and selected individual FAs inhibited, to greater or lesser extent, PA induced by each of the agonists. EPA, OLA, linoleic acid (LNA), and the active saliva fraction were potent inhibitors of ADP-induced PA, EPA completely inhibited thrombin-induced PA and the saliva fraction showed only weak - moderate inhibitory activity to both thrombin- and ionophore A23187-induced PA. Other reports of endogenous PAF inhibitors in mammalian tissues are compared to the present results. PAF can trigger and amplify inflammatory cascades suggesting a possible modulation role for cis-unsaturated FAs in some diseases.


Subject(s)
Platelet Activating Factor , Platelet Aggregation , Adenosine Diphosphate/pharmacology , Animals , Blood Platelets , Calcimycin/analysis , Calcimycin/pharmacology , Fatty Acids/analysis , Fatty Acids/pharmacology , Humans , Ionophores/analysis , Ionophores/pharmacology , Mammals , Platelet Activating Factor/analysis , Platelet Activating Factor/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Saliva/chemistry , Thrombin/pharmacology
13.
Chem Biodivers ; 19(1): e202100668, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34812586

ABSTRACT

Forsyqinlingines C (1) and D (2), two C9 -monoterpenoid alkaloids bearing a rare skeleton, were isolated from the ripe fruits of Forsythia suspensa. Their structures, including absolute configurations, were fully elucidated by extensive spectroscopic data and ECD experiments. The plausible biogenetic pathway for compounds 1 and 2 was also proposed. In vitro, two C9 -monoterpenoid alkaloids showed anti-inflammatory activity performed by the inhibitory effect on the release of ß-glucuronidase in rat polymorphonuclear leukocytes (PMNs), as well as antiviral activity against influenza A (H1N1) virus and respiratory syncytial virus (RSV).


Subject(s)
Alkaloids/chemistry , Anti-Inflammatory Agents/chemistry , Antiviral Agents/chemistry , Forsythia/chemistry , Monoterpenes/chemistry , Alkaloids/isolation & purification , Alkaloids/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Forsythia/metabolism , Fruit/chemistry , Fruit/metabolism , Glucuronidase/metabolism , Influenza A Virus, H1N1 Subtype/drug effects , Magnetic Resonance Spectroscopy , Molecular Conformation , Neutrophils/cytology , Neutrophils/drug effects , Neutrophils/metabolism , Platelet Activating Factor/pharmacology , Rats , Respiratory Syncytial Viruses/drug effects
14.
Eur Respir J ; 57(1)2021 01.
Article in English | MEDLINE | ID: mdl-32764118

ABSTRACT

Epidemiological data from the SARS-CoV-2 outbreak suggest sex differences in mortality and vulnerability; however, sex-dependent incidence of acute respiratory distress syndrome (ARDS) remains controversial and the sex-dependent mechanisms of endothelial barrier regulation are unknown. In premenopausal women, increased signalling of angiotensin (Ang)(1-7) via the Mas receptor has been linked to lower cardiovascular risk. Since stimulation of the Ang(1-7)/Mas axis protects the endothelial barrier in acute lung injury (ALI), we hypothesised that increased Ang(1-7)/Mas signalling may protect females over males in ALI/ARDS.Clinical data were collected from Charité inpatients (Berlin) and sex differences in ALI were assessed in wild-type (WT) and Mas-receptor deficient (Mas-/- ) mice. Endothelial permeability was assessed as weight change in isolated lungs and as transendothelial electrical resistance (TEER) in vitroIn 734 090 Charité inpatients (2005-2016), ARDS had a higher incidence in men as compared to women. In murine ALI, male WT mice had more lung oedema, protein leaks and histological evidence of injury than female WT mice. Lung weight change in response to platelet-activating factor (PAF) was more pronounced in male WT and female Mas-/- mice than in female WT mice, whereas Mas-receptor expression was higher in female WT lungs. Ovariectomy attenuated protection in female WT mice and reduced Mas-receptor expression. Oestrogen increased Mas-receptor expression and attenuated endothelial leakage in response to thrombin in vitro This effect was alleviated by Mas-receptor blockade.Improved lung endothelial barrier function protects female mice from ALI-induced lung oedema. This effect is partially mediated via enhanced Ang(1-7)/Mas signalling as a result of oestrogen-dependent Mas expression.


Subject(s)
Acute Lung Injury/genetics , Angiotensin I/metabolism , COVID-19/epidemiology , Capillary Permeability/genetics , Endothelium, Vascular/metabolism , Estrogens/metabolism , Lung/metabolism , Peptide Fragments/metabolism , Proto-Oncogene Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Respiratory Distress Syndrome/epidemiology , Acute Lung Injury/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Angiotensin I/pharmacology , Angiotensin-Converting Enzyme 2 , Animals , Capillary Permeability/drug effects , Child , Electric Impedance , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Estradiol/pharmacology , Female , Humans , In Vitro Techniques , Lung/drug effects , Male , Mice , Mice, Knockout , Middle Aged , Ovariectomy , Peptide Fragments/pharmacology , Platelet Activating Factor/pharmacology , Proto-Oncogene Mas , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , SARS-CoV-2 , Sex Distribution , Sex Factors , Up-Regulation , Young Adult
15.
Prostaglandins Other Lipid Mediat ; 151: 106478, 2020 12.
Article in English | MEDLINE | ID: mdl-32711129

ABSTRACT

Platelet-activating factor (PAF), a bioactive ether phospholipid with significant pro-inflammatory properties, was identified almost half a century ago. Despite extensive study of this autocoid, therapeutic strategies for targeting its signaling components have not been successful, including the recent clinical trials with darapladib, a drug that targets plasma PAF-acetylhydrolase (PAF-AH). We recently provided experimental evidence that the previously unrecognized acyl analog of PAF, which is concomitantly produced along with PAF during biosynthesis, dampens PAF signaling by acting both as a sacrificial substrate for PAF-AH and probably as an endogenous PAF-receptor antagonist/partial agonist. If this is the scenario in vivo, PAF-AH needs to catalyze the selective hydrolysis of alkyl-PAF and not acyl-PAF. Accordingly, different approaches are needed for treating inflammatory diseases in which PAF signaling is implicated. The interplay between acyl-PAF, alkyl-PAF, PAF-AH, and PAF-R is complex, and the outcome of this interplay has not been previously appreciated. In this review, we discuss this interaction based on our recent findings. It is very likely that the relative abundance of acyl and alkyl-PAF and their interactions with PAF-R in the presence of their hydrolyzing enzyme PAF-AH may exert a modulatory effect on PAF signaling during inflammation.


Subject(s)
Platelet Activating Factor/analogs & derivatives , Platelet Activating Factor/pharmacology , Signal Transduction/drug effects , Acylation , Alkylation , Humans , Inflammation/pathology
16.
Andrologia ; 52(5): e13565, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32187723

ABSTRACT

Platelet-activating factor (PAF) affects capacitation, acrosome reaction and fertilisation potential of spermatozoa. This study investigated the underlying mechanism(s) through which PAF regulated sperm function. Our data demonstrated that PAF dose-dependently induced, whilst lyso-PAF (PAF precursor) showed no effect on acrosome reaction of capacitated human spermatozoa. Treatment with PAF for 90 min enhanced tyrosine phosphorylation and expression of extracellular signal-regulated protein kinases (ERK) 1 and 2 in human spermatozoa. Moreover, pre-treatment with the ERK inhibitor U0126 significantly and dose-dependently suppressed PAF-induced acrosome reaction. Therefore, PAF may be actively involved in the modulation of sperm acrosome reaction by interacting with ERK. The role of PAF in fertilisation warrants further investigation.


Subject(s)
Acrosome Reaction/drug effects , Infertility, Male/drug therapy , MAP Kinase Signaling System/drug effects , Platelet Activating Factor/pharmacology , Butadienes/pharmacology , Dose-Response Relationship, Drug , Humans , Male , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Nitriles/pharmacology , Platelet Activating Factor/therapeutic use , Sperm Capacitation/drug effects , Sperm Motility/drug effects
17.
Blood ; 130(2): 214-220, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28487294

ABSTRACT

The effect of variation in platelet function in platelet donors on patient outcome following platelet transfusion is unknown. This trial assessed the hypothesis that platelets collected from donors with highly responsive platelets to agonists in vitro assessed by flow cytometry (high-responder donors) are cleared more quickly from the circulation than those from low-responder donors, resulting in lower platelet count increments following transfusion. This parallel group, semirandomized double-blinded trial was conducted in a single center in the United Kingdom. Eligible patients were those 16 or older with thrombocytopenia secondary to bone marrow failure, requiring prophylactic platelet transfusion. Patients were randomly assigned to receive a platelet donation from a high- or low-responder donor when both were available, or when only 1 type of platelet was available, patients received that. Participants, investigators, and those assessing outcomes were masked to group assignment. The primary end point was the platelet count increment 10 to 90 minutes following transfusion. Analysis was by intention to treat. Fifty-one patients were assigned to receive platelets from low-responder donors, and 49 from high-responder donors (47 of which were randomized and 53 nonrandomized). There was no significant difference in platelet count increment 10 to 90 minutes following transfusion in patients receiving platelets from high-responder (mean, 21.0 × 109/L; 95% confidence interval [CI], 4.9-37.2) or low-responder (mean, 23.3 × 109/L; 95% CI, 7.8-38.9) donors (mean difference, 2.3; 95% CI, -1.1 to 5.7; P = .18). These results support the current policy of not selecting platelet donors on the basis of platelet function for prophylactic platelet transfusion.


Subject(s)
Hemorrhage/prevention & control , Platelet Transfusion , Thrombocytopenia/therapy , Tissue Donors/classification , Adult , Aged , Anemia, Aplastic/blood , Anemia, Aplastic/complications , Anemia, Aplastic/pathology , Blood Platelets/cytology , Blood Platelets/drug effects , Blood Platelets/physiology , Bone Marrow Diseases/blood , Bone Marrow Diseases/complications , Bone Marrow Diseases/pathology , Bone Marrow Failure Disorders , Double-Blind Method , Female , Hemoglobinuria, Paroxysmal/blood , Hemoglobinuria, Paroxysmal/complications , Hemoglobinuria, Paroxysmal/pathology , Hemorrhage/blood , Humans , Intention to Treat Analysis , Male , Middle Aged , Platelet Activating Factor/pharmacology , Platelet Activation/drug effects , Platelet Count , Platelet Function Tests , Thrombocytopenia/blood , Thrombocytopenia/etiology , Thrombocytopenia/pathology
18.
Cell Commun Signal ; 17(1): 21, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30832675

ABSTRACT

BACKGROUND: Platelet-activating factor (PAF) is a potent lipid mediator whose involvement in the onset and progression of atherosclerosis is mediated by, among others, the modulation of cytokine expression patterns. The presence of multiple potential protein-tyrosine phosphatase (PTP) 1B substrates in PAF receptor signaling pathways brought us to investigate its involvement in PAF-induced cytokine expression in monocyte-derived dendritic cells (Mo-DCs) and to study the pathways involved in this modulation. METHODS: We used in-vitro-matured human dendritic cells and the HEK-293 cell line in our studies. PTP1B inhibition was though siRNAs and a selective inhibitor. Cytokine expression was studied with RT-PCR, luciferase assays and ELISA. Phosphorylation status of kinases and transcription factors was studied with western blotting. RESULTS: Here, we report that PTP1B was involved in the modulation of cytokine expression in PAF-stimulated Mo-DCs. A study of the down-regulation of PAF-induced IL-8 expression, by PTP1B, showed modulation of PAF-induced transactivation of the IL-8 promoter which was dependent on the presence of the C/EBPß -binding site. Results also suggested that PTP1B decreased PAF-induced IL-8 production by a glycogen synthase kinase (GSK)-3-dependent pathway via activation of the Src family kinases (SFK). These kinases activated an unidentified pathway at early stimulation times and the PI3K/Akt signaling pathway in a later phase. This change in GSK-3 activity decreased the C/EBPß phosphorylation levels of the threonine 235, a residue whose phosphorylation is known to increase C/EBPß transactivation potential, and consequently modified IL-8 expression. CONCLUSION: The negative regulation of GSK-3 activity by PTP1B and the consequent decrease in phosphorylation of the C/EBPß transactivation domain could be an important negative feedback loop by which cells control their cytokine production after PAF stimulation.


Subject(s)
Interleukin-8/metabolism , Platelet Activating Factor/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Binding Sites , CCAAT-Enhancer-Binding Protein-beta/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Glycogen Synthase Kinase 3/metabolism , HEK293 Cells , Humans , Interleukin-8/genetics , Models, Biological , Phosphorylation/drug effects , Phosphothreonine/metabolism , Platelet Membrane Glycoproteins/metabolism , Promoter Regions, Genetic/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , src-Family Kinases/metabolism
20.
Br J Dermatol ; 178(1): 207-214, 2018 01.
Article in English | MEDLINE | ID: mdl-28733990

ABSTRACT

BACKGROUND: Neutrophil (polymorphonuclear) granulocytes (PMN) have been shown to contribute to the pathogenesis of psoriasis by releasing interleukin-17 and LL37-DNA complexes via neutrophil extracellular traps (NETs), webs of chromatin strands decorated with antimicrobial peptides, in psoriatic skin. Fumaderm® , a fumaric acid ester (FAE) formulation consisting of different FAE salts, has been successfully used to treat psoriasis for decades. Most recently, FAE treatment was reported to inhibit NET formation in murine epidermolysis bullosa acquisita. OBJECTIVES: To elucidate the effect of FAE treatment on human psoriasis and healthy donor NET formation. RESULTS: Among the compounds present in the FAE formulation, dimethyl fumarate (DMF) pretreatment of human psoriasis and healthy donor PMN resulted in a consistent inhibitory effect on NET formation in response to phorbol 12-myristate 13-acetate but not to platelet activating factor and ionomycin. This effect was l-glutathione (GSH) dependent and involved a decrease in reactive oxygen species (ROS) production, a key event in NET formation. In contrast, G-protein-coupled signalling and protein synthesis were not involved. Monomethyl fumarate (MMF) was found to slightly reduce ROS production without affecting NET formation. CONCLUSIONS: We report DMF as a potent, stimulus-specific, GSH- and ROS-dependent modulator of NET formation. Our results support the notion that modulation of NET formation contributes to the beneficial effects of FAEs in a variety of inflammatory conditions.


Subject(s)
Dermatologic Agents/pharmacology , Dimethyl Fumarate/pharmacology , Extracellular Traps/drug effects , Psoriasis/drug therapy , Analysis of Variance , Antioxidants/pharmacology , Caspases/metabolism , Cells, Cultured , Dose-Response Relationship, Drug , Fumarates/pharmacology , GTP-Binding Proteins/metabolism , Glutathione/metabolism , Humans , Ionomycin/pharmacology , Platelet Activating Factor/pharmacology , Reactive Oxygen Species/metabolism , Superoxides/metabolism , Tetradecanoylphorbol Acetate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL